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�–structures and symmetric spaces

BERNHARD HANKE

PETER QUAST

�–structures are weak forms of multiplications on closed oriented manifolds. As was
shown by Hopf the rational cohomology algebras of manifolds admitting �–structures
are free over odd-degree generators. We prove that this condition is also sufficient
for the existence of �–structures on manifolds which are nilpotent in the sense of
homotopy theory. This includes homogeneous spaces with connected isotropy groups.

Passing to a more geometric perspective we show that on compact oriented Riemann-
ian symmetric spaces with connected isotropy groups and free rational cohomology al-
gebras the canonical products given by geodesic symmetries define �–structures. This
extends work of Albers, Frauenfelder and Solomon on �–structures on Lagrangian
Grassmannians.

57T15; 53C35, 55S45, 57T25

Introduction

In his seminal papers [14; 15] on the (co)homological structure of Lie groups Hopf
introduced the notion of �–manifolds. By definition these are closed connected oriented
manifolds M together with continuous maps

 W M �M !M

such that the mapping degrees of the two restrictions  xD .x;�/ and  yD .�;y/

are nonzero for some (and hence for all) x;y 2M . In some sense such maps  , which
we call �–structures, capture the simplest nontrivial homological information of Lie
group multiplications. Hopf proved that the rational cohomology rings of �–manifolds
are of a surprisingly restricted type: because they admit compatible comultiplications
(and are hence Hopf algebras in modern terminology) they are free graded commutative
Q–algebras, whose generators must be in odd degrees as M is finite-dimensional; see
Hopf [14; 15] and Dieudonné [8, Chapter VI, Section 2.A] for further information. As
carried out by Borel in [4, Chapitre II, Section 7], further divisibility restrictions on the
mapping degrees of  x and  y have similar implications for the cohomology rings
over finite fields.
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A closely related and much better known structure is that of an H-space, with both
restrictions  x and  y being homotopic to the identity. While every compact con-
nected oriented manifold that is an H-space is obviously a �–manifold, the converse
fails: all odd-dimensional spheres are �–manifolds (see [15]), but Adams’ celebrated
“Hopf invariant one theorem” in [1] says that only spheres of dimension 1, 3 or 7 admit
H-space structures.

In the first part of our paper, Section 1, we shall make some general remarks on the ex-
istence of �–structures on manifolds satisfying the above cohomological condition. As
the only nontrivial requirement for a �–structure  W M �M !M is the nonvanishing
of the mapping degrees of  x and  y , a construction of such structures by obstruction
theory requires the separation of rational and torsion information in the homotopy type
of M . This is the underlying idea of rational homotopy theory, which works best for
spaces whose Postnikov decompositions consist of principal fibrations and can hence
be described by accessible cohomological invariants. Examples are simple spaces,
whose fundamental groups are abelian and act trivially on higher homotopy groups,
and, more generally, nilpotent spaces, whose fundamental groups are nilpotent and act
nilpotently on higher homotopy groups.

In Section 1 we will prove the following converse of Hopf’s result. From now on the
notion free algebra stands for free graded commutative algebra over the rationals.

Theorem 1 Let M be a closed connected oriented manifold which is nilpotent as
a topological space. If H�.M IQ/ is a free algebra — necessarily over odd-degree
generators — then M admits a �–structure.

We derive this theorem from a more general, purely topological result, Proposition 9:
Let X be a connected finite nilpotent CW-complex with free rational cohomology
algebra. Then there is a continuous map X �X !X whose restrictions to each factor
induce isomorphisms in rational cohomology.

Theorem 1 is in sharp contrast to the existence of H-space structures, which is a much
more restrictive property.

Corollary 2 Let M D G=H be a compact connected homogeneous space, where G is
a Lie group and H< G is a closed connected subgroup. If H�.M IQ/ is a free algebra,
then M admits a �–structure.

Theorem 1 also implies (see Corollary 13) that nilpotent manifolds with free rational
cohomology algebras have virtually abelian fundamental groups.
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Our abstract existence result motivates the search for explicit geometric constructions
of �–structures. Already Hopf [15] used geodesic symmetries on odd-dimensional
spheres to write down �–structures. It is therefore natural to consider a Riemannian
symmetric space P (which we always assume to be connected) endowed with its
canonical product (see eg Loos’ book [18, Chapter II, Section 1])

(�) ‚W P �P ! P; .x;y/ 7! sx.y/:

Here sx denotes the geodesic symmetry of P at the point x 2 P , that is, the involutive
isometry of P that fixes x and that reverses the direction of all geodesics emanating
from x. In Section 2 we prove:

Theorem 3 Let P be a compact symmetric space with transvection group G; that is,
G is the connected closed subgroup of the isometry group of P generated by products
of two geodesic symmetries of P . Assume that the isotropy subgroup H < G of a
basepoint p 2 P is connected. Then the following assertions are equivalent:

� H�.P IQ/ is a free algebra.

