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Topological complexity of n points on a tree

STEVEN SCHEIRER

The topological complexity of a path-connected space X , denoted by TC.X/ , can
be thought of as the minimum number of continuous rules needed to describe how
to move from one point in X to another. The space X is often interpreted as a
configuration space in some real-life context. Here, we consider the case where
X is the space of configurations of n points on a tree � . We will be interested
in two such configuration spaces. In the first, denoted by C n.�/ , the points are
distinguishable, while in the second, UCn.�/ , the points are indistinguishable. We
determine TC.UCn.�// for any tree � and many values of n , and consequently
determine TC.C n.�// for the same values of n (provided the configuration spaces
are path-connected).

57M15; 55R80, 57Q05

1 Introduction

For any topological space X , let P.X/ be the space of continuous paths � W Œ0; 1�!X

equipped with the compact–open topology. There is a fibration pW P.X/! X �X

which sends a path � to its endpoints: p.�/ D .�.0/; �.1//. When studying the
problem of motion planning within a topological space, one often wishes to find
sections of this fibration. That is, one wishes to find functions sW X �X!P.X/ such
that p ı s is the identity. Such a function takes a pair of points as input and produces a
path between those points, hence the relation to motion planning. The continuity of
a section s at a point .x; y/ 2X �X means that if .x0; y0/ is “close” to .x; y/, then
the path s.x0; y0/ is “close” to the path s.x; y/. Unfortunately it is a rarity that such
a function can be continuous over all of X �X (in fact, such a continuous section
exists if and only if the space X is contractible; see [3]). This leads to the definition of
topological complexity introduced by Farber in [3]:

Definition 1.1 For any path-connected space X , the topological complexity of X ,
denoted by TC.X/, is the smallest integer k � 1 such that there is a cover of X �X
by open sets U1; U2; : : : ; Uk and continuous sections si W Ui ! P.X/. If there is no
such k , set TC.X/D1.
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Such a collection of sets Ui and sections si is called a motion planning algorithm.
Thus, TC.X/ is in some sense the smallest number of continuous rules required to
describe how to move between any two points in X . The space X is often viewed as
the space of configurations of some real-world system. One example is when X is the
space of configurations of n robots which move around a factory along a system of
one-dimensional tracks. Such a system of tracks can be interpreted as a graph � (a
one-dimensional CW complex). There are two types of these configuration spaces: in
the first, denoted by C n.�/, the robots are distinguishable, and in the second, denoted
by UCn.�/, the robots are indistinguishable. In other words, in C n.�/, both the points
of � occupied by robots, and the specific robots which occupy those points are of
interest, while in UCn.�/, it is only required that each specified point in � is occupied
by some robot, but it is irrelevant which specific robot occupies each point. There
are different real-world situations in which one configuration space is preferable over
the other, depending on whether or not the robots are to perform different tasks. Our
main goal is to study the topological complexity of the configuration spaces C n.�/
and UCn.�/ when � is a tree (a tree is a connected graph which has no cycles). The
topological complexity of these configuration spaces is related to the number of vertices
of degree greater than 2 (the degree of a vertex is defined in Section 2). These vertices
are called essential vertices, and m.�/ is the number of essential vertices in � . Here,
an arc in � is a subspace homeomorphic to a nontrivial closed interval. We will be
interested in certain collections of arcs in � , which are called allowable and will be
defined in Definition 2.3. In Section 3, we establish the following:

Theorem 1.2 Let � be a tree with m WDm.�/� 1.

(1) Let k be the smallest integer such that there is a collection of oriented arcs
fAig

k
iD1 which is allowable for the collection of all vertices of degree 3 in � . If

there are no vertices of degree 3, let k D 0. Let n � 2mC k be an integer. Then
TC.C n.�//D TC.UCn.�//D 2mC 1.

(2) Let nD 2qC � < 2m, with � 2 f0; 1g and q � 1, let r be the number of vertices
of degree greater than 3, and let s be the number of vertices of degree 3. Suppose one
of these three cases hold:

(a) s � 2.q� r/.

(b) (i) s <2.q�r/, �D0, and there is some k�1 such that there exists a collection
of oriented arcs fAigkiD1 with the following properties:
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(A) The endpoints of each Al are (distinct) essential vertices, neither of
which is an endpoint of any other Al 0 .

(B) There are r 0 � r vertices of degree greater than 3 which are not the
endpoints of any Al .

(C) There is a collection V of degree-3 vertices, with jVj � q� r 0� k such
that fAigkiD1 is allowable for V .

(ii) s < 2.q � r/, � D 1, and there is an arc A0 whose endpoints have no
restrictions and whose interior includes a collection W 0 of s0 � q distinct
vertices of degree 3, and if s0 < q� r , there are arcs A1; : : : ; Ak as above
whose endpoints are also not vertices in W 0 , and there is another collection
of degree-3 vertices, W , such that W \W 0 D∅, jWj � q� r 0�k� s0 and
fAig

k
iD1 is allowable for W , where r 0 is as above.

Then TC.C n.�//D TC.UCn.�//D 2qC 1.

In [5], Farber proves a similar statement for the spaces C n.�/, showing that

TC.C n.�//D 2m.�/C 1 for m.�/� 1 and n� 2m.�/;

with an additional assumption that � is not homeomorphic to the letter Y if nD 2.
His proof uses methods which differ from the ones used here, and only address the
spaces C n.�/ for n large. Theorem 1.2 in some sense improves this, since it addresses
both the spaces C n.�/ and UCn.�/, and includes some values of n less than 2m.�/.
Furthermore, Corollary 3.7 determines the topological complexity of both configuration
spaces of a tree with no vertices of degree 3 for all values of n � 1, provided the
configuration spaces are connected. On the other hand, with k � 1 as above, Farber’s
results determine TC.C n.�// for nD 2m; 2mC 1; : : : ; 2mC k� 1, while our result
does not. We discuss in Proposition 3.8 the extent to which the results of Theorem 1.2
are the best one can achieve with the methods used here.

2 Configuration spaces of points on graphs

Consider a graph � , where, as above, a graph is a 1–dimensional CW complex. The
zero-dimensional cells of � are the vertices, and the closures of the 1–dimensional
cells are the edges. The degree of a vertex v is the number of edges which have v
as exactly one of their endpoints plus twice the number of edges which have v as
both endpoints. We will deal exclusively with finite graphs, so that the number of
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vertices and edges is finite. An essential vertex is a vertex of degree equal to or greater
than 3, and m.�/ is the number of essential vertices in � . Let C n.�/ be the space of
n–tuples of distinct points in � . That is,

C n.�/D

n times‚ …„ ƒ
� � � � � �� ��;

where �D f.x1; : : : ; xn/ 2 � � � � � �� W xi D xj for some i ¤ j g. The space C n.�/
will be called the topological configuration space of n ordered points on � . Similarly,
let

Dn.�/D

n times‚ …„ ƒ
� � � � � �� �z�;

where z� consists of all products of cells in � � � � � �� whose closures intersect �.
Thus, Dn.�/ consists of all products of cells c1 � � � � � cn such that xci \ xcj D ∅
whenever i ¤ j . In what follows, the word “cell” will always refer to the closure of a
cell. A point in Dn.�/ is then an ordered n–tuple of points .x1; : : : ; xn/ in � such
that there is at least a full open edge between two distinct points xi and xj . The space
Dn.�/ will be called the discrete configuration space of n ordered points on � .

There is a free action of the symmetric group Sn on C n.�/ and Dn.�/ which
permutes the coordinates. The quotients of these two spaces under this action are
denoted by UCn.�/ and UDn.�/, and are called the unordered topological and
discrete configuration spaces. Given a point y D .y1; : : : ; yn/ 2 C

n.�/, we may
find neighborhoods Ui in � which contain yi and satisfy Ui \Uj D ∅ for i ¤ j .
Then U D U1 � � � � � Un is a neighborhood of y in C n.�/ and for each ˛ 2 Sn ,
we have ˛.U /D U˛.1/ � � � � �U˛.n/ . So, if ˛ ¤ ˛0 2 Sn , then there is some i such
that ˛.i/¤ ˛0.i/, and then U˛.i/\U˛0.i/ D∅, so ˛.U /\˛0.U /D∅. This implies
that the quotient map C n.�/ ! UCn.�/ is a covering space projection (see [10,
Proposition 1.40]). If y is a point in Dn.�/, by letting U 0 D U \Dn.�/ we see that
the same is true of the quotient map Dn.�/! UDn.�/. The topological and discrete
spaces are related by the following:

Theorem 2.1 [1; 2; 11] Let � be a graph with at least n vertices. Suppose

(1) each path between distinct vertices of degree not equal to 2 in � contains at least
n� 1 edges, and

(2) each loop at a vertex in � which is not homotopic to a constant map contains at
least nC 1 edges.

Then C n.�/ and UCn.�/ deformation retract onto Dn.�/ and UDn.�/, respectively.
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In [1], Abrams proves a slightly weaker version of Theorem 2.1, assuming that each
path as in item (1) contains nC1 edges, and conjectures the stronger version given here.
Kim, Ko, and Park prove this conjecture in [11]. A graph which satisfies these conditions
is called sufficiently subdivided for n. Any graph can be made sufficiently subdivided
for any n by adding enough degree-2 vertices; this has no effect on the topology of
the graph or either of the topological configuration spaces. The following relates the
connectivity of a graph � and the connectivity of the topological configuration spaces:

Theorem 2.2 [1] Suppose � is a graph with at least one edge or at least nC 1
vertices. Then:

(1) C n.�/ is path-connected if and only if � is connected and either
(a) nD 1,
(b) nD 2 and � is not homeomorphic to a closed interval, or
(c) n� 3 and � is not homeomorphic to a closed interval or a circle.

(2) UCn.�/ is path-connected if and only if � is connected.

It follows that if � is sufficiently subdivided, then in Theorem 2.2, C n.�/ and UCn.�/
can be replaced with Dn.�/ and UDn.�/. In fact, Abrams also shows that if � has at
least nC1 vertices, then UDn.�/ is connected if and only if � is connected, regardless
of subdivision. If � has exactly n vertices, one can easily find examples in which � is
disconnected, but UDn.�/ is a single point (so UDn.�/ is connected). There are less
trivial examples in [1] in which � is connected while Dn.�/ is disconnected.

Daniel Farley and Lucas Sabalka have studied extensively the homotopy and homology
groups and the cohomology rings of the spaces UDn.�/ for a sufficiently subdivided
tree � using Forman’s discrete Morse theory [9]. Recall a tree is a simply connected
graph. We summarize some of their results which will be relevant here. From here on,
� is a tree which is sufficiently subdivided for n.

