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Conformal nets IV: The 3-category

ARTHUR BARTELS

CHRISTOPHER L DOUGLAS

ANDRÉ HENRIQUES

Conformal nets are a mathematical model for conformal field theory, and defects
between conformal nets are a model for an interaction or phase transition between
two conformal field theories. We previously introduced a notion of composition,
called fusion, between defects. We also described a notion of sectors between defects,
modeling an interaction among or transformation between phase transitions, and de-
fined fusion composition operations for sectors. In this paper we prove that altogether
the collection of conformal nets, defects, sectors, and intertwiners, equipped with
the fusion of defects and fusion of sectors, forms a symmetric monoidal 3-category.
This 3-category encodes the algebraic structure of the possible interactions among
conformal field theories.

18D05, 81T05

Introduction

Background and results

Conformal nets are a mathematical formalization of the notion of conformal field theory;
see Brunetti, Guido, and Longo [5], Buchholz, Mack, and Todorov [6], Buchholz
and Schulz-Mirbach [7], Gabbiani and Fröhlich [9], Kawahigashi and Longo [10],
Kawahigashi, Longo, and Müger [11], and Wassermann [13]. This paper is the fourth
in a series investigating coordinate-free conformal nets and their defects; see [1; 2; 3].
The notion of coordinate-free conformal nets is a modification of the usual notion of
conformal nets, in which one does not demand the positive-energy condition and does
not require the existence of a vacuum vector in the vacuum sector.1 Here we will use
the term “conformal net” to refer to coordinate-free conformal nets.

1We refer the reader to the first paper of the series [1, Section 4] for a detailed comparison between the
usual notion and the coordinate-free notion of conformal nets.
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In the preceding paper [3], we introduced defects between conformal nets and gave
examples thereof. (Conjecturally, such defects can also be obtained by taking spatial
slices of defects on two-dimensional Minkowski space-time; see Bischoff, Kawahigashi,
Longo, and Rehren [4].) In this paper, defects will provide a notion of 1-morphism
between conformal nets. Crucially, in [3, Definition 3.1], we introduced the operation
of fusion of defects, when the conformal nets have finite index; this fusion will provide
the composition operation on 1-morphisms between nets. We defined the associator
isomorphism for this fusion operation, and proved it satisfies the pentagon equation. We
investigated sectors between defects — in what follows these will form the 2-morphisms
between 1-morphisms between nets — and introduced the horizontal and vertical fusion
of sectors, along with their respective associators. We also constructed the fundamental
interchange isomorphism relating the vertical and horizontal fusion of sectors. All
these structures and more are summarized in the first appendix of that paper [3].

Given all the work done in [3] constructing the notions of higher morphisms between
nets and their composition operations, one might imagine that it would be straightfor-
ward to establish that finite-index conformal nets, defects, sectors, and intertwiners
form a tricategory. But unfortunately, tricategories are complicated beasts. This entire
paper is, in effect, devoted to the proof of the following theorem:

Theorem 1 The collections of all finite-index conformal nets, defects, sectors, and
intertwiners form the objects, 1-morphisms, 2-morphisms, and 3-morphisms of a
tricategory.

Let CAT denote the 2-category of categories; previously [8], we introduced a notion
of tricategory called a dicategory object in CAT.2 A dicategory object in CAT consists
of a category of objects, a category of 1-morphisms, and a category of 2-morphisms,
together with various functors encoding identity and composition operations and various
natural transformations encoding compatibility relationships between the operations, all
satisfying various axioms encoding coherences between the compatibility relationships.
We proved in [8] that every dicategory object in CAT has an associated tricategory;
Theorem 1 is therefore a corollary of the following result:

Theorem 2 The groupoid of all finite-index conformal nets, the groupoid of all defects,
and the category of all sectors form, respectively, the category of objects, the category
of 1-morphisms, and the category of 2-morphisms for a dicategory object in CAT.

2A dicategory object differs from a bicategory object in that the associativity structures (but not the
unital structures) are strict.

Algebraic & Geometric Topology, Volume 18 (2018)



Conformal nets IV 899

The tensor product of two conformal nets is again a conformal net, the tensor product
of two defects is again a defect, and similarly for sectors and for intertwiners. One
might therefore naturally conjecture that finite-index conformal nets form not just
a tricategory but in fact a symmetric monoidal tricategory. A useful feature of the
formalism of dicategory objects is that it makes it particularly simple to incorporate the
symmetric monoidal structure. Let SMC denote the 2-category of symmetric monoidal
categories, strong (as opposed to lax) symmetric monoidal functors, and symmetric
monoidal natural transformations. Our approach to Theorem 2 immediately also proves
the follow symmetric monoidal strengthening:

Theorem 3 The symmetric monoidal groupoid of finite-index conformal nets, the
symmetric monoidal groupoid of defects, and the symmetric monoidal category of
sectors form, respectively, the object of objects, the object of 1-morphisms, and the
object of 2-morphisms of a dicategory object in SMC.