� The canonical product ‚ of P is a �–structure.

We use the assumption that H is connected in Lemma 17, but we do not know whether
there is any example of an oriented compact symmetric space whose isotropy groups
within its transvection group are not connected and whose rational cohomology is a
free algebra. Notice however that Lemma 17 and therefore Theorem 3 still hold true,
if one assumes that our compact symmetric space P can be written as a quotient of
a connected Lie group by a closed connected subgroup, or, in fact, that it is just a
nilpotent topological space.

Theorem 3 covers Lagrangian Grassmannians of odd rank, which amounts to the main
result of Albers, Frauenfelder and Solomon in [2]; see Remark 20.

We observe that whenever the canonical product ‚ defines a �–structure on P , then
the mapping degrees of ‚x and ‚y are (up to sign) powers of 2. In view of Borel’s
work [4], this means that properties of the rational cohomology algebras imply additional
restrictions on the cohomology algebras over finite fields of characteristic different
from two. This generalizes the results [3, Corollaries 3.3 and 4.10] due to Araki.

Unfortunately Theorem 3 does not cover all the manifolds from Corollary 2. For
example it remains an open problem to provide a geometric construction of �–structures
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on complex and quaternionic Stiefel manifolds, which are not symmetric spaces. The
cohomology of these Stiefel manifolds can be found for instance in the book by Mimura
and Toda [22, Theorem 3.10, page 119].
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1 Postnikov decompositions and �–structures

In this section we present a homotopy-theoretic construction of �–structures. Recall
that the homotopy type of a path-connected CW-complex X can be analysed by
means of its Postnikov decomposition; see, for example, [12, pages 410ff]: Choose
a basepoint in X and, for n� 0, let Xn be obtained by killing all homotopy groups
of X above degree n by attaching cells of dimension at least nC 2. Up to homotopy
equivalence we can assume that each inclusion pnC1W XnC1!Xn is a fibration. The
long exact homotopy sequence shows that the fibre is an Eilenberg–Mac Lane space
K.�nC1; nC 1/, where �nC1 WD �nC1.X /. In particular, X1 is the classifying space
B�1.X /.

Recall that X is called simple if �1 D �1.X / is abelian and acts trivially on higher
homotopy groups. For simple X each fibration pnC1W XnC1!Xn is principal — see
[12, Theorem 4.69] — that is, it is the pullback of the path-loop fibration

K.�nC1; nC 1/! PK.�nC1; nC 2/!K.�nC1; nC 2/

along a map Xn ! K.�nC1; n C 2/. By definition this map determines the nth

k–invariant kn2H nC2.XnI�nC1/. This class is equal to the image of the fundamental
class in H nC1.K.�nC1; nC1/I�nC1/ under the transgressive differential dnC2 in the
Leray–Serre spectral sequence for the fibration pnC1 . Furthermore, the k–invariant kn

is equal to zero if and only if the fibration pnC1W XnC1 ! Xn is fibre homotopy
equivalent to the trivial fibration. We denote by .kn/Q 2H nC2.XnI�nC1˝Q/ the
image of kn under the coefficient homomorphism �nC1! �nC1˝Q.

In the following we collect some well-known facts on the cohomology of Eilenberg–
Mac Lane spaces.
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Lemma 4 Let C be a (finite or infinite) cyclic group, and let n > 0 be a positive
integer. Then:

� H�.K.C; n/IZ/ is a finitely generated group in each degree.

� For C DZ the cohomology algebra H�.K.Z; n/IQ/ is free with one generator
in degree n.

� For jC j<1 the reduced cohomology zH�.K.C; n/IQ/ is equal to 0.

Let m> 0 be a positive integer and let �mW C ! C be multiplication by m. Then:

� For C D Z the induced map

��mW H
�.K.Z; n/IQ/!H�.K.Z; n/IQ/

is given by multiplication with mk on H kn.K.Z; n/IQ/ for k � 0.

� For all C the map

��mW
zH�.K.C; n/IZ=m/! zH�.K.C; n/IZ=m/

is equal to 0.