First, an ordering on the vertices is constructed as follows. Embed the tree � in
the plane, and let � be a vertex of degree 1. Assign � the number 0, travel away
from �, and number the remaining vertices in order (starting with 1) when they are first
encountered. Whenever an essential vertex is encountered, take the leftmost edge, and
turn around when a vertex of degree 1 is encountered. For each edge e , let �.e/ and
�.e/ be the two endpoints of e , with �.e/ < �.e/. There is also a notion of directions
from a vertex v ¤ � of degree d . These directions are a numbering of the edges
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incident to v from 0 to d � 1, in increasing order clockwise around the vertex, with
0 being the direction on the geodesic segment from v to �. An example is given
in Figure 1. The 0–direction at each essential vertex is marked with an arrow; to
avoid clutter, the other directions are not marked on the graph. Note this graph is only
sufficiently subdivided for nD 2, since there is only one edge along the geodesic from
vertex 12 to vertex 15.

�

1

23
4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

Figure 1: The ordering of the vertices on a tree �

Recall an arc in � is a subspace homeomorphic to a nontrivial closed interval. Farley
and Sabalka’s notion of directions enables us to define the notion of an allowable
collection of oriented arcs. Given a finite collection of oriented arcs fAigkiD1 in �
and a vertex v in � of degree d , we will define integers �0.v/; �1.v/; : : : ; �d�1.v/ as
follows. First, for i D 1; 2; : : : ; k and j D 0; 1; : : : ; d �1, if v falls on the arc Ai and
Ai intersects the interior of the edge ej incident to v in direction j , let �j;i .v/D 1 if
Ai is oriented towards v on ej and �j;i .v/D�1 if Ai is oriented away from v on ej .
If v does not fall on Ai or if Ai does not intersect the interior of ej , let �j;i .v/D 0.
Then let

�j .v/D

kX
iD1

�j;i .v/:

This leads to the following definition:

Definition 2.3 Suppose AD fAigkiD1 is a collection of oriented arcs in � and V is
a collection of vertices of � . The collection A is said to be allowable for V if every
vertex v 2 V of degree d has the property that v is not an endpoint of any Ai , and at
least one of �0.v/; �1.v/; : : : ; �d�1.v/ is nonzero.
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Intuitively, a collection of oriented arcs is allowable for a given collection V of vertices
if at each vertex in V , there is at least one direction in which the orientations of the
arcs don’t “cancel out”, and no vertex in V is an endpoint of any arc. Also, if V D∅,
then any collection of arcs is allowable for V . We will be most interested in the case
in which V is a subset of the vertices of degree 3. Figure 2 shows an example of two
collections of oriented arcs in a graph � . The arcs are shown with a dashed line and
orientations indicated with arrows, and have been moved away from � so that they are
distinguishable in the figure. If V is the collection of all essential vertices of � (which
are all of degree 3), and W is the collection of all essential vertices of � except the
vertex labeled v , then both collections of arcs are allowable for W , but the collection
of arcs on the left is not allowable for V , while the collection on the right is.

v v

� �

Figure 2: Two collections of arcs in a graph �

Note that given a collection of oriented arcs ADfAigkiD1 which is allowable for V and
a vertex v 2 V of degree d , if j is a direction satisfying �j .v/¤ 0, then there must
be some other direction j 0 ¤ j with �j 0.v/¤ 0. Indeed if v falls on an arc Ai , then
v must fall on the interior of Ai , so that �j1;i .v/D 1 for some j1 , and �j2;i .v/D�1

for some j2 ¤ j1 . Since � is a tree, for all other directions j , we have �j;i .v/D 0,
so Ai contributes 0 to the sum

d�1X
jD0

kX
iD1

�j;i .v/D

d�1X
jD0

�j .v/:

On the other hand, if v does not fall on Ai , then �j;i .v/ D 0 for all j , so again,
Ai contributes 0 to the sum above. So, we have �0.v/C �1.v/C � � �C �d�1.v/D 0,
showing that there cannot be exactly one value j for which �j .v/¤ 0. Furthermore,
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for the same reason, if �j .v/¤ 0, then there must be some direction j 0 ¤ j such that
�j .v/ and �j 0.v/ have opposite signs.

A cell c of UDn.�/ can be described as a collection of vertices and edges, c D
fc1; : : : ; cng, where each ci is a vertex or an edge, and ci\cj D∅ for i ¤ j . Note the
order in which the vertices and edges appear in c does not matter. The dimension of the
cell c is the number of edges in c . Consider a cell cDfv; c2; : : : ; cng containing some
vertex v¤�. If ev is the unique edge in � which has �.ev/D v , and fev; c2; : : : ; cng
is a valid cell in UDn.�/, then v is said to be unblocked in c . Otherwise, v is blocked
in c . The vertex � is also said to be blocked in any cell containing it. In other words,
v is unblocked in c if and only if v ¤ � and v can be replaced with the edge which
contains v and is on the geodesic segment from v to �.

Now consider a cell c D fe; c2; : : : ; cng which contains some edge e . If there is some
vertex v in c which has the property that �.ev/D �.e/ and �.e/ < v < �.e/, then e is
said to be order-disrespecting in c . Otherwise, the edge e is order-respecting in c .
An example of 3 different cells in UD2.�/ with � as in Figure 1 is given in Figure 3.
The vertices/edges which are to be included in a cell c are labeled; all unlabeled
vertices and edges are not included in the cell. In the left cell, the vertex 3 is blocked,
since e3 intersects the edge labeled e . Also, the edge e is order-disrespecting since
�.e3/ D 2 D �.e/ and �.e/ D 2 < 3 < �.e/ D 6. In the middle cell, the vertex 10 is
blocked, but 9 is unblocked. In the cell on the right, the vertex 16 is blocked, but f is
order-respecting, since, although �.e16/D �.f /, we have �.f /D 13 < 16.

e3

10
9

f 16

Figure 3: Three different cells in UD2.�/

Farley and Sabalka construct a discrete vector field W and prove the following classifi-
cation of the critical, collapsible, and redundant cells in UDn.�/ with respect to W .
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The terms critical, collapsible, and redundant come from discrete Morse theory, but
their definitions will not be needed here.

Theorem 2.4 [7] A cell c of UDn.�/ is critical if and only if each vertex in c is
blocked and each edge in c is order-disrespecting. A cell c is collapsible if and only if
it contains some order-respecting edge e with the property that any unblocked vertex v
in c satisfies v > �.e/. All other cells are redundant.

Since we will be focused primarily on critical cells, we describe a procedure to construct
a critical k–cell in UDn.�/. First, notice that if c is any k–cell, then c must consist of
k edges and n�k vertices. If c is to be critical, each edge must be order-disrespecting,
and each vertex must be blocked. Consider an edge e in c . If e is to be order-
disrespecting, then �.e/ must be an essential vertex, or else there would be no possible
vertex v that could satisfy �.ev/ D �.e/ other than v D �.e/, but �.e/ cannot be
included in a cell which contains e (by this, we mean that �.e/ cannot appear as a
vertex in the list of vertices and edges which define c ). Furthermore, the direction d
from �.e/ on which e falls must be at least 2, and the direction d 0 from �.e/ on which
v falls must satisfy 0 < d 0 < d . Note also that if v causes e to be order-disrespecting,
then v is automatically blocked. This also implies that if there is a critical k–cell
in UDn.�/, then k �m.�/ and n� 2k . The remaining n� 2k vertices of c can be
easily chosen so that they are blocked in c . The cell on the left in Figure 3 is a critical
1–cell in UD2.�/. In Figure 4 is an example of a critical 3–cell in UD8.�/. Note that
more vertices of degree 2 must be added to the tree � above so that it is sufficiently
subdivided for nD 8. In this example and what follows, we make no indication of the
total number of vertices in a sufficiently subdivided tree.

�

Figure 4: A critical 3–cell c in UD8.�/

The discussion above is similar to the proof of the following theorem:
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Theorem 2.5 [7] Let � be a tree, and let k Dmin
˚�
n
2

˘
; m.�/

	
. If c is any critical

cell in UDn.�/, then dim.c/� k . Furthermore, UDn.�/ deformation retracts onto the
space .UDn.�//0

k
, which consists of the k–skeleton of UDn.�/ with the redundant

k–cells removed.

The second statement of this theorem follows from results from discrete Morse theory.
Now, before discussing the cohomology ring H�.UDn.�/IZ/, we describe the equiv-
alence relation on cells given in [8]. Given two cells c and c0 of UDn.�/, define �
by c � c0 if and only if c and c0 share the same edges (so in particular c and c0 are of
the same dimension), and if E is the set of edges in c (and in c0 ), and C D � �E ,
then for every connected component C of C , the number of vertices of c in C equals
the number of vertices of c0 in C . Here and in what follows, we use E to denote both
the set of edges and the union of the edges in E . Context should make the desired
interpretation of E clear. Let Œc� denote the equivalence class of c . Now, given two
equivalence classes Œc� and Œd �, write Œd �� Œc� if there are representatives c 2 Œc� and
d 2 Œd � such that d is obtained from c by removing some (possibly zero) edges of c
and replacing each of these edges with one of its endpoints. Farley and Sabalka show
the following:

Lemma 2.6 [8] The relation � is a well-defined partial order with the following
properties:

(1) If a collection of distinct equivalence classes of 1–cells fŒc1�; : : : ; Œck�g has an
upper bound, then it has a least upper bound and if ei is the unique edge in Œci �
(that is, every cell in Œci � contains the edge ei ), then ei1 \ ei2 D∅ for i1 ¤ i2 .

(2) For any k–cell c of UDn.�/, there is a unique collection of equivalence classes
of 1–cells fŒc1�; Œc2�; : : : ; Œck�g having Œc� as its least upper bound.

Farley and Sabalka also introduced the idea of a “cloud diagram” to represent an
equivalence class. These diagrams consist of a collection E of edges and an indication
of the number of vertices in each connected component of � �E . The components of
� �E are called clouds. If f .C / is the number of vertices in a cloud C , thenX

clouds C

f .C /D n� jEj:

Figure 5 gives three examples of cloud diagrams. The cloud diagram on the left
represents the class Œc�, with c as in Figure 4.
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1

1
0

2 0

1
0
0

1

1
0

2 2

0

1 0

2 3

Figure 5: Cloud diagrams for classes Œc� with c as in Figure 4 (left),
Œd � (middle) and Œd 0� (right)

We will sometimes call the number of vertices in a cloud C the value of C . Cloud
diagrams also provide a convenient way to determine if Œd �� Œc�. If this is the case,
then the set of edges in the diagram for Œd � must be a subset of the set of edges in the
diagram for Œc�, which implies that each cloud in the diagram for Œc� must be contained
in some cloud in the diagram for Œd �. For each cloud D in the diagram for Œd �, the
number of edges of Œc� which are contained in D plus the sum of the values of the
clouds of Œc� which are contained in D must equal the value of D . In particular, if
the set of edges in Œc� equals the set of edges in Œd �, then the diagrams for Œc� and Œd �
have the same clouds, and Œc� and Œd � are comparable if and only if the values of each
cloud are the same in both diagrams, in which case Œc�D Œd �. In Figure 5, the middle
diagram is a cloud diagram for a class Œd � with Œd �� Œc� and the diagram on the right
is a cloud diagram for a class Œd 0� which is comparable to neither Œc� nor Œd �.

