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Topologically slice knots that are not smoothly slice
in any definite 4–manifold

KOUKI SATO

We prove that there exist infinitely many topologically slice knots which cannot
bound a smooth null-homologous disk in any definite 4–manifold. Furthermore, we
show that we can take such knots so that they are linearly independent in the knot
concordance group.

57M25, 57M27

1 Introduction

A knot K in S3 is called smoothly slice (resp. topologically slice) if K bounds a
smooth disk (resp. topologically locally flat disk) in B4. While any smoothly slice
knot is obviously topologically slice, it has been known that there exist infinitely many
topologically slice knots that are not smoothly slice; for instance, see Endo [3] and
Gompf [6]. The purpose of this paper is to prove that there exist infinitely many
topologically slice knots which cannot bound a null-homologous smooth disk not only
in B4 but also in any 4–manifold with definite intersection form.

For a 4–manifold V with boundary S3, we call a knot K in S3 smoothly slice in V

if K bounds a smooth disk D in V such that ŒD; @D�D 0 2H2.V; @V IZ/. We call
a 4–manifold V definite if the intersection form of V is either positive definite or
negative definite. We denote the smooth knot concordance group by C . Then our main
theorem is stated as follows.

Theorem 1.1 There exist infinitely many topologically slice knots which are not slice
in any definite 4–manifold. Furthermore, we can take such knots so that they are
linearly independent in C .

In order to prove Theorem 1.1, we use the Heegaard Floer �–invariant and the Vk–
invariants defined by Ni and Wu [13]. In particular, by combining Wu’s cabling
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828 Kouki Sato

formula [21] and Bodnár, Celoria and Golla’s connected sum inequality [1] for Vk–
invariants, we prove the following proposition. Here we denote the mirror image of a
knot K by K�, the .n; 1/–cable of K by Kn;1 and the connected sum of two knots K

and J by K # J . The symbol " denotes Hom’s "–invariant [9].

Proposition 1.2 Let K and J be knots. If V0.K/ > V0.J / and �.K/; �.J / > 0, then
for any positive integer n with �.K/C 1

2
.1�".J // < n

�
�.J /C 1

2
.1�".J //

�
, the knot

K # .Jn;1/
� is not slice in any definite 4–manifold.

Note that if both K and J are topologically slice, then K#.Jn;1/
� is also topologically

slice for any n 2Znf0g. Furthermore, it follows from Hedden, Kim and Livingston [8,
Proposition 6.1, Theorem B.1] that for any m 2 Z>0 , there exists a topologically slice
knot Km with V0.Km/Dm and �.Km/> 0. Hence by taking Kl #..Km/n;1/

� so that
l >m and n is sufficiently large, we immediately obtain infinitely many topologically
slice knots which are not slice in any definite 4–manifold. Our proof of the linear inde-
pendence of these topologically slice knots relies on Kim and Park’s recent result [11].

The problem of smooth sliceness leads to the notion of the kinkiness of knots, as defined
by Gompf [6]. Let K be a knot in S3D @B4, and consider all self-transverse immersed
disks in B4 with boundary K . Then we define kC.K/ (resp. k�.K/) to be the minimal
number of positive (resp. negative) self-intersection points occurring in such a disk.
Gompf proved in [6] that for any n 2 Z>0 , there exists a topologically slice knot K

such that .kC.K/; k�.K// D .0; n/. On the other hand, as far as the author knows,
whether there exist topologically slice knots which satisfy kC > 0 and k� > 0 has
remained so far unsolved. In this paper, we give an affirmative answer to the question.

Theorem 1.3 For any m; n2Z>0 , there exist infinitely many topologically slice knots
with kC �m and k� � n.

Acknowledgements The author was supported by JSPS KAKENHI Grant Number
15J10597. The author would like to thank his supervisor, Tamás Kálmán for his
encouragement and useful comments, and also Wenzhao Chen, Marco Golla, Matthew
Hedden and Jennifer Hom for their stimulating discussions.