Proof We first prove all but the last statement by induction on n. For nD 1 we have
K.C; 1/DBC , the classifying space of C , and thus the assertions are clear for C DZ

(recall BZD S1 ). For jC j<1 the classifying space BC is an infinite-dimensional
lens space, the cohomology zH�.BC IZ/ is equal to Z=jC j in even degrees and 0 in
odd degrees, and ��mW H

�.BC IZ/!H�.BC IZ/ is given by multiplication with mk

on H 2k.BC IZ/. Together with the universal coefficient theorem this completes the
case nD 1.

For the inductive step we recall that the cohomology (with coefficients in some com-
mutative ring R) of the base and the fibre of the path-loop fibration

K.C; n/! PK.C; nC 1/!K.C; nC 1/

each appear on one of the two coordinate axes of the E2–term of the Leray–Serre
spectral sequence and that this spectral sequence is natural with respect to homomor-
phisms C ! C . The spectral sequence converges to H�.PK.C; nC 1/IR/, which
vanishes in positive degrees, because PK.C; nC 1/ is contractible.

By induction this shows that H�.K.C; nC 1/IZ/ is finitely generated in each degree,
that zH�.K.C; n C 1/IQ/ D 0 for jC j < 1, and that H�.K.Z; n C 1/IQ/ is a
free algebra in one generator of degree nC 1. The last implication is based on the
multiplicative structure of the spectral sequence.
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Now let m> 0 and �mW Z!Z be multiplication by m. The naturality of the spectral
sequence shows inductively that ��mW H

�.K.Z; nC1/IQ/!H�.K.Z; nC1/IQ/ is
multiplication by mk in degree k.nC 1/. This finishes the inductive step.

It remains to show the last statement of Lemma 4: for all cyclic groups C and all
m; n> 0 the map

��mW
zH�.K.C; n/IZ=m/! zH�.K.C; n/IZ=m/

is equal to 0.

First, let us assume that mD pr , where p is a prime number and r > 0. If C is finite,
then the inclusion of the (unique) Sylow p–subgroup P ! C induces an isomorphism

zH�.K.C; n/IZ=pr /Š zH�.K.P; n/IZ=pr /

by a spectral sequence argument. It is therefore enough to concentrate on the case
C D Z=p` , where ` > 0, if C is finite and the case C D Z if C is infinite.

We work by induction on r . Let r D 1; hence mDp . It is well known — see [6; 7; 25]
or [21, Theorem 6.19] — that H�.K.C; n/IZ=p/ is a polynomial algebra with free
generators of the form P.�n/, where �n 2H n.K.C; n/IZ=p/ is the fundamental class
and P is some mod p cohomology operation. Because the map ��p is multiplication
by p and hence zero on H n.K.C; n/IZ=p/ the assertion for r D 1 is implied by the
naturality of the operations P .

Next, assuming the assertion for r � 1, the assertion for r follows by use of the exact
Bockstein sequence

� � � ! zH�.K.C; n/IZ=pr�1/! zH�.K.C; n/IZ=pr /! zH�.K.C; n/IZ=p/! � � � ;

which is associated to the short exact coefficient sequence

0! Z=pr�1
! Z=pr

! Z=p! 0

and which is natural with respect to homomorphisms C !C . A simple diagram chase
together with the equality �pr D �pr�1 ı�p then shows the assertion for r .

After having finished the proof for mD pr we will now deal with the general case
m D p

r1

1
� � �p

rk

k
with pairwise different primes pi and ri > 0. According to the

decomposition
Z=mŠ Z=pr1

1
� � � � �Z=prk

k
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we obtain a splitting

zH�.K.C; n/IZ=m/Š zH�.K.C; n/IZ=pr1

1
/˚ � � �˚ zH�.K.C; n/IZ=prk

k
/

which is natural with respect to self-maps of K.C; n/. On zH�.K.C; n/IZ=pri

i / the
multiplication �mW C ! C induces the zero map, because �m factors through �pri

i
.

This implies the last assertion of Lemma 4 for general m> 0.

Let X be a connected finite simple CW-complex whose rational cohomology algebra
is free. It must be finitely generated with all generators in odd degrees, because X is
assumed to be finite. Serre’s finiteness theorem (or a direct inspection of the Postnikov
decomposition in connection with Lemma 4) implies that the homotopy groups ��.X /
are finitely generated in each degree. Hence they are finite products of cyclic groups.

Lemma 5 For each n� 0 the following hold:

� H�.XnIQ/ is a free algebra with generators in degrees � n corresponding to
the duals of the generators of �i.X /˝Q, where i � n.