Farley and Sabalka determine the structure of the cohomology ring H�.UDn.�/IZ/ by
first constructing a space 3UDn.�/ as follows: For each equivalence class of 1–cells Œc�,
let S1

Œc�
denote a circle with the usual cell structure consisting of a single open 1–cell

e1
Œc�

and a single 0–cell. Then, each open k–cell of the product
Q
Œc� S

1
Œc�

, taken over
all equivalence classes of 1–cells of UDn.�/, is of the form e1

Œc1�
� � � � � e1

Œck�
, where

we refrain from writing factors corresponding to 0–cells, and such a cell corresponds to
a collection of equivalence classes of 1–cells fŒc1�; : : : ; Œck�g. The space 3UDn.�/ is
obtained from

Q
Œc� S

1
Œc�

by removing open k–cells of the form e1
Œc1�
� � � � � e1

Œck�
such

that the corresponding collection fŒc1�; : : : ; Œck�g does not have an upper bound. Then,
each k–cell � in 3UDn.�/ corresponds to a collection fŒc1�; : : : ; Œck�g which has an
upper bound, and therefore a least upper bound Œc�, and the cell � can be labeled
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by Œc�. For each distinct equivalence class Œc� of cells in UDn.�/, there is exactly one
cell labeled Œc� in 3UDn.�/ .

Now, for a k–cell labeled Œc� in 3UDn.�/ , let y�Œc� be the k–cocycle in C �.3UDn.�/IZ/
defined by

y�Œc�.Œc
0�/D

�
1 if Œc0�D Œc�;
0 if Œc0�¤ Œc�:

We have the following description of H�.3UDn.�/IZ/:

Theorem 2.7 [8; 6] Let fŒc1�; : : : ; ŒcM �g be the collection of all equivalence classes
of 1–cells in UDn.�/. The cohomology ring H�.3UDn.�/IZ/ is isomorphic to the
quotient ring

ƒŒŒc1�; : : : ; ŒcM ��=I;

where ƒŒŒc1�; : : : ; ŒcM �� is the integral exterior ring generated by the collection of all
equivalence classes of 1–cells and I is the ideal generated by products Œci1 ��Œci2 � � � � Œcik �
such that the collection fŒci1 �; Œci2 �; : : : ; Œcik �g does not have an upper bound.

The isomorphism H�.3UDn.�//!ƒŒŒc1�; : : : ; ŒcM ��=I sends y�Œc� to Œc1��Œc2� � � � Œck�,
where fŒc1�; Œc2�; : : : ; Œck�g is the unique collection of equivalence classes of 1–cells
which has Œc� as its least upper bound, arranged so that �.ei / < �.eiC1/ for each i ,
where ei the unique edge in Œci �.

The isomorphism in Theorem 2.7 depends on a choice of orientations of the cells and
an ordering of the factors in 3UDn.�/ . The details are given in [8] and [6], but will be
omitted here.

Similarly, for each equivalence class Œc� of k–cells of UDn.�/, define a cellular
cocycle �Œc� 2 C �.UDn.�/IZ/ by

�Œc�.c
0/D

�
1 if c0 � c;
0 otherwise:

These cocycles will be called standard cocycles, and if there is a (unique) critical cell
in Œc�, then �Œc� is called a critical cocycle. Since standard cocycles are determined by
equivalence classes, cloud diagrams can also be used to describe standard cocycles.

Theorem 2.8 [8; 6] (1) There is a well-defined map qW UDn.�/ ! 3UDn.�/ ,
and the induced homomorphism q�W C �.3UDn.�//! C �.UDn.�// sends the
cocycle y�Œc� to the standard cocycle �Œc� .
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(2) The collection of critical cocycles represents a basis for H�.UDn.�/IZ/.

(3) For any cell c , we have �2
Œc�
D 0.

(4) If c is a k–cell and fŒc1�; : : : ; Œck�g is the unique collection of equivalence
classes of 1–cells with Œc� as its least upper bound, arranged so that �.ei / <
�.eiC1/ for each i , where ei is the unique edge in Œci �, then

�Œc1� � � ��Œck� D �Œc�:

(5) If fŒc1�; : : : ; Œcj �g is any collection of equivalence classes of cells with no upper
bound, then

�Œc1� � � ��Œcj � D 0:

Here, for any equivalence class Œc�, we use �Œc� to denote both the standard cocycle �Œc�
and the cohomology class it represents. It follows from the universal coefficient
theorem that the same statements hold true for rational cohomology, where we identify
�Œc� 2 H

�.UDn.�/IZ/ with the corresponding class in H�.UDn.�/IQ/. Again,
Theorem 2.8 depends on a choice of orientations of cells, but we will omit these details.

If fŒc1�; : : : ; Œck�g is a collection of equivalence classes of 1–cells which has a least
upper bound Œ!�, then �Œc1� � � ��Œck� D �Œ!� , and if Œ!� contains a critical cell, then
�Œ!� is a critical cocycle, and therefore represents a basis element in H�.UDn.�//. If
Œ!� does not contain a critical cell, then �Œ!� is cohomologous to a linear combination
of critical cocycles. In [6], Farley gives a procedure to rewrite the cohomology class
of �Œ!� in terms of critical cocycles, which we recall here.

If Œc� is an equivalence class of k–cells and e is an edge of Œc� with �.e/ D v and
deg.�.e// � 2, and C is the cloud diagram for the standard k–cocycle �Œc� , then a
.k�1/–dimensional cochain RC;v is defined as follows. The support of RC;v consists
of .k�1/–cells c0 such that

(i) E.c0/D E.c/� feg (where for any cell � of UDn.�/; E.�/ denotes the set
of edges in �/,

(ii) if C is any component of � �E.c/, other than the component C� which falls
in the 0–direction from v or the component C� which is adjacent to �.e/, then
the number of vertices of c0 in C equals the number of vertices of c in C ,

(iii) the number of vertices of c0 in C�[f�.e/g equals the number of vertices of c
in C� , and

(iv) the number of vertices of c0 in C� [ f�.e/g is one more than the number of
vertices of c in C� .
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For each cell c0 that satisfies these conditions, put RC;v.c0/D 1. Let E.RC;v/ denote
the set of edges in any cell in the support of RC;v . The cochain RC;v can be described
with a cloud diagram, where the union of the clouds around v forms a connected
component of � � E.RC;v/. For example, the left side of Figure 6 gives a cloud
diagram C for a standard cocycle �Œc� (which is not a critical cocycle), and the right
side gives the cloud diagram for the cochain RC;v , where v D �.e/. Here, we have
emphasized the clouds by indicating them with dotted lines. For each cloud C in the
diagram for RC;v , let fC;v.C / denote the number of vertices in C .

e

0

1
C�

3

1

C�
0

2

0

2

C� [f�.e/g

3

1

C�[f�.e/g

0

2

Figure 6: The cloud diagram C for a standard cocycle �Œc� (left) and the
cloud diagram for the cochain RC;v (right)

Farley shows that, up to sign, the coboundary ı.RC;v/ is given by the following, where
d.v/ denotes the degree of v :

ı.RC;v/D

d.v/�1X
iD1

‚C;v;�;i �

d.v/�1X
iD1

‚C;v;�;i ;

where ‚C;v;�;i is the standard k–cocycle �Œc0� such that E.c0/DE.RC;v/[fe
0
ig and

e0i is the edge in direction i from v , and if Ci is the cloud in direction i from v in
the cloud diagram for �Œc0� , then the number of vertices in any cloud C 0 in the cloud
diagram for �Œc0� is given by

fŒc0�.C
0/D

�
fC;v.C

0/ if C 0 ¤ Ci ;
fC;v.C

0/� 1 if C 0 D Ci :

Note there is a slight abuse of notation, in the sense that the clouds in the diagram
for RC;v are slightly different than those in the diagram for �Œc0� . For example, the
cloud in direction 0 from v in the diagram for RC;v includes �.e/, whereas the cloud
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in direction 0 from v in the diagram for �Œc0� does not include this vertex. This should
cause no confusion. It is possible that fŒc0�.C

0/ is negative; if this is the case, then
�Œc0� is defined to be zero. For example, Figure 7 gives the sum

Pd.v/�1
iD1 ‚C;v;�;i with

C as in Figure 6; here, ‚C;v;�;1 is zero.

0

1
3

1 0

2

0

2
2

1 0

2

Figure 7: The sum
Pd.v/�1
iD1 ‚C;v;�;i with C as in Figure 6

Similarly, ‚C;v;�;i is the standard cocycle �Œc00� , where E.c00/DE.RC;v/[fe
0
ig, and

fŒc00�.C
0/D

�
fC;v.C

0/ if C 0 ¤ C0;
fC;v.C

0/� 1 if C 0 D C0:

Here C0 is the cloud in direction 0 from v in the diagram for �Œc00� . Figure 8 gives
the sum

Pd.v/�1
iD1 ‚C;v;�;i with C as in Figure 6.

0

2
3

0 0

2

0

2
3

0 0

2

0

2
3

0 0

2

Figure 8: The sum
Pd.v/�1
iD1 ‚C;v;�;i with C as in Figure 6

Denote by 1ıRC;v the unique cochain in C �.3UDn.�// which maps to ıRC;v . If Œ!�
is an equivalence class of k–cells which does not contain a critical cell, then, by the
classification of critical cells, there must be some edge e such that e is order-respecting
in every cell in Œ!�. In this case, call e a bad edge of Œ!�.
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Theorem 2.9 [6] Let J �H�.3UDn.�/IZ/ denote the ideal generated by the classes
1ıRC;v where C is a cloud diagram containing at least one bad edge e and v D �.e/.

Then we have
H�.UDn.�/IZ/ŠH�.3UDn.�/IZ/=J:

In the proof of Lemma 3.6, we will be interested in writing the cohomology class
of a standard cocycle �Œ!� as a linear combination of basis elements (ie cohomology
classes of critical cocycles), and comparing �Œ!� with these basis elements. If Œ!�
contains a critical cell, then �Œ!� itself represents a basis element. If Œ!� does not
contain a critical cell, the coboundaries ıRC;v give a way to rewrite the cohomology
class of �Œ!� in terms of critical cocycles as follows: Let C be the cloud diagram
for �Œ!� . The class Œ!� necessarily contains at least one bad edge e which falls in
direction d0 from some vertex v . We will again assume here that �.e/ has degree less
than 3 (the case in which deg.�.e// � 3 is addressed in [6], but will not be needed
here). Since e is a bad edge, it must be the case that for all 0 < i < d0 , we have
fŒ!�.Ci / D fC;v.Ci / D 0, so the first nonzero term in

P
‚C;v;�;i is �Œ!� , and any

other nonzero term (if there are any) is of the form �Œ!0� , where Œ!0� contains an edge
in direction j > d0 from v . Any nonzero term in

P
‚C;v;�;i (if there are any) is

of the form �Œ!00�; where Œ!00� is an equivalence class of k–cells with the property
that if fŒ!1�; : : : ; Œ!k�g and fŒ!001 �; : : : ; Œ!