2 Preliminaries

In this section, we recall some knot concordance invariants derived from Heegaard
Floer homology theory and show that they give obstructions to the sliceness of knots
in definite 4–manifolds.
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2.1 Correction terms and d1–invariant

Ozsváth and Szabó [15] introduced a Q–valued invariant d (called the correction term)
for rational homology 3–spheres endowed with a Spinc structure. In particular, since
any integer homology 3–sphere Y has a unique Spinc structure, we may denote the
correction term simply by d.Y / in this case. Furthermore, for any integer homology
3–sphere Y , we note that d.Y / is an even integer.

Let S3
1
.K/ denote the 1–surgery along a knot K in S3. Then S3

1
.K/ is an integer

homology 3–sphere, and hence we can define the d1–invariant of K as d1.K/ WD

d.S3
1
.K//. It is known that d1.K/ is a knot concordance invariant of K . For details,

see [19]. Here we show that the d1–invariant gives an obstruction to the sliceness in
negative-definite 4–manifolds.

Lemma 2.1 If a knot K is smoothly slice in some negative-definite 4–manifold, then
we have d1.K/D 0.

Proof It is proved in [19] that d1.K/ � 0 for any knot K . Hence we only need to
show that d1.K/� 0.

Suppose that K is slice in a negative-definite 4–manifold V . Then there exists a
properly embedded null-homologous disk D in V with boundary K . By attaching a
.C1/–framed 2–handle h2 along K , and gluing D with the core of h2, we obtain an
embedded 2–sphere S in W WD V [h2 with self-intersection C1. This implies that
there exists a 4–manifold W 0 with boundary S3

1
.K/ such that W DW 0 # CP2. Note

that @W 0D @W DS3
1
.K/. Since the number of positive eigenvalues of the intersection

form of W is one, the intersection form of W 0 must be negative definite. Now we use
the following theorem.

Theorem 2.2 (Ozsváth and Szabó [15, Corollary 9.8]) If Y is an integer homology
3–sphere with d.Y /<0, then there is no negative-definite 4–manifold X with @X DY .

By Theorem 2.2 and the existence of W 0 , we have d1.K/D d.S3
1
.K//� 0.

2.2 �–invariant, Vk–invariant and �C–invariant

The �–invariant � is a famous knot concordance invariant defined by Ozsváth and
Szabó [17] and Rasmussen [20]. It is known that � is a group homomorphism from C
to Z, while d1 is not a homomorphism.
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The Vk–invariant is a family of Z�0–valued knot concordance invariants fVk.K/gk�0

defined by Ni and Wu [13]. In particular, �C.K/ WDminfk � 0 jVk.K/D 0g is known
as the �C–invariant [10]. It is proved therein that for any knot K , the inequality
�.K/� �C.K/ holds.

In [13], Ni and Wu prove that the set fVk.K/gk�0 determines all correction terms
of p=q–surgeries along K for any coprime p; q > 0. Let S3

p=q
.K/ denote the p=q–

surgery along K . Note that there is a canonical identification between the set of Spinc

structures over S3
p=q

.K/ and fi j 0 � i � p � 1g. This identification can be made
explicit by the procedure in [18, Sections 4 and 7].

Proposition 2.3 [13, Proposition 1.6] Suppose p; q > 0, and fix 0� i �p�1. Then

d.S3
p=q.K/; i/D d.S3

p=q.O/; i/� 2 maxfVbi=qc.K/;Vb.pCq�1�i/=qc.K/g;

where O denotes the unknot and b � c is the floor function.

As a corollary, the following lemma holds. Note that fVk.K/gk�0 satisfy the inequali-
ties Vk.K/� 1� VkC1.K/� Vk.K/ for each k � 0.

Lemma 2.4 For any knot K , we have d1.K/D�2V0.K/.

Here we show that the �–invariant also gives an obstruction to the sliceness in negative-
definite 4–manifolds.

Lemma 2.5 If a knot K is slice in some negative-definite 4–manifold, then �.K/� 0.

Proof Suppose that K is slice in some negative-definite 4–manifold. Then by
Lemma 2.1, we have d1.K/ D 0. By Lemma 2.4, this implies that V0.K/ D 0

and �C.K/D 0. Hence we have �.K/� �C.K/D 0.

By combining Lemmas 2.1, 2.4 and 2.5, we obtain the following obstruction to sliceness
in definite 4–manifolds.