� The canonical map X !Xn induces an injective map in rational cohomology.

� The rationalized k–invariant .kn/Q 2H nC2.XnI�nC1˝Q/ vanishes.

Proof The first assertion implies the second one, because the canonical map X !Xn

induces an isomorphism in rational cohomology up to degree n and the cohomology
algebra H�.X IQ/ is free. The second assertion implies the third one by the following
argument. The rationalized k–invariant .kn/Q is the image of the fundamental class
in H nC1.K.�nC1; nC 1/IQ/ under the differential dnC2 in the spectral sequence
for the fibration XnC1 ! Xn . If this differential were nonzero, then the induced
map H�.XnIQ/! H�.XnC1IQ/ would not be injective. However then the map
H�.XnIQ/! H�.X IZ/ would not be injective, either, by use of the factorization
X !XnC1!Xn . This contradicts the second assertion.

It is hence enough to prove the first assertion by induction on n. This assertion is clear
for n D 0, because X0 is homotopy equivalent to a point. In the inductive step the
assumption .kn/Q D 0 implies

H�.XnC1IQ/ŠH�.XnIQ/˝H�.K.�nC1; nC 1/IQ/

by Lemma 4, the Künneth theorem applied to the splitting of �nC1 into cyclic groups,
and the multiplicative properties of the Leray–Serre spectral sequence. From this the
first assertion follows for nC 1.
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Proposition 6 For all n� 0 and m> 0 there is a self-map fm;nW Xn!Xn with the
following properties:

� The induced map f �m;nW H
�.XnIQ/!H�.XnIQ/ is an isomorphism.

� The induced map f �m;nW zH
�.XnIZ=m/! zH�.XnIZ=m/ is equal to 0.

Proof We apply induction on n. Again the case nD 0 is clear.

For the inductive step we assume the assertion holds for a fixed n and all m> 0. By
Lemma 5 the k–invariant kn 2H nC2.XnI�nC1/ is a torsion class. Let � denote the
order of the torsion subgroup of H nC2.XnIZ/. Then the restriction of the canonical
map

H nC2.XnIZ/!H nC2.XnIZ/˝Z=� !H nC2.XnIZ=�/

to the torsion subgroup of H nC2.XnIZ/ is injective. This is clear for the first map,
and for the second map it follows from the universal coefficient theorem. In particular,
the self-map f�;nW Xn! Xn provided by the induction hypothesis induces the zero
map on the torsion subgroup of H nC2.XnIZ/. We now consider a splitting

�nC1 Š C1 � � � � �Ck

into cyclic groups and obtain a corresponding splitting

H nC2.XnI�nC1/ŠH nC2.XnIC1/˚ � � �˚H nC2.XnICk/;

which is natural in Xn . Now, for each 1 � i � k there is a self-map fi W Xn! Xn

inducing an isomorphism in rational cohomology and the zero map on the torsion
subgroup of H nC2.XnICi/: if Ci D Z we take f�;nW Xn!Xn as explained before,
and if Ci D Z=m we take the self-map fm;nW Xn ! Xn provided by the induction
hypothesis. Let f WD fk ı � � � ıf1W Xn!Xn . By construction we have:

� The map f induces an isomorphism H�.XnIQ/!H�.XnIQ/.

� f �.kn/D 0.

In the pullback square of fibrations

K.�nC1; nC 1/

incl:
��

D
// K.�nC1; nC 1/

��

f �.XnC1/
F

//

��

XnC1

pnC1

��

Xn
f

// Xn
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the map F induces an isomorphism in rational cohomology, by a spectral sequence
argument, and because f induces an isomorphism in rational cohomology. Because
f �.kn/D 0 the induced fibration f �.XnC1/!Xn is fibre homotopy trivial and hence
we get a homotopy equivalence Xn �K.�nC1; nC 1/' f �.XnC1/. Let

˛nW Xn �K.�nC1; nC 1/' f �.XnC1/
F
!XnC1

be the composition of the resulting maps. The map ˛n induces an isomorphism in
rational cohomology by construction.