00
k
�g are the unique collections of equivalence

classes of 1–cells which have Œ!� and Œ!00� as their respective least upper bounds, then
there are some i and j such that Œ!i � contains the edge e and Œ!00j � contains an edge
with initial point at v D �.e/, but fŒ!00

j
�.C0/ < fŒ!i �.C0/. Here, C0 is the cloud in

direction 0 from v in the diagrams for Œ!i � and Œ!00j �.

Therefore, on the level of cohomology, we have �Œ!� D�ACB , where A is a sum of
standard cocycles �Œ!0� such that Œ!0� has an edge e0 whose initial point is v , but e0

falls in a direction from v greater than that in which e falls, and B is a sum of standard
cocycles �Œ!00� as above. It is possible that some of the terms in A or B are again
standard cocycles corresponding to classes which do not contain critical cells (such as
the three standard cocycles described in Figure 8), but if this is the case, we may rewrite
each such cocycle using the procedure above. Farley shows that this process eventually
terminates and, after repeatedly applying the procedure, we may write �Œ!�D†, where
† is a linear combination of critical cocycles. Suppose �Œz!� is a critical cocycle which
appears in †. Let fŒ!1�; : : : ; Œ!k�g and fŒz!1�; : : : ; Œz!k�g be the unique collections of
equivalence classes of 1–cells which have Œ!� and Œz!� as their respective least upper
bounds. We wish to compare the classes in each collection.
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First, note that the cloud diagram for any term appearing in ı.RC;v/ must contain an
edge whose initial point is �.e/D v and every edge f ¤ e in Œ!� is also an edge in the
cloud diagram for each term in ı.RC;v/. Therefore, for any edge e0 in Œ!�, the cloud
diagram of any term in † must contain an edge whose initial point is �.e0/. In other
words, for each i , there is some s such that if e0 is the unique edge in Œ!i � and e00 is the
unique edge in Œz!s�, then �.e0/D �.e00/. Let C0 be the cloud in direction 0 from v in the
cloud diagrams for Œ!i � and Œz!s�. At no point in the rewriting process do we add more
vertices to the cloud C0 . If e0 is a bad edge in Œ!�, then either (i) fŒ!i �.C0/DfŒz!s�.C0/

and �.e00/ > �.e0/, or (ii) fŒ!i �.C0/ > fŒz!s�.C0/. If e0 is not a bad edge in Œ!�, then it
may or may not become a bad edge at some stage of the rewriting process. If e0 never
becomes a bad edge, then we must have e00 D e0 and fŒ!i �.C0/ D fŒz!s�.C0/. If e0

does become bad, then, as above, either (i) fŒ!i �.C0/D fŒz!s�.C0/ and �.e00/ > �.e0/,
or (ii) fŒ!i �.C0/ > fŒz!s�.C0/.

Note that if D0 is the cloud in the 0–direction from v in the diagram for Œ!� (so D0
is contained in C0 ), then it is possible that vertices are added to D0 in the rewriting
process if some edge with an initial point on the geodesic from �.e0/ to � becomes bad
at some stage, but for each vertex added to D0 , there must be some other cloud D1
contained in C0 which loses a vertex. The observations in the preceding paragraph are
similar to Farley’s notion of the rank of a cell c defined in [6].

The coboundaries ıRC;v illustrate the complicated nature of the cohomology ring
H�.UDn.�//. The delicacy of the ring structure is studied further in [12], for example,
but the above is sufficient for what follows.

3 Motion planning of configuration spaces of trees

Before proving Theorem 1.2, we first mention some of the tools for determining the
topological complexity of any space.

Theorem 3.1 [3] TC.X/ is homotopy-invariant. That is, if X and Y are homotopic,
then TC.X/D TC.Y /.

Since we assume � is sufficiently subdivided, the spaces C n.�/ and UCn.�/ are homo-
topic to Dn.�/ and UDn.�/, respectively, by Theorem 2.1, so Theorem 3.1 allows us
to work with Dn.�/ and UDn.�/ to determine TC.C n.�// and TC.UCn.�//. The
next theorem gives an upper bound for TC.X/ based on the dimension of X :
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Theorem 3.2 [3] Let X be any CW complex. Then we have the upper bound
TC.X/� 2 � dim.X/C 1.

Finally, there is a cohomological lower bound for TC.X/. Before stating the theorem,
we introduce some definitions. Let k be a field, and consider the cup product

^W H�.X Ik/˝H�.X Ik/!H�.X Ik/:

Let Z.X/�H�.X Ik/˝H�.X Ik/ be the kernel of this homomorphism, called the
ideal of zero-divisors of H�.X Ik/. The tensor product H�.X Ik/˝H�.X Ik/ has a
multiplication given by .˛˝ ˇ/.˛0˝ ˇ0/D .�1/j˛

0j�jˇ j˛˛0˝ ˇˇ0 , where jxj D j if
x 2H j .X Ik/. The zero-divisors-cup-length of H�.X Ik/ is the largest i such there
are elements a1; : : : ; ai 2Z.X/ with a1 � � � ai ¤ 0.

Theorem 3.3 [3] TC.X/ is greater than the zero-divisors-cup-length of H�.X Ik/.

Now we establish the upper bounds in Theorem 1.2:

Lemma 3.4 Let k Dmin
˚�
n
2

˘
; m.�/

	
. Then TC.UDn.�//� 2kC 1.

Proof This is immediate from the second statement of Theorem 2.5 and Theorems 3.1
and 3.2, but we will give a (fairly) explicit motion planning algorithm which realizes
this upper bound. This algorithm is similar to the one given by Farber in [4]. Let
a1; : : : ; an be the first n vertices in a sufficiently subdivided tree � (so a1 D �). The
fact that � is sufficiently subdivided implies that only possibly an is essential. Consider
a point xDfx1; : : : ; xng 2UDn.�/. If xi falls on a vertex v , let f .xi / be the number
assigned to v in the ordering above. If xi falls on the interior of an edge e , let f .xi / be
the number assigned to �.e/. Since the order in which the xi appear in x is irrelevant,
we may assume without loss of generality that f .xi /<f .xiC1/ for all i . Define a map
�xW Œ0; 1�! UDn.�/ as follows: during the interval

�
i�1
n
; i
n

�
; �x is the path which

moves xi along the geodesic to ai at constant speed, and keeps all other xj fixed. The
choice of ordering of the vertices makes this a valid path in UDn.�/ (ie there is at least
a full open edge between any two components of �x.t/ at any given time t ). Each
�x is clearly continuous. Define the section sW UDn.�/�UDn.�/! P.UDn.�// by
s.x;y/D �xx�y , the path �x followed by the reverse of �y .

This is not continuous on UDn.�/�UDn.�/. If some xi (or yi ) falls on an endpoint
�.e/ of some edge e , a slight perturbation of xi (or yi ) may cause it to fall on the
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interior of e , which will alter the numbering of the elements in x (or y ), which can
lead to a very different path if �.e/ is essential. So, we wish to examine the sets
on which s is continuous. For a collection E of edges, let SE be the set of points
x D fx1; : : : ; xng 2 UDn.�/ with the property that the interior of each edge e 2 E
contains (exactly) one xi and no xj falls on the interior of any edge not in E (so such
an xj falls on a vertex which is not the endpoint of any e 2 E ). The function s is
continuous on each SE �SE 0 . Now let

Si D
[
jE jDi

SE :

If jEj D jE 0j and E ¤E 0 , then a sequence of points in SE cannot converge to a point
in SE 0 , so that SE \SE 0 D∅, and similarly SE \SE 0 D∅. In other words, Si is
a topologically disjoint union of the sets SE , and then for each fixed i and j , the
set Si � Sj is a topologically disjoint union of sets on which s is continuous, so s
is continuous on Si �Sj . Now, a sequence of points in Si may converge to a point
in Si 0 for some i 0 < i , but no sequence of points in Si can converge to a point in Si 0
if i 0 > i , so the sets

Ul D
[

iCjDl

Si �Sj

are again topologically disjoint unions of sets on which s is continuous, so s is
continuous on Ul .

The sets U0; : : : ; U2k cover .UDn.�//0
k
� .UDn.�//0

k
, since at most k points can fall

on the interior of an edge in either factor (see Theorem 2.5). They are not necessarily
open, but each Ul can be replaced with an open set U 0

l
which allows each xi which

falls on a vertex v (and xi appears in a point x in the first component of Ul ) to vary
slightly away from v (while keeping the point x in UDn.�/), and defining �x;l which
is as above, except each of these xi is given the number for v . This is well-defined,
since each v does not fall on any of the l edges whose interiors are occupied by some
xj in x , so if xi falls on v , a small perturbation of xi will not cause it to fall on
the interior of any of those l edges. Similar modifications are made in the second
component. Define s0

l
W U 0

l
! P.UDn.�// by

s0l.x;y/D �x;lx�y;l

This is continuous.

If the map H W Œ0; 1��UDn.�/! UDn.�/ is a deformation retraction from UDn.�/
to .UDn.�//0

k
with H.0;�/ equaling the identity map, then Hx WDH.�;x/ is a path
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from a point x 2 UDn.�/ to some point in .UDn.�//0
k

, which varies continuously
with x . If Vl D .H.1;�/�H.1;�//�1.U 0l /, then fV0; : : : ; V2kg is an open cover of
UDn.�/�UDn.�/, and the section sl W Vl ! P.UDn.�// given by

sl.x;y/DHxs
0
l.x1;y1/Hy ;

where x1 D Hx.1/ and y1 D Hy.1/ is continuous on each Vl for l D 0; : : : ; 2k ,
completing the proof.

An additional step can be added to this algorithm to give the same upper bound for
the ordered configuration spaces. Again, this approach is essentially the one described
in [4].

Corollary 3.5 Let � be a tree with m.�/ � 1, and let k D min
˚�
n
2

˘
; m.�/

	
. Then

TC.Dn.�//� 2kC 1.

Proof Let a1; : : : ; an be the first n vertices of � , and let aDfa1; : : : ; ang 2UDn.�/.
For l D 0; : : : ; 2k , let Vl , �x;l and Hx be as in the proof of Lemma 3.4. Let
p1W UDn.�/�UDn.�/! UDn.�/ be the projection of the first component, and let
V 1
l
D p1.Vl/, so that if x 2 V 1

l
, then Hx�x1;l (with x1 DHx.1/) is a path from x

to a , and this path varies continuously as x varies in V 1
l

. If � is the covering space
projection � W Dn.�/! UDn.�/, and zx 2 ��1.x/�Dn.�/, with x 2 V 1

l
, let z�zx;l

be the unique lift of Hx�x1;l which satisfies z�zx;l.0/D zx . This is a path from zx to
some point za 2 ��1.a/ which varies continuously as zx varies in zV 1

l
D ��1.V 1

l
/.

Define z�zy;l similarly if zy 2 ��1.y/ for some y in the second component of Vl .