This theorem is one precise formulation (indeed the only one available at present) of the
statement that finite-index conformal nets form a symmetric monoidal tricategory: finite-
index conformal nets form a dicategory object in SMC, and the notion of dicategory
object in SMC may be interpreted as a notion of symmetric monoidal tricategory.

A dicategory in SMC consists of

0-data a symmetric monoidal category of objects, a symmetric monoidal category of
1-morphisms, and a symmetric monoidal category of 2-morphisms;

1-data various symmetric monoidal functors between (fiber products of) these cate-
gories, encoding identity and composition operations;

2-data various symmetric monoidal natural transformations between (products and
composites of) these functors, encoding compatibility relationships between the opera-
tions; and

3-axioms various axioms for these transformations, encoding coherences between the
compatibility relationships.

These pieces of structure are tracked by labels of the form [D0-x], [D1-x], [D2-x] and
[D3-x], following the same numbering scheme as in [8, Definition 3.3]; in the body of
this paper we will abbreviate these labels to [0-x], [1-x], [2-x] and [3-x] respectively.
For ease of reference, the complete definition of a dicategory object in a 2-category
is compiled here in the appendix, and an abbreviated definition is depicted there in
Table 1.
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Overview

In our case, the category of objects [D0-0] is the (symmetric monoidal) category CN0

of finite conformal nets (finite direct sums of irreducible conformal nets with finite
index), together with isomorphisms between them; the category of 1-morphisms [D0-1]
is the (symmetric monoidal) category CN1 of defects (between finite conformal nets),
together with isomorphisms of defects; and the category of 2-morphisms [D0-2] is
the (symmetric monoidal) category CN2 of sectors (between defects between finite
conformal nets), together with homomorphisms of sectors (also called intertwiners)
that cover isomorphisms of defects and of conformal nets; the intertwiners play the
role of 3-morphisms in the overall 3-category. These categories of nets, defects, and
sectors are discussed in Section 0.

The most important operation in the 3-category is the composition of 1-morphisms
[D1-2], which here is a (symmetric monoidal) functor

CN1 �CN0 CN1! CN1

given by the fusion of defects:

.ADB; BEC/ 7!D~B E:

The existence of this fusion operation is proven in [3, Theorem 1.44]. The vertical
composition of 2-morphisms [D1-4] is a functor

CN2 �CN1 CN2! CN2;

given by the vertical fusion of sectors:

.DHE ;EKF / 7!H �E K:

This operation is defined in [3, Section 2.C]. Horizontal composition of 2-morphisms
is encoded indirectly using the vertical composition of 2-morphisms together with left
and right whisker operations [D1-5, D1-6], which are functors

CN2 �CN0 CN1! CN2 and CN1 �CN0 CN2! CN2:

These whisker functors are given by horizontal fusion with a vacuum sector (identity
2-morphism): for instance the right whisker is

..A.D1/B/H.A.D2/B/; BEC/ 7!H �BH0.E/;

where H0.E/ is the vacuum sector of the defect E . These various composition
operations, and others, are presented in Section 1.
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Compatibility transformations encode various relationships among the composition
operations, for instance the associativity of vertical composition of 2-morphisms [D2-3],
the interaction of the horizontal whiskering operation and vertical composition [D2-6,
D2-7], and the associativity of the horizontal whiskering [D2-9, D2-10, D2-11] and of
the fusion of defects [D2-12]. The most important compatibility transformation is the
switch transformation [D2-8], which is a (symmetric monoidal) natural transformation

CN2 �CN0 CN2 CN2

between the two functors

..A.D1/B/H.A.D2/B/; .B.E1/C/K.B.E2/C//

7! .H �BH0.E1//�.D2~BE1/ .H0.D2/�BK/;

and

..A.D1/B/H.A.D2/B/; .B.E1/C/K.B.E2/C//

7! .H0.D1/�BK/�.D1~BE2/ .H �BH0.E2//:

These and other compatibility transformations are constructed in Section 2.

The compatibility transformations are subject to various coherence axioms, for instance
pentagon conditions for vertical composition of 2-morphisms [D3-4], and for horizontal
whiskering [D3-15, D3-16] and horizontal fusion of defects [D3-17], along with
conditions governing the interaction of vertical associativity with horizontal whiskering
[D3-7]. Crucial coherence conditions are the one controlling the interaction of the
switch transformation with vertical composition [D3-8], and the ones controlling the
interaction of the switch operation with horizontal whiskering [D3-13, D3-14]. These
and other conditions are proven in Section 3.