Next, let � WD �jknjW �nC1! �nC1 be the multiplication by the order of the torsion
class kn 2H nC2.XnI�nC1/. We wish to define a map ˇn fitting into a commutative
diagram:

K.�nC1; nC 1/
K.�;nC1/

//

��

K.�nC1; nC 1/

incl:
��

XnC1

ˇn
//

pnC1

��

Xn �K.�nC1; nC 1/

proj:
��

Xn
D

// Xn

The only nontrivial task is the construction of the map XnC1 ! K.�nC1; n C 1/

appearing in the middle horizontal line. For this we consider the diagram:

K.�nC1; nC 1/
D
//

��

K.�nC1; nC 1/
K.�;nC1/

//

��

K.�nC1; nC 1/

��

XnC1
//

��

PK.�nC1; nC 2/
PK.�;nC1/

//

��

PK.�nC1; nC 2/

��

Xn
kn

// K.�nC1; nC 2/
K.�;nC2/

// K.�nC1; nC 2/

By assumption the composition in the lower row is homotopic to a constant map. We use
the homotopy lifting property to homotope the composition XnC1!PK.�nC1; nC2/

in the second row to a map XnC1! PK.�nC1; nC2/ which factors through the fibre
inclusion in the right-hand column.

The map ˇn induces an isomorphism in rational cohomology, again by a spectral
sequence argument combined with Lemma 4.
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With the maps ˛n and ˇn in hand we are ready to conclude the inductive step. Let
m> 0 be arbitrary. Using the induction hypothesis, Lemma 4 and the Künneth formula
it is easy to construct a self-map

f 0m;nW Xn �K.�nC1; nC 1/!Xn �K.�nC1; nC 1/

which induces an isomorphism in rational cohomology and the zero map in reduced
Z=m–cohomology. But then the composition

fm;nC1W XnC1
ˇn
�!Xn �K.�nC1; nC 1/

f 0m;n
���!Xn �K.�nC1; nC 1/

˛n
�!XnC1

is as required.

For further use we isolate the following information from the proof of Proposition 6.

Corollary 7 For each n there are maps ˛nW Xn � K.�nC1; n C 1/ ! XnC1 and
ˇnW XnC1!Xn �K.�nC1; nC 1/ inducing isomorphisms in rational cohomology.

Theorem 1 for simple spaces now follows from the next proposition.

Proposition 8 Let X be a connected finite CW-complex which is a simple topological
space and whose rational cohomology algebra is free. Then there is a continuous map

 W X �X !X

such that, for all x;y 2X , the maps  .x;�/W X !X and  .�;y/W X !X induce
isomorphisms in rational cohomology.

Proof It is clear that such a map exists on X0 . Assume that we have already con-
structed a map  nW Xn �Xn!Xn with the required properties.

Together with the product on K.�nC1; nC 1/ induced by the addition map on �nC1

we obtain a multiplication  0
nC1

on X 0
nC1
WDXn �K.�nC1; nC 1/ with the required

properties. Now we define  nC1 as the composition

XnC1 �XnC1
ˇn�ˇn
����!X 0nC1 �X 0nC1

 0
nC1
���!X 0nC1

˛n
�!XnC1;

where ˛n and ˇn are taken from Corollary 7.

Once we have constructed  n with n> 2 dim X , the construction of  is complete
by the cellular approximation theorem.
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For the next notions and results compare [20, Sections 3.1. and 3.2]. A path-connected
CW-complex X is called nilpotent if �1.M / is a nilpotent group and acts nilpo-
tently on the higher homotopy groups. Note that simple complexes are automatically
nilpotent. For a nilpotent complex the fibrations pnC1W XnC1!Xn in the Postnikov
decomposition are in general not principal, but they admit finite principal refinements

XnC1 DW Yrn

qrn
�!Yrn�1

qrn�1
���!� � �

q2
�!Y1

q1
�!Y0 WDXn;

where each qi W Yi ! Yi�1 is a principal fibration with fibre K.Gi ; nC 1/ for some
abelian group Gi , which is classified by a cohomology class in H nC2.Yi�1IGi/. The
same argument as in the proof of Proposition 8 then shows:

Proposition 9 Let X be a connected finite CW-complex which is a nilpotent topolog-
ical space. Assume that the rational cohomology algebra of X is free. Then there is a
continuous map  W X�X!X such that, for all x;y 2X , the maps  .x;�/W X!X

and  .�;y/W X !X induce isomorphisms in rational cohomology.

This proposition immediately implies Theorem 1.

Lemma 10 Let M D G=H be a homogeneous space, where G is a connected Lie
group and H < G is a closed connected subgroup. Then M is a simple topological
space.

Proof This fact is well known and we include a proof for the readers’ convenience.
Because H is connected we get an exact sequence

� � � ! �2.G=H/! �1.H/! �1.G/! �1.G=H/! 1:

The topological group G has abelian fundamental group, and hence the same holds
for G=H.