Now, given za; za0 2 ��1.a/, let �za;za0 be any path from za to za0 . Such a path exists by
Theorem 2.2 since � has at least one essential vertex. The function

r W ��1.a/���1.a/! P.Dn.�//

given by r.za; za0/D �za;za0 is continuous since the domain is a discrete space. For each
l D 0; : : : ; 2k , let zVl D .� ��/�1.Vl/, and define the section Qsl W zVl!P.Dn.�// by

Qsl.zx; zy/D z�zx;lr.z�zx;l.1/; z�zy;l.1//
xz�zy;l :

This is continuous on zVl , and f zV0; : : : ; zV2kg is an open cover of Dn.�/ �Dn.�/,
completing the proof.

In establishing the lower bound, the following will be useful:
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Lemma 3.6 Suppose m.�/� 1, UDn.�/ has the homotopy type of a k–dimensional
CW complex, and ˆ and ‰ are critical k–cells of UDn.�/. If fŒc1�; : : : ; Œck�g and
fŒd1�; : : : ; Œdk�g are the unique collections of equivalence classes of 1–cells having
least upper bounds Œˆ� and Œ‰�, respectively, and Œci � ¤ Œdj � for all i and j , then
TC.UDn.�// and TC.Dn.�// are greater than 2k .

Proof If necessary, rearrange the equivalence classes in fŒc1�; : : : ; Œck�g so that �.ei /<
�.eiC1/, as above, and arrange the classes in fŒd1�; : : : ; Œdk�g similarly. Consider the
zero divisors

x�Œci � D �Œci �˝ 1� 1˝�Œci �;
x�Œdj � D �Œdj �˝ 1� 1˝�Œdj �

in Z.UDn.�//�H�.UDn.�/IQ/˝H�.UDn.�/IQ/ and their product

(3-1)
� kY
iD1

x�Œci �

�� kY
jD1

x�Œdj �

�
D˙.�Œc1� � � ��Œck�˝�Œd1� � � ��Œdk�/˙ .�Œd1� � � ��Œdk�˝�Œc1� � � ��Œck�/

C other terms

D˙�Œˆ�˝�Œ‰�˙�Œ‰�˝�Œˆ�C other terms.

Since UDn.�/ has the homotopy type of a k–dimensional complex, all products
of more than k 1–dimensional classes in H�.UDn.�// are zero, so any nonzero
term in other terms must be of the form ˛ ˝ ˇ where ˛ and ˇ are both degree-k
monomials in �Œc1�; : : : ; �Œck�; �Œd1�; : : : ; �Œdk� . For a collection I D fŒci1 �; : : : ; Œcip �g,
we denote �Œci1

� � � ��Œcip �
by �I and denote the set fŒci � W Œci � … I g by xI , and use

analogous definitions for a collection J D fŒdj1
�; : : : ; Œdjr

�g. Then we can write
˛˝ˇD �I�J ˝�xI� xJ for some collections I and J , with I ¤∅ and J ¤∅ (so that
neither I [J nor xI [ xJ is either fŒc1�; : : : ; Œck�g or fŒd1�; : : : ; Œdk�g, by assumption),
and jI jC jJ j D k .

If either I[J or xI[ xJ does not have an upper bound, then ˛˝ˇD0. If both I[J and
xI [ xJ have least upper bounds Œ!� and Œ!0�, respectively, which both contain critical
cells, then ˛˝ˇD �Œ!�˝�Œ!0� is a basis element. Since the collections of equivalence
classes of 1–cells which have Œˆ� and Œ‰� as their least upper bounds are unique, and
I [ J is neither fŒc1�; : : : ; Œck�g nor fŒd1�; : : : ; Œdk�g, we have Œ!� … fŒˆ�; Œ‰�g and,
similarly, Œ!0� … fŒˆ�; Œ‰�g, so ˛˝ˇ … f�Œˆ�˝�Œ‰�; �Œ‰�˝�Œˆ�g.

If both I [ J and xI [ xJ have upper least bounds Œ!� and Œ!0�, but exactly one,
say Œ!�, contains a critical cell, then ˛D �Œ!� , a basis element which is equal to neither
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�Œˆ� nor �Œ‰� , as above. We use the procedure following Theorem 2.9 to rewrite the
cocycle �Œ!0� in terms of critical cocycles, arriving at ˛˝ˇ D �Œ!�˝†0 , where †0

is a linear combination of critical cocycles. Note that since each edge e in Œ!0� is an
order-disrespecting edge in either ˆ or ‰ , the endpoint �.e/ must be essential, so this
does not violate our assumption that �.e/ has degree less than 3 (we may need to
further subdivide � if nD 2). If †0 is nonzero, then ˛˝ˇ can be written as a linear
combination of basis elements of the form �Œ!�˝�Œz!0� , none of which are �Œˆ�˝�Œ‰�
or �Œ‰�˝�Œˆ� . Similar statements hold if Œ!0� contains a critical cell.

Finally, suppose both I [ J and xI [ xJ have upper least bounds Œ!� and Œ!0�, but
neither contains a critical cell. We may write �Œ!� and �Œ!0� as linear combinations of
critical cocycles, as above:

�Œ!� D†; �Œ!0� D†
0:

Since Œ!� does not contain a critical cell, it must contain some bad edge e . There is an
equivalence class in I [J which contains the edge e , and this class is unique since
I [ J has an upper bound (see Lemma 2.6). Suppose first that Œci � 2 I is this class.
Consider a critical cocycle �Œz!� appearing in †, and let fŒz!1�; : : : ; Œz!k�g be the unique
collection of equivalence classes of 1–cells which has Œz!� as its least upper bound. As
in the discussion following Theorem 2.9, there must be some s such that the unique
edge e0 in Œz!s� satisfies �.e0/D �.e/, and either

(3-2) fŒci �.C0/DfŒz!s�.C0/ and �.e/< �.e0/; or fŒci �.C0/>fŒz!s�.C0/:

But, in either case, we have Œci �¤ Œz!s�. Since Œci � is the only class in fŒc1�; : : : ; Œck�g
which contains an edge whose initial point is �.e/, we have

fŒz!1�; : : : ; Œz!k�g ¤ fŒc1�; : : : ; Œck�g;

so that, as above, Œz!�¤ Œˆ�. Therefore the cocycle �Œˆ� does not appear in † (by this,
we mean that �Œˆ� does not appear with a nonzero coefficient in †).

Now, it is possible that �Œz!� D �Œ‰� . If this is the case, we have

fŒz!1�; : : : ; Œz!k�g D fŒd1�; : : : ; Œdk�g;

so there must be some j such that Œdj �D Œz!s�. Then, from (3-2), we have either

(3-3) fŒci �.C0/D fŒdj �.C0/ and �.e/< �.e0/; or fŒci �.C0/> fŒdj �.C0/:
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We wish to show that in this case, �Œˆ� cannot appear in †0 . The edge e is in the
class Œci � and the edge e0 is in the class Œdj �D Œz!s�, and since Œci � 2 I [J and I [J
contains an upper bound, it must be the case that Œdj � … J . So we have Œdj � 2 xJ , and
therefore the edge e0 appears in Œ!0�. Let �Œz!0� be a critical cocycle appearing in †0 ,
and let fŒz!01�; : : : ; Œz!

0
k
�g be the unique collection of equivalence classes of 1–cells

which has Œz!0� as its least upper bound. Because the edge e0 appears in Œ!0�, there
must be some t such that if e00 is the unique edge in Œz!0t �, then �.e00/D �.e0/. Since
the edge e0 may or may not be bad in Œ!0�, we have either

(3-4) fŒdj �.C0/DfŒz!0
t �
.C0/ and �.e0/��.e00/; or fŒdj �.C0/>fŒz!0

t �
.C0/:

For the sake of contradiction, suppose that �Œz!0� D �Œˆ� . Then we have

fŒz!01�; : : : ; Œz!
0
k�g D fŒc1�; : : : ; Œck�g;

so that Œz!0t �D Œci0 � for some i0 . In particular, e00 is the unique edge in Œci0 �, but since
�.e/D �.e0/D �.e00/, we must have e00 D e and i0 D i . From (3-4), we have either

fŒdj �.C0/D fŒci �.C0/ and �.e0/� �.e/; or fŒdj �.C0/ > fŒci �.C0/;

but this contradicts (3-3).

So we have shown that if Œci � is the class in I [J which contains the bad edge e , then
it is impossible that �Œˆ� appears in †, and if �Œ‰� appears in †, it is impossible that
�Œˆ� appears in †0 . By a symmetric argument, if Œdj 0 � is the class in I [ J which
contains e , it follows that it is impossible that �Œ‰� appears in †, and if �Œˆ� appears
in †, it is impossible that �Œ‰� appears in †0 . So, in either case, neither �Œˆ�˝�Œ‰�
nor �Œ‰�˝�Œˆ� appears in the expansion of †˝†0 as a linear combination of simple
tensors of critical cocycles.

Therefore, the right side of (3-1) may be written as a linear combination of basis elements
of the tensor product H�.UDn.�//˝H�.UDn.�//, with neither �Œˆ� ˝ �Œ‰� nor
�Œ‰�˝�Œˆ� appearing in other terms, and since ˆ and ‰ are distinct critical cells,

˙�Œˆ�˝�Œ‰�˙�Œ‰�˝�Œˆ� ¤ 0;

so the entire sum is nonzero. So (3-1) is a nonzero product of 2k zero-divisors, and
Theorem 3.3 establishes that TC.UDn.�//� 2kC 1, as desired.

The statement for TC.Dn.�// follows from the fact that the map

��W H�.UDn.�//!H�.Dn.�//
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induced by the covering space projection � W Dn.�/! UDn.�/ is injective (see [10,
Proposition 3G.1], which states that any N –sheeted covering space projection given
by a group action induces an injection in cohomology with coefficients in a field of
characteristic 0).

Note that the condition Œci �¤ Œdj � for all i and j is necessary for (3-1) to be nonzero.
If Œci �D Œdj � for some i and j , then �Œci � D �Œdj � , so (3-1) contains the product

x�Œci �
x�Œci � D .�Œci �˝1�1˝�Œci �/.�Œci �˝1�1˝�Œci �/

D .�Œci �˝1/
2
�.�Œci �˝1/.1˝�Œci �/�.1˝�Œci �/.�Œci �˝1/C.1˝�Œci �/

2

D �2Œci �
˝1�.�1/0.�Œci �˝�Œci �/�.�1/

1.�Œci �˝�Œci �/C1˝�
2
Œci �

D 0:

Therefore, (3-1) is nonzero if and only if Œci �¤ Œdj � for any i and j .

We now prove Theorem 1.2.