Proposition 2.6 Let K be a knot. If V0.K/¤ 0 and �.K/ < 0, then K is not slice
in any definite 4–manifold.

Proof Assume that a knot K satisfies V0.K/¤ 0 and �.K/< 0. Then it immediately
follows from Lemmas 2.1 and 2.4 that K is not slice in any negative-definite 4–manifold.
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Suppose that K is slice in a positive-definite 4–manifold V . Then by reversing the
orientation of V , we obtain a slice disk in �V with boundary K�. Since �V is
negative definite and � is a group homomorphism from C to Z, Lemma 2.5 implies

�.K/D��.K�/� 0:

This contradicts the assumption �.K/ < 0.

2.3 Some formulas for Vk–invariants

In this subsection, we recall Wu’s cabling formula and Bodnár, Celoria and Golla’s
connected sum inequality for Vk–invariants. Since the .p; 1/–cable and the connected
sum of topologically slice knots are also topologically slice, we can estimate the
Vk–invariants of various topologically slice knots by using these formulas.

We first recall Wu’s cabling formula for Vk . For coprime integers p; q > 0, let Tp;q

denote the .p; q/–torus knot and Kp;q the .p; q/–cable of a knot K . We define a map

�p;qW
˚
i j 0� i � 1

2
pq
	
! fi j 0� i � q� 1g

by
�p;q.i/� i � 1

2
.p� 1/.q� 1/ mod q:

Proposition 2.7 (Wu [21, Equation (13)]) Given p; q > 0 and 1
2
.p � 1/.q � 1/ �

i � 1
2
pq , we have

Vi.Kp;q/D Vb�p;q.i/=pc.K/:

If we consider the case where q D 1, then we have �p;1.i/D 0 for any 0� i � 1
2
p .

Hence Proposition 2.7 gives the following lemma.

Lemma 2.8 Given p > 0 and 0� i � 1
2
p , we have

Vi.Kp;1/D V0.K/:

Next we recall Bodnár, Celoria and Golla’s connected sum inequality for Vk .

Proposition 2.9 [1, Proposition 6.1] For any two knots K and J and any m;n2Z�0,

VmCn.K # J /� Vm.K/CVn.J /:

In this paper, we only need Proposition 2.9 in the case where m D n D 0, which is
stated as follows.
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Proposition 2.10 For any two knots K and J , we have

V0.K # J /� V0.K/CV0.J /:

We can use Proposition 2.10 to give a lower bound for V0 of the connected sum of two
knots as well. In particular, we have the following lemma.

Lemma 2.11 For any two knots K and J , we have

V0.K # J�/� V0.K/�V0.J /:

Proof For the inequality in Proposition 2.10, by replacing Kwith K # J�, we have

V0.K # J� # J /� V0.K # J�/CV0.J /:

Since K#J�#J is concordant to K , we have V0.K#J�#J /DV0.K/. This completes
the proof.

3 Proof of the main theorems

In this section, we prove Proposition 1.2, Theorem 1.1 and Theorem 1.3.

Proof of Proposition 1.2 Suppose that two given knots K and J satisfy V0.K/ >

V0.J / and �.K/; �.J / > 0. Fix a positive integer n satisfying �.K/C 1
2
.1� ".J // <

n
�
�.J /C 1

2
.1� ".J //

�
. Then Lemmas 2.8 and 2.11 imply that

V0.K # .Jn;1/
�/� V0.K/�V0.Jn;1/D V0.K/�V0.J / > 0:

Furthermore, by [9, Theorem 1] and the assumption �.J / > 0, we have ".J /¤ 0 and

�.K # .Jn;1/
�/D �.K/� �.Jn;1/D �.K/� n � �.J /� 1

2
.n� 1/.1� ".J // < 0:

Hence it follows from Proposition 2.6 that K # .Jn;1/
� is not slice in any definite

4–manifold.