Next, let f W Sn!G=H and �W S1!G=H be based maps, where we take the south pole
of any sphere as basepoint. Recall that Œ���.Œf �/ 2 �n.G=H/, the result of the action
of Œ�� 2 �1.G=H/ on Œf � 2 �n.G=H/, is represented by the map � � f W Sn! G=H,
defined as follows. Consider the one-point union Sn _Sn , where the second sphere is
piled above the first one, identifying the north pole of the first with the south pole of
the second. We take the south pole of the first sphere as basepoint of Sn _Sn . Now
consider the composition Sn height

���! Œ0; 1�
�
�!G=H on the lower sphere, and the map

f W Sn! G=H on the upper sphere, and compose the resulting map Sn _Sn! G=H

with the basepoint-preserving coproduct Sn! Sn _Sn . This defines � � f . Note
that for nD 1 this results in the usual conjugation action of �1.G=H/ on itself.
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By the above exact sequence the map � lifts to a based map x�W S1! G. Using the
left multiplication of G on G=H and the above explicit description of �� f it is easy
to show that ��f is based homotopic to f .

Together with our previous results this implies Corollary 2.

Remark 11 Of course the above argument is modelled along the lines of rational
homotopy theory. In particular our Proposition 6 is implied by [27, Theorem (12.2)]
(note that by Lemma 5 our X is a formal space in the sense of rational homotopy
theory). However we found it somewhat difficult to trace a complete proof of this
theorem in the literature. We feel that this fact and the special focus of our paper justifies
the ad hoc, but self-contained discussion above instead of an in-depth exploration of
rational homotopy theory.

We are grateful to Dieter Kotschick for pointing out the following lemma and corollary.

Lemma 12 Each �–manifold has virtually abelian fundamental group.

Proof Let  W M �M ! M be a �–structure and x;y 2 M . Without loss of
generality we can assume that  x;  

y W M !M preserve a basepoint in M . Let
H1;H2 < �1.M / be defined as the images of

. x/�W �1.M /! �1.M / and . y/�W �1.M /! �1.M /:

The maps  x;  
y W M !M factor through the connected coverings of M defined by

H1 and H2 , respectively. Because  x and  y have nonzero mapping degrees, these
coverings are finite and hence H1 and H2 are of finite index in �1.M /. This implies
that H1\H2 < �1.M / is also of finite index.

Since the map  �W �1.M /��1.M /! �1.M / is a group homomorphism, elements
in H1 commute with elements in H2 . This implies that the finite-index subgroup
H1\H2 < �1.M / is abelian.

Together with Theorem 1 this implies:

Corollary 13 Let M be a closed connected oriented manifold which is nilpotent as
a topological space. If H�.M IQ/ is a free algebra — necessarily over odd-degree
generators — then �1.M / is virtually abelian.

It remains an interesting open problem whether this conclusion can be drawn without
the use of Theorem 1.
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2 Canonical products on symmetric spaces

In this section we prove Theorem 3. One implication is a special case of Hopf’s
theorem [14; 15]. Let P be a compact symmetric space whose isotropy groups within
its transvection group are connected. This assumption implies that P is orientable. We
are left to show that if the rational cohomology H�.P IQ/ of P is a free algebra, then
the canonical product ‚ on P defined in Equation (�) on page 879 is a �–structure.

We first observe that the degree of the map ‚x W P!P given by y 7!‚.x;y/D sx.y/

with x 2 P fixed is
deg.‚x/D .�1/dim.P/:

For fixed y 2 P we will examine the map

� WD‚y
W P ! P; x 7!‚.x;y/D sx.y/:

If the degree of � does not vanish, then ‚ is a �–structure. We will reduce our
considerations to irreducible simply connected symmetric spaces of compact type using
well-known features of compact symmetric spaces, which can be found in the classical
literature such as [13; 18; 19] or [29, Chapter 8].

We start with three preliminary lemmata. Just like compact Lie groups (see eg [16,
Theorem 4.29, page 198]) compact symmetric spaces admit finite covers that split off
flat factors:

Lemma 14 Every compact symmetric space P is finitely covered by a product T � zQ

of a flat torus T and a simply connected compact symmetric space zQ.

Proof The deck transformation group � of the universal cover zP of P is a finitely
generated discrete subgroup of the abelian centralizer CIso. zP/.Trans. zP // of the transvec-
tion group Trans. zP / of zP in its isometry group (see [24, Lemma 1.2, page 194] and
[29, Theorem 8.3.11, page 244]). Since zP ŠRk � zQ, where zQ is a simply connected
compact symmetric space, the isometry group of zP splits as Iso. zP /D Iso.Rk/�Iso. zQ/.