Proof of Theorem 1.2 Assume without loss of generality that � is sufficiently subdi-
vided for n, so that the topological and discrete configuration spaces have the same
homotopy type, and hence, the same topological complexity. We will prove the results
for the discrete configuration spaces. The upper bounds, TC.UDn.�//� 2mC 1 and
TC.Dn.�//� 2mC1 in statement (1) and TC.UDn.�//� 2qC1 and TC.Dn.�//�
2qC 1 in statement (2), are given in Lemma 3.4 and Corollary 3.5. To establish the
lower bounds, we will construct two m–cells for statement (1) and two q–cells for
statement (2) that satisfy the conditions of Lemma 3.6.

For statement (1), first note that Theorem 2.5 implies UDn.�/ is homotopic to an
m–dimensional CW complex. Let v1; : : : ; vm be (in order) the essential vertices of �
and let A1; : : : ; Ak be a collection of oriented arcs which is allowable for the set of
vertices of degree 3. For each arc Al , let al and bl be the initial and terminal points
of Al , with respect to the orientation of Al . The endpoints need not be vertices of � .

We will construct an m–cell ˆ as follows. At each essential vertex vi , let ei be the
edge in direction 2 from vi (so that �.ei / D vi /, let fi be the edge in direction 1
from vi , and let ui D �.fi /. The labeling of the vertices forces vi D �.ei /<ui <�.ei /,
so that ei is order-disrespecting in any cell containing ui . Furthermore, ui is blocked
in any cell containing ei . Add each edge ei and each vertex ui to ˆ. The edges ei
determine a system of clouds of � .
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Now, if n > 2m (which must be the case, by assumption, if there are any vertices of
degree 3), we must have n� 3, so since � is sufficiently subdivided, if the endpoint
al falls on an edge ei , we may shrink or enlarge Al slightly so that the new initial
point falls just beyond �.ei /, without changing the fact that the collection fAigkiD1 is
allowable for the collection of degree-3 vertices. So, we may assume that each endpoint
al falls in one of the clouds of � determined by the edges ei . Then, inductively, for
l D 1; : : : ; k , let wl be the minimal vertex in the cloud containing al which we have
not already included in ˆ, and add this vertex to ˆ. Then w1; : : : ; wk are all blocked
in ˆ. Finally, let wkC1; : : : ; wn�2m be the first n� 2m� k vertices of � which are
not already in ˆ, and add them to ˆ (so they are all blocked).

So we have

ˆD fe1; : : : ; em; u1; : : : ; um; w1; : : : ; wn�2mg;

where the vertices wi do not appear if nD 2m. The cell ˆ is critical. Now we will
construct a critical m–cell ‰ similarly. If vi is a vertex of degree 3, let e0i D ei and
u0i D ui . If vi is a vertex of degree greater than 3, let e0i be the edge in direction 3
from vi , let f 0i be the edge in direction 2, and let u0i D �.f

0
i /, so u0i is blocked by e0i .

As above, we have v0i D �.e
0
i / < u

0
i < �.e

0
i /, so e0i is order-disrespecting in any cell

containing u0i . Add the edges e0i and vertices u0i to the cell ‰ . Similar to the argument
above, if n > 2m, we may assume each endpoint bl falls in one of the clouds of �
determined by the edges e0i . Inductively for l D 1; : : : ; k , let w0

l
be the minimal vertex

in the cloud containing bl which we have not already included in ‰ , and add this
vertex to ‰ . Let w0

kC1
; : : : ; w0n�2m , be the first n� 2m� k vertices of � which are

not already in ‰ , and add them in, so now we have

‰ D fe01; : : : ; e
0
m; u

0
1; : : : ; u

0
m; w

0
1; : : : ; w

0
n�2mg;

where the vertices w0i do not appear if nD 2m. The cell ‰ is critical. An example is
given in Figure 9 for mD 11, k D 3, and nD 27. The figure on the left is a tree �
with 3 oriented arcs which are allowable for the collection of degree-3 vertices. The
orientations of the arcs are indicated with arrows.

Now let fŒc1�; : : : ; Œcm�g be the unique collection of equivalence classes of 1–cells
having Œˆ� as its least upper bound. The equivalence class Œci � can be represented using
a cloud diagram having a single edge (the edge ei ) in direction 2 from the essential
vertex vi , whose degree is ti , and ti clouds. Likewise, let fŒd1�; : : : ; Œdm�g be the
unique collection of equivalence classes of 1–cells having Œ‰� as its least upper bound.
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Figure 9: A graph � (top) and the critical cells ˆ and ‰ in UD27.�/
(bottom left and right)

The equivalence class Œdi � can be represented using a cloud diagram having a single
edge (the edge e0i ) and ti clouds. If ti � 4, then Œci �¤ Œdi �, since the edges ei and e0i
differ.

If ti D 3, then the cloud diagram for Œci � will contain the single edge ei and three
clouds C0 , C1 and C2 , in the 0–, 1– and 2–directions from vi . The cloud diagram
for Œdi � will have the same edge and clouds. Suppose f .C / is the value assigned to
cloud C in the diagram for Œci � and g.C / is the value assigned to cloud C in the
diagram for Œdi �. For ıD 0; 1; 2, let mı be the number of essential vertices in Cı , and
let Wı D jfp Wwp 2 Cıgj and W 0

ı
D jfp Ww0p 2 Cıgj. Then f .Cı/D 2mı CWı C�ı

and g.Cı/D 2mı CW 0ı C�ı , where �0 D �2 D 0 and �1 D 1.

Suppose the vertex vi falls on the interior of an arc Al (by assumption there is at
least one such arc). For each direction ı , if the arc Al is oriented towards vi in the
direction ı , then al must fall in Cı , and bl must fall in a different cloud, so the vertex
wl contributes 1 to Wı , but w0

l
contributes 0 to W 0

ı
. On the other hand, if Al is
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oriented away from vi in the direction ı , then bl must fall in Cı , and al must fall in
a different cloud so the vertex w0

l
contributes 1 to W 0

ı
, but wl contributes 0 to Wı . If

vi does not fall on Al , then both wl and w0
l

must be in the same cloud, so either wl
and w0

l
contribute 1 to Wı and W 0

ı
, respectively, or each contributes 0 to Wı and W 0

ı
,

respectively. Finally, note that each wi and w0i for i > k must fall in the same cloud
as the basepoint � in both ˆ and ‰ since � is sufficiently subdivided, so in this case
wi and w0i contribute 1 to W0 and W 00 , respectively.

In other words, the difference Wı �W 0ı is equal to the number of arcs oriented towards
vi in the direction ı minus the number of arcs oriented away from vi in the direction ı .
This is the number �ı.vi / in Definition 2.3, so by assumption, there must be at least
one direction ı such that Wı ¤W 0ı . Furthermore, by the remarks following the same
definition, there must be directions ı and ı0 such that W 0

ı
�Wı >0 and W 0

ı 0�Wı 0 <0,
and therefore, g.Cı/ > f .Cı/ and g.Cı 0/ < f .Cı 0/. In this case, call Cı and Cı 0

positive and negative clouds, respectively, to reflect that Œdi � has more vertices than
Œci � in direction ı (from vi ) and less vertices in direction ı0 . It is possible that either
all 3 clouds are categorized as either positive or negative or that one cloud remains
uncategorized. But, in either case, we have Œci � ¤ Œdi �. As an example, Figure 10
shows the classes Œc4� and Œd4� with � as above.

10

8

8

8

8

10

Figure 10: Cloud representations for Œc4� (left) and Œd4� (right) corresponding
to the cells ˆ and ‰ in UD27.�/

Furthermore, it follows from this description that Œci �¤ Œdj � for any i and j . Indeed,
if Œci �D Œdj �, then both classes must contain a common edge. But, this can only happen
if i D j and ti D 3, but we just saw Œci � ¤ Œdi � in this case. So the cells ˆ and ‰
satisfy the hypotheses of Lemma 3.6, proving statement (1).

The construction for statement (2) is similar. Here, by Theorem 2.5, UDn.�/ is
homotopic to a complex of dimension q . Let v1; : : : ; vr be the vertices of degree
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greater than 3, and let zv1; : : : ; zvs be the vertices of degree 3. We consider the two
cases in the statement:

Case (a) (s � 2.q � r/) Let R D minfr; qg, and for i D 1; : : : ; R , let ei , ui , e0i ,
and u0i be as in the proof of statement (1) (so that ei and e0i are order-disrespecting
edges in directions 2 and 3 from vi , and ui and u0i are blocked vertices in directions
1 and 2). If r < q , for i D 1; : : : ; 2.q� r/, let zei be the edge in direction 2 from zvi ,
and let zui be the vertex on the edge in direction 1 from zvi which forces zei to be
order-disrespecting. If � D 0, let

ˆD fe1; : : : ; eR; u1; : : : ; uR; ze1; : : : ; zeq�r ; zu1; : : : zuq�rg;

‰ D fe01; : : : ; e
0
R; u

0
1; : : : ; u

0
R; zeq�rC1; : : : ; ze2.q�r/; zuq�rC1; : : : ; zu2.q�r/g;

where the edges zei and vertices zui do not appear if r � q . If � D 1, add the vertex �
to each cell. An example is in Figure 11 for � as above with q D 5 and � D 0.

u1
e1

u2

e2

zu1 ze1

zu2 ze2
zu3

ze3
u0

1

e0
1

u0
2

e0
2

zu4
ze4

zu5

ze5 zu6

ze6

Figure 11: The critical cells ˆ and ‰ in UD10.�/

For the same reasons as in the first part of the proof, the cells ˆ and ‰ are critical,
and if fŒc1�; : : : ; Œcq�g and fŒd1�; : : : ; Œdq�g are the collections of equivalence classes of
1–cells having Œˆ� and Œ‰� as their least upper bounds, here it is clear that Œci �¤ Œdj �
for any i and j , since no edge in ˆ is in ‰ .

Case (b) (s < 2.q� r/) First, consider the � D 0 case. Let fAigkiD1 and V be as in
the statement. For l D 1; : : : ; k , let Vl and V 0

l
be the initial and terminal vertices of the

arc Al (again with respect to the orientations of Al ). Let El be the edge in direction 2
from Vl , and let Ul be the blocked vertex in direction 1 from Vl which forces El to be
order-disrespecting. Define E 0

l
and U 0

l
similarly (so that E 0

l
is in direction 2 from V 0

l

and U 0
l

is in direction 1). Note we must have 2k �m�r 0 so sCr Dm� 2kCr 0 , and
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also r � r 0 , so by assumption, we have 2q >sC2rD sCrCr � 2kCr 0Cr � 2kC2r 0 ,
and therefore q� r 0� k > 0.