Proof of Theorem 1.1 For a knot K , let Wh.K/ denote the positively clasped
untwisted Whitehead double of K . Then we set

Kn WD
�
#3

iD1 Wh.T2;3/
�

# ..Wh.T2;3//nC3;1/
�

for any positive integer n. Since the Alexander polynomial of Kn equals 1, Kn is
topologically slice for any n [4; 5].
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We first prove that Kn is not slice in any definite 4–manifold. As mentioned in [11,
Section 3], it follows from [8, Proposition 6.1, Theorem B.1] and [11, Lemma 3.1]
that #k

iD1 Wh.T2;3/ is �C–equivalent to T2;2kC1 for any k > 0. (Here, knots K

and J being �C–equivalent means that the equalities �C.K # J�/D �C.J # K�/D 0

hold.) Furthermore, we can see that V0 (more generally, all Vk ) is invariant under
�C–equivalence. Indeed, if two knots K and J are �C–equivalent, then Lemma 2.11
implies that

0D�V0.J # K�/� V0.K/�V0.J /� V0.K # J�/D 0:

Hence, combining with [16, Corollary 1.5], we have

V0

�
#k

iD1 Wh.T2;3/
�
D V0.T2;2kC1/D

˙
1
2
k
�
:

This implies that

V0

�
#3

iD1 Wh.T2;3/
�
D
˙

3
2

�
>
˙

1
2

�
D V0.Wh.T2;3//:

Moreover, it follows from [7, Theorem 1.5] and [9, Section 1] that �.Wh.T2;3//D 1

and ".Wh.T2;3//D 1, and we have

�
�
#3

iD1Wh.T2;3/
�
C

1
2
.1�".Wh.T2;3///<.nC3/

�
�.Wh.T2;3//C

1
2
.1�".Wh.T2;3///

�
for any n > 0. Hence we can apply Proposition 1.2 to

�
#3

iD1 Wh.T2;3/;Wh.T2;3/
�

and conclude that for any n> 0, the knot Kn is not slice in any definite 4–manifold.

Next we prove that the knots fKngn2Z>0
are linearly independent in C . Suppose that a

linear combination m1ŒKn1
�C� � �Cmk ŒKnk

� equals zero in C (where we may assume
that 0< n1 < n2 < � � �< nk ). Then we have the equality

(1) 3
�Pk

iD1 mi

�
ŒWh.T2;3/�Dm1Œ.Wh.T2;3//n1C3;1�C� � �Cmk Œ.Wh.T2;3//nkC3;1�:

In the proof of [11, Therorem A], the authors define a homomorphism �W C! Z1

and show that �.Œ.Wh.T2;3//nC3;1�/D .�; : : : ;�; 1; 0; 0; : : :/, where 1 is the .nC2/nd

coordinate. Hence we can see that the .nkC2/nd coordinate of �.RHS of (1)/ is mk .
On the other hand, we can verify that �.ŒWh.T2;3/�/D�.ŒT2;3�/D .0; 0; : : :/, and hence
mk must be 0. Inductively, we have m1D � � � Dmk D 0. This completes the proof.

Remark If one just wants to find infinitely many knots which are not smoothly slice in
any simply connected definite 4–manifold, then we only need the following proposition,
which immediately follows from [2, Proposition 1.2].
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Proposition 3.1 If the Levine–Tristram signature of a knot K has both positive and
negative values, then K is not smoothly slice in any simply connected definite 4–
manifold.

Indeed, we can take Jk WDT2;2kC9#
�
#kC5

iD1 T2;3

��
.k 2Z>0/ as the concrete sequence.

To see that any Jk satisfies the assumption of Proposition 3.1, let us recall the Levine–
Tristram signature and compute it for positive .2; q/–torus knots. Let A be a Seifert
matrix for a knot K and x 2 .0; 1/ a real number. Then

Ax WD .1� e2i�x/AC .1� e�2i�x/A�

is a Hermitian matrix, and all of its eigenvalues are real numbers. We define

�K .x/ WD #fpositive eigenvalues of Axg� #fnegative eigenvalues of Axg:

Then the value �K .x/ is an invariant of K for any x 2 .0; 1/. Note that �K

�
1
2

�
is

equal to the knot signature, and �K .x/D �K .1�x/ for any 0< x � 1
2

.