Thus any element of � has the form f �g for some f 2 CIso.Rk/.Trans.Rk//ŠRk

and some g 2 CIso. zQ/.Trans. zQ//. Since zQ is a symmetric space of compact type
CIso. zQ/.Trans. zQ// is finite. Let N be a common multiple of the orders of elements
of CIso. zQ/.Trans. zQ//; then gN D e for all g 2CIso. zQ/.Trans. zQ//. Since � is abelian,
the N th power is an endomorphism of � whose image �N acts trivially on the zQ
factor of zP . As �N has finite index in �, the space zP=�N Š T � zQ, which is the
desired cover of P , is compact.
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Lemma 15 Let P1 and P2 be two compact oriented symmetric spaces. Then the
canonical product on P1 �P2 is a �–structure if and only if the canonical products
on P1 and on P2 are both �–structures.

Proof The Riemannian product P1�P2 is again a compact oriented symmetric space
and the geodesic symmetries of P1 �P2 are products of geodesic symmetries of P1

and of P2. The claim now follows easily by the multiplicativity of mapping degrees.

Lemma 16 Let pW yP!P be an orientation-preserving Riemannian covering between
two compact oriented symmetric spaces. Then the canonical product on yP is a �–
structure if and only if the canonical product on P is a �–structure.

Proof The canonical products y‚ on yP and ‚ on P are related by

‚ ı .p�p/D p ı y‚:

Let yy 2 yP be a chosen origin and y WD p.yy/. Then the maps y� D y‚yy W yx 7! ysyx.yy/ and
� D‚y W x 7! sx.y/ satisfy p ı y� D � ıp. Since p is a covering, we get

deg.p/ deg.y�/D deg.�/ deg.p/;

where deg.p/ coincides with the number of sheets of p. Division by deg.p/ yields
deg.y�/D deg.�/.

Using these lemmata, we can proceed with our proof of Theorem 3. Let P be a sym-
metric space as in Theorem 3 such that H�.P IQ/ is an exterior algebra generated by
homogeneous elements in odd degrees. By Lemma 14 and the de Rham decomposition
for symmetric spaces there is a Riemannian product

yP WD T � zP1 � � � � �
zPm

of a flat torus T (a single point and a circle are considered zero- and one-dimensional tori
respectively) and irreducible simply connected compact symmetric spaces zP1; : : : ; zPm ,
where m� 0, together with a finite Riemannian covering map pW yP ! P .

Lemma 17 The covering pW yP ! P induces an isomorphism between the graded
Q–algebras H�. yP IQ/ and H�.P IQ/.

Proof We prove this claim in two different ways. Firstly, let yy 2 yP and y WD p.yy/.
Let yG and G denote the transvection groups of yP and P . The isotropy group yH� yG
of yy is connected, because yP is a product of a torus and simply connected compact
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symmetric spaces, and the isotropy group H � G of y is connected by assumption.
Their linear isotropy actions are identified by p. By [29, Theorem 8.5.8] the real
cohomology algebra of any compact symmetric space S is isomorphic to the algebra
of those elements in

V�
TxS , where x 2 S , which are invariant under the action

of the isotropy subgroup of x within the transvection group of S . Thus p induces
an isomorphism H�. yP IR/ Š H�.P IR/ and also an isomorphism of the rational
cohomologies.

Secondly, the fundamental group �1. yP / < �1.P / is abelian and acts trivially on
�n. yP /D �n.P / for n> 1, because P D G=H with connected H and by Lemma 10.
Hence yP is a simple space. Furthermore, because p is a finite covering, the induced
map ��. yP /˝Q! ��.P /˝Q is an isomorphism. By the Whitehead–Serre theorem
for simple spaces (or inspecting the induced map between Postnikov decompositions
of yP and P ) the induced map in rational cohomology is an isomorphism as well.

Lemma 17 and Künneth’s formula imply

H�.P IQ/ŠH�.T IQ/˝H�. zP1IQ/˝ � � �˝H�. zPmIQ/:

Note that H�.P IQ/ is generated by homogeneous elements in odd degrees if and only
if the same holds for H�. zPj IQ/ for all j 2 f1; : : : ;mg. Since the mapping degree
of � on an r–dimensional flat torus is 2r , we are left to verify Theorem 3 only for
irreducible simply connected compact symmetric spaces P D G=H whose rational
cohomology algebra is generated by homogeneous elements in odd degrees.