Let yV1; : : : ; yVr 0 be the vertices of degree greater than 3 which aren’t endpoints of any
arc Al . Define yEi and yUi analogously to the definitions of El and Ul . Let yE 0i be the
edge in direction 3 from yVi , and let yU 0i be the vertex in direction 2 which forces yE 0i
to be order-disrespecting. Let zV1; : : : ; zVq�r 0�k be the first q � r 0 � k vertices in V .
Define zEi and zUi analogously to Ei and Ui . Let

ˆD
˚
E1; : : : ; Ek; U1; : : : ; Uk; yE1; : : : ; yEr 0 ; yU1; : : : ; yUr 0 ;

zE1; : : : ; zEq�r 0�k; zU1; : : : ; zUq�r 0�k

	
;

‰ D
˚
E 01; : : : ; E

0
k; U

0
1; : : : ; U

0
k;
yE 01; : : : ;

yE 0r 0 ; yU
0
1; : : : ;

yU 0r 0 ;

zE1; : : : ; zEq�r 0�k; zU1; : : : ; zUq�r 0�k

	
:

An example is in Figure 12 for q D 8, � D 0, r 0 D 2, and k D 3. The set V consists
of the vertices zV1 , zV2 , and zV3 , so that jVj D 3D q� r 0� k .
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Figure 12: The critical cells ˆ and ‰ in UD16.�/ (bottom left and right)
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The cells ˆ and ‰ are critical. As above, if fŒc1�; : : : ; Œcq�g and fŒd1�; : : : ; Œdq�g are
the collections of equivalence classes of 1–cells having Œˆ� and Œ‰� as their least upper
bounds, and if Œci �D Œdj � for some i and j , then Œci � and Œdj � must have a common
edge e which can only happen if eD zEt for some t , so in particular, zVt is of degree 3.
For such a t and each ı D 0; 1; 2, let Cı be the cloud in direction ı from zVt , and let

Mı D jfp W Vp 2 Cıgj; M 0ı D jfp W V
0
p 2 Cıgj;�Mı D jfp W yVp 2 Cıgj; �Mı D jfp W p ¤ t; zVp 2 Cıgj:

Then, if f .Cı/ and g.Cı/ are the values of Cı in the diagrams for Œci � and Œdj �, and
�ı is as above, we have

f .Cı/D 2.Mı C
�Mı C

�Mı/C�ı ;

g.Cı/D 2.M
0
ı C

�Mı C
�Mı/C�ı ;

so that f .Cı/�g.Cı/D 2.Mı �M
0
ı
/. Arguments similar given to those in the first

part of the proof shows that Mı �M
0
ı
D �ı. zVt /, so again we see that at least two of

the clouds around zVt can be categorized as either positive or negative, and each of
these clouds has a different value in the diagram for Œci � than it does in the diagram
for Œdj �, so Œci �¤ Œdj �.

For � D 1, construct ˆ and ‰ as above with the following modifications. First, the
vertices zV1; : : : ; zVq�r 0�k are the first vertices in W 0[W (where k D 0 and r 0 D r if
s0 � q� r ). Next, since nD 2qC 1� 3, we can again assume the initial and terminal
endpoints of A0 fall in a cloud in the collection of clouds determined by the edges in
ˆ and ‰ , respectively. Then let x be a vertex in the same cloud as the initial endpoint
of A0 (in the system of clouds determined by the edges of ˆ) such that x is blocked in

ˆD fE1; : : : ; Ek; U1; : : : ; Uk; yE1; : : : ; yEr 0 ; yU1; : : : ; yUr 0 ;

zE1; : : : ; zEq�r 0�k; zU1; : : : ; zUq�r 0�k; xg;

and let x0 be a vertex in the same cloud as the terminal endpoint of A0 (in the system
of clouds determined by the edges of ‰ ) such that x0 is blocked in

‰ D fE 01; : : : ; E
0
k; U

0
1; : : : ; U

0
k;
yE 01; : : : ;

yE 0r 0 ; yU
0
1; : : : ;

yU 0r 0 ;

zE1; : : : ; zEq�r 0�k; zU1; : : : ; zUq�r 0�k; x
0
g:

Here, we of course assume that x is distinct from the other vertices in ˆ and x0 is
distinct from the other vertices in ‰ . If s0 � q � r , the edges Ei and E 0i and the
vertices Ui and U 0i do not appear in ˆ and ‰ .
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For example, for nD 17, we can let the arcs A1; A2 , and A3 be as in Figure 12, so
W D f zV1; zV2; zV3g, and trivially let the arc A0 be the unique edge which has � as an
endpoint, so that W 0 D∅. For a less trivial example, if q D 9 and � D 1, we can let
A0 be the arc A3 in Figure 12 slightly enlarged so that its interior includes its two
original endpoints labeled V3 and V 03 in Figure 12, so that here now we have k D 2
and r 0D 2. See Figure 13. The set W 0 consists of the vertices labeled zV1; : : : ; zV5 , and
W D∅ so that jWj D 0D 9�2�2�5D q� r 0�k� s0 . Alternatively, we can let W 0

consist of the vertices labeled zV3 and zV5 , and let W consist of the vertices labeled zV1 ,
zV2 and zV4 in Figure 13, so that s0 D 2 and jWj D 3D 9� 2� 2� 2D q� r 0�k� s0 .

A1

A2

A0

V1

V2

V 0
1

V 0
2

zV1

zV2

zV3

zV4

zV5
yV1

yV2

U1

E1

U2

E2
zU1 zE1

zU2

zE2

zU3

zE3

zU4

zE4

zU5

zE5

yU1
yE1

yU2

yE2

x

U 0
1

E 0
1

U 0
2

E 0
2

zU1 zE1

zU2

zE2

zU3

zE3

zU4
zE4

zU5

zE5

yU 0
1

yE 0
1

yU 0
2

yE 0
2

x0

Figure 13: The critical cells ˆ and ‰ in UD19.�/ (bottom left and right)

Again, the cells ˆ and ‰ are critical. If fŒc1�; : : : ; Œcq�g and fŒd1�; : : : ; Œdq�g are the
collections of equivalence classes of 1–cells having Œˆ� and Œ‰� as their least upper
bounds, and Œci �D Œdj � for some i and j , then again it must be the case that Œci � and
Œdj � have a common edge zEt , so zVt is of degree 3. Now, with the notation from the
� D 0 case, we have

f .Cı/D 2.Mı C
�Mı C

�Mı/C�ı C�ı ; g.Cı/D 2.M
0
ı C

�Mı C
�Mı/C�ı C�

0
ı ;

Algebraic & Geometric Topology, Volume 18 (2018)



870 Steven Scheirer

where �ı D 1 if x falls in Cı , and �ı D 0 if x does not fall in Cı , and similarly,
�0
ı
D 1 if x0 falls in Cı , and �0

ı
D 0 if x0 does not fall in Cı . Since the endpoints

of A0 fall in clouds determined by the edges in ˆ and ‰ , the vertex zVt cannot be an
endpoint, so it either does not fall on A0 or it falls on the interior of A0 .

If zVt does not fall on A0 , so that we have zVt 2W , then x and x0 are in the same
cloud in the diagrams for Œci � and Œdj �, so that �ı D �0ı for each ı , and therefore
f .Cı/�g.Cı/D2.Mı�M

0
ı
/D2�ı. zVt /, and since the collection fAigkiD1 is allowable

for W , we can categorize at least one cloud as positive and one as negative as above,
so that Œci �¤ Œdj �.

If zVt falls on the interior of A0 , then it is possible that zVt 2W or zVt 2W 0 , but in
either case, x and x0 must fall in different clouds Cı1

and Cı2
. Then we have

f .Cı1
/D 2.Mı1

C �Mı1
C �Mı1

/C�ı1
C1; g.Cı1

/D 2.M 0ı1
C �Mı1

C �Mı1
/C�ı1

C0;

so now f .Cı1
/� g.Cı1

/D 2.Mı1
�M 0

ı1
/C 1, which is odd and therefore nonzero.

Likewise, f .Cı2
/� g.Cı2

/ D 2.Mı2
�M 0

ı2
/� 1, which is again odd and therefore

nonzero. Furthermore, since the sum of the values of the clouds around zVt must equal
n� 1 in each cell, we have

f .C0/�g.C0/Cf .C1/�g.C1/Cf .C2/�g.C2/D 0;

so that g.Cı/� f .Cı/ > 0 and g.Cı 0/� f .Cı 0/ < 0 for two directions ı ¤ ı0 , so
again at least one cloud is categorized as positive and one as negative, so Œci �¤ Œdj �.

Therefore, in all cases, the conditions of Lemma 3.6 are met, so

TC.UDn.�//;TC.Dn.�//� 2qC 1:

This, combined with the upper bounds stated at the beginning of the proof, gives the
result.

It is worth noting that if we insist no vertices have degree 3, the statement of Theorem 1.2
becomes much simpler and determines the topological complexity for all n for both
configuration spaces, provided they are connected.

Corollary 3.7 Let � be a tree with no vertices of degree 3. Let kDmin
˚�
n
2

˘
; m.�/

	
.

Then TC.UCn.�//D 2kC1. Also, if nD 1 or m.�/� 1, then TC.C n.�//D 2kC1.

Proof Let r and s be as in Theorem 1.2, so that r D m.�/ DW m, and s D 0.
If m � 1 and n � 2m, the claim follows from statement (1) of the theorem. If
nD 2qC � < 2mD 2r , with � 2 f0; 1g and q � 1, then r > q , so 2.q � r/ < 0D s ,
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and the claim follows from statement (a). If m D 0, so that � is homeomorphic to
a closed interval, then Lemma 3.4 gives TC.UDn.�// � 1, but TC.X/ � 1 for any
space, so, TC.UCn.�// D 1. For the remaining case, n D 1 and m � 1, we have
C n.�/D UCn.�/D � , so all three spaces have topological complexity 1 since � is
contractible.

Now we discuss how in some sense, the results in Theorem 1.2 are the best we can
achieve with the methods used here. Consider the case 2m � n < 2mC k , with m
and k as in the first part of the theorem. In this case, a construction similar to the one
given in the proof shows that there is a critical m–cell, which corresponds to a nonzero
m–dimensional cohomology class, so that the space UDn.�/ cannot be homotopic to a
space of dimension less than m, so the dimensional bound given in Theorem 3.2 cannot
improve the bound given by the explicit motion planning algorithm in Lemma 3.4.
Likewise, if q; r , and s are as in the second part of the theorem, but the appropriate
collection of arcs does not exist, then there will still be a critical q–cell, so again the
dimension cannot improve the upper bound. The following shows that Lemma 3.6
cannot be used to get improved lower bounds.

Proposition 3.8 Let � be a tree with m WDm.�/� 1.

(1) Let k be as in Theorem 1.2(1), and assume there is as least one vertex of degree 3,
so that k � 1. Let n satisfy n � 2m, and consider any two critical m–cells ˆ and
‰ of UDn.�/. If fŒc1�; : : : ; Œcm�g and fŒd1�; : : : ; Œdm�g are the unique collections of
equivalence classes of 1–cells having Œˆ� and Œ‰� as their least upper bounds, and for
all i and j we have Œci �¤ Œdj �, then n� 2mC k .