Lemma 3.2 Let q > 1 be an odd integer and 0 < x � 1
2

a real number. If x is not
contained in f1=2q; 3=2q; : : : ; .q� 2/=2qg, then we have

�T2;q
.x/D�2

˙
1
2
.2qx� 1/

�
:

Proof Applying [12, Proposition 1] to the cases where pD 2 and 0<x� 1
2

, we have

(2) �T2;q
.x/D #

˚
j 2 Z

ˇ̌
xC 1

2
< j=q < 1

	
� #

˚
j 2 Z

ˇ̌
0< j=q < xC 1

2

	
:

Furthermore, if x 62 f1=2q; 3=2q; : : : ; .q� 2/=2qg, then the equality

#
˚
j 2 Z

ˇ̌
0< j=q < xC 1

2

	
C #

˚
j 2 Z

ˇ̌
xC 1

2
< j=q < 1

	
D q� 1

holds, and hence (2) implies

(3) �T2;q
.x/D q� 1� 2

�
#
˚
j 2 Z

ˇ̌
0< j=q < xC 1

2

	�
:

We denote the value #
˚
j 2 Z j 0< j=q < xC 1

2

	
by n. Then the inequalities

n< q
�
xC 1

2

�
D

1
2
.2qx� 1/C 1

2
.qC 1/� nC 1

hold, and these imply ˙
1
2
.2qx� 1/

�
D n� 1

2
.q� 1/:

This equality reduces (3) to

�T2;q
.x/D�2

˙
1
2
.2qx� 1/

�
:
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Figure 1: A positive crossing (left) and a negative crossing (right)

By Lemma 3.2, we can verify that �Jk
.x/D�2 for x 2 .1=.2.2kC9//; 3=.2.2kC9///

and �Jk

�
1
2

�
D 2. Furthermore, since all torus knots are linearly independent in C [12],

the knots Jk are also linearly independent.

Finally we prove Theorem 1.3. To do so, we use the following observation relating
kinkiness to �C and � .

Lemma 3.3 For any knot K , we have the inequalities

�C.K/� kC.K/ and � k�.K/� �.K/� kC.K/:

Proof If a knot K1 is deformed into K2 by a crossing change from a positive crossing
(Figure 1, left) to a negative crossing (Figure 1, right) (resp. from a negative crossing
to a positive crossing), then we say that K1 is deformed into K2 by a positive (resp.
negative) crossing change. It is proved in [1, Theorem 1.3] and [17, Corollary 1.5] that
if a knot KC is deformed into K� by a positive crossing change, then we have

�C.K�/� �
C.KC/� �

C.K�/C 1 and �.K�/� �.KC/� �.K�/C 1:

Furthermore, it follows from [14, Proposition 2.1] that for any knot K , there exists
a knot J which is concordant to K and which can be deformed into a slice knot L

by just kC.K/ positive crossing changes and finitely many negative crossing changes.
These imply that

�C.K/D �C.J /� �C.L/C kC.K/D kC.K/

and
�.K/D �.J /� �.L/C kC.K/D kC.K/:

By applying the same argument to K�, we have

��.K/D �.K�/� kC.K�/D k�.K/:

Proof of Theorem 1.3 For positive integers k and l , we define Kk;l by

Kk;l WD
�
#2kC1

iD1 Wh.T2;3/
�

# ..Wh.T2;3//lC2kC1;1/
�:
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Since the knots have the trivial Alexander polynomial, Kk;l is topologically slice for
any k; l > 0. We prove that for any m; n 2Z>0 , we have that fKm;lgl�n are mutually
distinct, and each of them satisfies kC.Km;l/�m and k�.Km;l/� n.

By applying the argument in the proof of Theorem 1.1, we have

V0.Kk;l/� V0

�
#2kC1

iD1 Wh.T2;3/
�
�V0..Wh.T2;3//lC2kC1;1/D k

and
�.Kk;l/D 2kC 1� .l C 2kC 1/D�l:

In particular, Kk;l is not equal to Kk;l 0 if l ¤ l 0 . Furthermore, since �C.K/ D
minfi 2Z�0 j Vi.K/D 0g and ViC1.K/� Vi.K/�1, we have �C.Kk;l/� k . Hence
Lemma 3.3 proves that kC.Kk;l/� k and k�.Kk;l/� l . This completes the proof.
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