Since the rational cohomology of an inner compact symmetric space, which is a
compact symmetric space all of whose geodesic symmetries belong to its transvection
group G, has only contributions in even degrees (see eg [29, proof of Theorem 8.6.7]
and [11, Theorem VII, page 467]), we may assume that P DG=H is an outer symmetric
space. Using the classification of simply connected irreducible compact symmetric
spaces one could at this point determine all outer symmetric spaces that satisfy the
assumptions of Theorem 3 by checking case-by-case the rational cohomology of such
spaces given in [28] (see also [22; 26; 11]). But we prefer a more conceptual approach
that we essentially learned from Oliver Goertsches.

Since the Lie algebras of G and of H form a Cartan pair .g; h/ (see [11, pages
448 and 465]) with � WD rank.g/�rank.h/>0, we have that H�.G=HIQ/ is isomorphic
to a tensor product of a 2�–dimensional exterior algebra and a quotient of a symmetric
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algebra (see [11, Theorem IV, page 463] and [17, Theorem 3]). Therefore G=H satisfies
the hypotheses of Theorem 3 if and only if dim.H�.G=HIQ//D 2�.

Remark 18 In [10] Goertsches gave a Lie-theoretic description of these spaces. They
are precisely those symmetric spaces where the number of Weyl chambers of g that
intersect a given Weyl chamber of h is equal to one. Nontrivial intersections of Weyl
chambers of g with Weyl chambers of h are called compartments in [9].

From [23, Section 3] one sees that these spaces P are those spaces where the involution
of g associated with P is the canonical extension of an order-two automorphism of
the Dynkin diagram of g (see also [5, pages 33ff] and [9, pages 1128 and 1129]). The
simply connected irreducible compact outer symmetric spaces P D G=H of this kind
are of one of two types (see [23, page 305]):

� Those of splitting rank, which are symmetric spaces where the rank of G is
the sum of the rank of H and the rank of P . The irreducible simply connected
compact symmetric spaces of splitting rank are the simply connected compact
simple Lie groups, the odd-dimensional round spheres, SU2n=Spn with n� 3,
and the exceptional space E6=F4.

� The spaces SU2nC1=SO2nC1 with n 2N.

The referee made us aware that the mapping degree of � has already been calculated
by Araki in these cases:

� deg.�/D 2rank.P/ if P is of splitting rank; see [3, Theorem 3.1].

� deg.�/D 2n for P D SU2nC1=SO2nC1; see [3, Theorem 4.9].

This concludes the proof of Theorem 3.

Remark 19 In [3] Araki actually considered the map

G=H! G=H; gH 7! g�.g�1/H;

where � is the involutive automorphism of G such that H is the identity component of
its fixed-point set. In our terms we have �.g/D seH ıgıseH. Using seH.gH/D �.g/H

and sgH D g ı seH ıg�1 one sees that Araki’s map coincides with our map � if one
chooses eH as basepoint.
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Remark 20 (Lagrangian Grassmannians of odd rank) The Lagrangian Grassmannian
L WDU2nC1=O2nC1 can be identified with the set of all Lagrangian subspaces of C2nC1.
Since L D .U2nC1=f˙Ig/=SO2nC1, it meets the assumptions of Theorem 3. The
reflection at a Lagrangian subspace is an orthogonal antisymplectic involution of C2nC1

and vice-versa. Identifying L with the space of all orthogonal antisymplectic involutions
of C2nC1 it is shown in [2] that the conjugation

L�L! L; .R1;R2/ 7!R1R2R1

is a �–structure on L. If one identifies L with the fixed-point set Fix.�/ of the
transposition map � of U2nC1 by mapping the Lagrangian subspace A.R2nC1/, where
A2U2nC1, to the matrix AA|2Fix.�/, the �–structure defined above can be written as

Fix.�/�Fix.�/! Fix.�/; .A;B/ 7!AB�1A

(see [2, page 930]). Since Fix.�/ is a totally geodesic submanifold of U2nC1, the
�–structure considered in [2] is just the canonical product on L induced by the geodesic
symmetries of the Lie group U2nC1.

Remark 21 (compact Lie groups) A compact Lie group with a bi-invariant metric is
a symmetric space of splitting rank. The canonical product on a compact Lie group,
considered as a symmetric space, discussed here is a �–structure different from the
Lie-theoretic product. If one chooses the identity as basepoint, then � is actually the
squaring map.
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