(2) Let q , r , s and � be as in Theorem 1.2(b), and consider critical q–cells ˆ and
‰ of UDn.�/. If fŒc1�; : : : ; Œcq�g and fŒd1�; : : : ; Œdq�g are the unique collections of
equivalence classes of 1–cells having Œˆ� and Œ‰� as their least upper bounds and for
all i and j we have Œci �¤ Œdj �, then:

(a) If �D 0, there is some k � 1 such that there exist oriented arcs A1; : : : ; Ak with
the following properties:
(i) The endpoints of each Al are (distinct) essential vertices, neither of which is

an endpoint of any other Al 0 .
(ii) There are r 0� r vertices of degree greater than 3 which are not the endpoints

of any Al .
(iii) There is a collection V of degree-3 vertices, with jVj � q� r 0� k such that

fAig
k
iD1 is allowable for V .
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(b) If � D 1, there is an arc A0 whose endpoints have no restrictions and whose
interior includes a collection W 0 of s0 � q distinct vertices of degree 3, and if
s0 < q � r , there are arcs A1; : : : ; Ak , as above, whose endpoints are also not
vertices in W 0 , and there is another collection of degree-3 vertices, W , such that
W \W 0 D∅, jWj � q� r 0� k� s0 and fAigkiD1 is allowable for W , where r 0

is as above.

Proof We use the contrapositive for both statements (1) and (2). For the first statement,
let ˆ and ‰ be critical m–cells, and assume 2m � n < 2mC k . For each essential
vertex v , each cell must contain exactly one edge e having �.e/D v and a blocked
vertex u which makes e order-disrespecting. There is no choice for e or u if v is of
degree 3.

If n> 2m, let w1; : : : ; wn�2m be the remaining vertices in ˆ, and let w01; : : : ; w
0
n�2m

be the remaining vertices in ‰ . For l D 1; : : : ; n�2m<k , let Al be the geodesic from
wl to w0

l
, oriented so that wl is the initial endpoint and w0

l
is the terminal endpoint if

wl ¤ w
0
l
. If wl D w0l , extend Al slightly so that it is a small arc starting at wl which

doesn’t intersect any essential vertices. This gives a collection of less than k oriented
arcs in � , so by the minimality of k , this collection cannot be allowable for the set of
vertices of degree 3 in � . It is not possible that a degree-3 vertex v is an endpoint of
any Al , since no wl or w0

l
can be essential. Therefore, there is some degree-3 vertex

v which has the property �0.v/D �1.v/D �2.v/D 0. Let e be the edge in direction
2 from v . This edge must be in both ˆ and ‰ . Suppose i and j have the property
that e is the unique edge in Œci � and Œdj �. Then, in the notation from the proof of
Theorem 1.2, for ı D 0; 1; 2 and each cloud Cı in the diagrams for Œci � and Œdj �, we
have f .Cı/D 2mıCWıC�ı and g.Cı/D 2mıCW 0ı C�ı . But, as above, we have
Wı �W

0
ı
D �ı.v/D 0 for each ı , and therefore Wı DW 0ı and f .Cı/D g.Cı/, for

each ı , so Œci �D Œdj �.

If n D 2m, then for each vertex v of degree 3, the edge e in direction 2 from v

must appear in both cells, so again if Œci � and Œdj � are the equivalence classes which
contain the edge e , we now have f .Cı/D 2mıC�ı D g.Cı/ for each ıD 0; 1; 2, so
Œci �D Œdj �.

For statement (2), assume that the collections of arcs and vertices in (a) or (b) do not exist
for the appropriate value of � . Note first that if � D 0, any critical q–cell must consist
solely of edges e1; : : : ; eq and blocked vertices u1; : : : ; uq which force the edges
e1; : : : ; eq to be order-disrespecting. In particular, each ei has the property that �.ei / is
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an essential vertex. If � D 1, then the same is true, except that the cell contains one ad-
ditional blocked vertex. Let ˆ and ‰ be critical q–cells, and let S (resp. S 0 ) be the set
of essential vertices v such that �.e/D v for some e in ˆ (resp. ‰ ), so jSj D jS 0j D q .

Let T DSn.S\S 0/ and T 0DS 0n.S\S 0/, so jT jD jT 0jDWk . The fact that s <2.q�r/
implies that at least one vertex of degree 3 appears in S \S 0 . Let zV1; : : : ; zVxs be the
vertices of degree 3 in S \ S 0 , so that xs > 0 and let yV1; : : : ; yVxr be the vertices of
degree greater than 3 in S \S 0 . The edge in direction 2 from each vertex zVt must be
included in both ˆ and ‰ . In what follows, Œci � and Œdj � are the equivalence classes
which contain the edge in direction 2 from whichever vertex zVt is being discussed.

If � D 1, let x (resp. x0 ) be the additional vertex in ˆ (resp. ‰ ). Let A0 be the
geodesic from x to x0 and extend A0 slightly if x D x0 so that it is a small arc which
doesn’t intersect any vertex in S or S 0 . Let W 0 be the set of degree-3 vertices in
S \S 0 which fall on the interior of A0 , and let s0 D jW 0j. By the assumption of the
nonexistence of the appropriate collections of arcs and vertices, we have s0 < q� r .

First consider the case k D 0. Here, we have S D S 0 , and xsCxr D q . If � D 0, then
for each vertex zVt 2 S \ S 0 D S D S 0 , we have, with the notation from the proof of
Theorem 1.2, f .Cı/D 2. �MıC

�Mı/C�ı D g.Cı/, so Œci �D Œdj �. If �D 1, since we
have s0 < q� r , there must be at least one vertex zVt which does not fall on A0 . Then
x and x0 must fall in the same cloud in the system of clouds determined by the edge in
direction 2 from zVt . Again using the notation from the proof of Theorem 1.2, we have
�ı D �

0
ı

, so f .Cı/D 2. �Mı C
�Mı/C�ı C�ı D 2. �Mı C

�Mı/C�ı C�
0
ı
D g.Cı/,

and therefore Œci �D Œdj �.

If k � 1, let V1; : : : ; Vk and V 01; : : : ; V
0
k

be the vertices in T and T 0 , respectively, and
let Al be the oriented geodesic from Vl to V 0

l
. This gives a collection of k arcs with

2k distinct essential endpoints if � D 0, and one additional arc A0 if � D 1. Also note
that xsCxr C k D q and xr � r 0 , where r 0 is the number of vertices of degree greater
than 3 which are not endpoints of any Al , so xs D q�xr � k � q� r 0� k .

For �D 0, let V D f zV1; : : : ; zVxsg, so that jVj D xs � q� r 0�k . By assumption, the arcs
fAig

k
iD1 cannot be allowable for V . Any vertex v 2 V cannot be the endpoint of any

Al since no endpoint is in S \ S 0 . So, there is at least one degree-3 vertex zVt such
that �0. zVt /D �1. zVt /D �2. zVt /D 0. So, we have f .Cı/� g.Cı/D 2.Mı �M

0
ı
/D

2�ı.v/D 0, for each ı 2 f0; 1; 2g, so each cloud has the same value in the diagram
for Œci � as it does in the diagram for Œdj �. So, Œci �D Œdj �.
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For �D 1, let W be the set of degree-3 vertices in .S\S 0/nW 0 , so that W\W 0D∅
and jWj D xs � s0 � q � r 0 � k � s0 , and therefore, again by assumption, fAigkiD1
is not allowable for W . No vertex in W can be an endpoint of any arc Al , so
there must be some vertex zVt 2W with �ı. zVt / D 0 for ı D 0; 1; 2. Now we have
f .Cı/�g.Cı/D 2.Mı�M

0
ı
/C�ı��

0
ı

, but since zVt is not on A0 , we must have both
x and x0 in the same cloud in the system of clouds determined by the edge in direction
2 from zVt , so �ı D �0ı , and therefore f .Cı/�g.Cı/D 2.Mı �M

0
ı
/D 2�ı. zVt /D 0

for each direction ı , so again we have Œci �D Œdj �.

To give a better idea of the values of n for which Theorem 1.2 determines TC.UCn.�//
(and TC.C n.�//), we consider all values of n � 2 with � as in the top of Figure 9,
where we have mD 11, r D 2, and sD 9. If n is either sufficiently large or sufficiently
small, it is easy to determine if the theorem applies. For n� 25, statement (1) of the
theorem applies, and for 2 � n � 13, statement (a) applies. For 22 � n � 24, the
theorem does not apply. For the “middle” values of n, namely 14 � n � 21, only
statement (b) might apply.

For nD 14 statement (b) does apply, since we may chose the arcs A1 , A2 , and A3 as
in Figure 12, and let V consist of the vertices zV1 , zV2 , and zV3 (as labeled in Figure 12).
Then we have k D 3, r 0 D 2, jVj D 3 � q � r 0 � k D 7� 2� 3 D 2, and the arcs
A1 , A2 , and A3 are again allowable for V . Note the vertex zV3 would not be used in
the construction of the cells ˆ and ‰ for nD 14. For nD 15, we can again let A0
be the unique edge which has � as one of its endpoints, and keep A1 , A2 , and A3 the
same, so the theorem also applies for nD 15. The cases nD 16, nD 17, and nD 19
are covered in the proof.

For n D 18, suppose the appropriate collection of arcs A1; : : : ; Ak exists and is
allowable for a set V of vertices of degree 3, so that we have jVj � q� r 0� k . On the
other hand, there must be a total of 2k distinct vertices which are the endpoints of the
arcs. No vertex in V can be any of these endpoints, so we must have jVj� s�2kCr�r 0 ,
since there are r � r 0 vertices of degree greater than 3 which are the endpoint of some
arc, and the remaining 2k� .r � r 0/ endpoints must be of degree 3. So, we have

9� r 0� k D q� r 0� k � jVj � s� 2kC r � r 0 D 9� 2kC 2� r 0:

Comparing the left and right sides, we see that we must have k � 2. Since we also
must have r 0 � r D 2, this gives jVj � 9�2�2D 5. But, the only vertices of degree 3
which can fall on the interior of any arc with essential endpoints are the vertices labeled
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v4 , v5 , and v8 in Figure 9. So jVj � 3, arriving at a contradiction, so the theorem does
not apply for nD 18, and for similar reasons, the theorem does not apply for nD 20.

For nD 21, suppose the appropriate collection of arcs A0; A1; : : : ; Ak and collections
of vertices W and W 0 exist, so that jW [W 0j � q� r 0� k D 10� r 0� k . Similar to
above, since no vertex in W [W 0 can be an endpoint of any arc A1; : : : ; Ak , we must
have

10� r 0� k D q� r 0� k � jW [W 0j � s� 2kC r � r 0 D 9� 2kC 2� r 0;

so that k � 1. Since again we must have r 0 � 2, this gives jW [W 0j � 10� r 0� k �
10� 2� 1D 7. However, again the only vertices of degree 3 which can fall on the
interior of any arc A1 are the vertices labeled v4 , v5 , and v8 in Figure 9, and here it is
clear that at most two additional vertices could be included in the interior of the arc A0 ,
so that jW [W 0j � 5, a contradiction, so the theorem does not apply for nD 21.

So, the only values of n� 2 for which Theorem 1.2 does not determine TC.UCn.�//
and TC.C n.�// are nD 18 and 20� n� 24.
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