0 Nets, defects, and sectors

[0-0] Conformal nets

By an interval, we shall mean a smooth oriented 1-manifold that is diffeomorphic
to the standard interval Œ0; 1�. We let INT denote the category whose objects are
intervals and whose morphisms are embeddings (not necessarily orientation-preserving
and not necessarily boundary-preserving). Let VN be the category whose objects are
von Neumann algebras, and whose morphisms are C-linear �-homomorphisms, and
C-linear �-antihomomorphisms. A net is a covariant functor

AW INT! VN
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taking orientation-preserving embeddings to homomorphisms and orientation-reversing
embeddings to antihomomorphisms. It is said to be isotonic if the induced maps for
embeddings are injective. In this case, given a subinterval I �K , we will often not
distinguish between A.I / and its image in A.K/. A conformal net A is an isotonic
net subject to a number of axioms [1, Definition 1.1]. Conformal nets form a symmetric
monoidal category, whose morphisms are natural transformations and whose tensor
product is the tensor product of VN applied objectwise. There is also the operation
of direct sum of conformal nets; it is also defined objectwise. A conformal net A is
said to be irreducible if every algebra A.I / is a factor. A direct sum of finitely many
irreducible conformal nets is called semisimple. There is a notion of a finite semisimple
conformal net (a direct sum of conformal nets with finite �-index [11]), defined utilizing
the minimal index from subfactor theory [1, Section 3]. The object category CN0 of
our 3-category CN is the subcategory of the category of conformal nets whose objects
are finite semisimple conformal nets and whose morphisms are natural isomorphisms.
This subcategory is a symmetric monoidal subcategory [1, Section 3]. From now on
all nets will be finite and semisimple and will be simply referred to as conformal nets.

[0-1] Defects

A bicolored interval is an interval I (always oriented), equipped with a covering by
two closed, connected, possibly empty subsets Iı; I� � I with disjoint interiors, along
with a local coordinate in the neighborhood of Iı\ I� . We disallow the cases where
Iı or I� consists of a single point. The local coordinate does not need to preserve the
orientation, but is required to send .�"; 0� into Iı and Œ0; "/ into I� . If either Iı or I�
is empty, then there is no local coordinate specified. An embedding f W J ,! I of
bicolored intervals is called color-preserving if f �1.Iı/D Jı and f �1.I�/D J� . The
bicolored intervals form a category INTı� , whose morphisms are the color-preserving
embeddings that preserve the local coordinate. Let A and B be conformal nets. A
defect from A to B is a functor

DW INTı�! VN

that extends A and B in the following sense: if I D Iı then D.I/DA.I /; if I D I�
then D.I/D B.I /. Moreover, D is subject to a number of axioms [3, Definition 1.7].
We often say D is an A-B-defect and write D D ADB . Direct sum and tensor product
for defects can be defined objectwise, as for nets. As morphisms between defects we
have again natural transformations. Such a natural transformation ADB ! A0D

0
B0
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restricts to natural transformations A!A0 and B! B0 . The 1-morphism category of
our 3-category CN is the symmetric monoidal category CN1 whose objects are defects
between finite semisimple nets, and whose morphisms are natural isomorphisms. There
are forgetful source and target functors s; t W CN1 ! CN0 defined by s.ADB/ D A
and t .ADB/D B .

Proposition The symmetric monoidal functor s� t W CN1! CN0�CN0 is a fibration
in the sense of [8, Definitions 2.1 and 2.2].

Proof Observe as follows that the underlying (nonmonoidal) functor s � t is a fi-
bration of categories. Given finite semisimple conformal nets A, B , A0 , B0, natural
isomorphisms �W A!A0 and  W B! B0 , and a finite semisimple defect A0D

0
B0 , we

must construct a defect ADB and a natural isomorphism ADB!A0D
0
B0 . We may take

D.I/DA.I / when I is white, D.I/D B.I / when I is black, and D.I/DD0.I /
when I is genuinely bicolored, together with D.I ,! J /DD0.I ,! J / ı�.I / when
I is white and J is genuinely bicolored, and D.I ,! J / D D0.I ,! J / ı  .I /

when I is black and J is genuinely bicolored. The isomorphism D ! D0 is the
identity on genuinely bicolored intervals and is � , respectively  on white and black
intervals. That s � t is in fact a fibration of symmetric monoidal categories is similarly
straightforward.

Throughout this paper we will depend heavily on graphical notation. Defects will often
be represented by a picture, thought of as a bicolored interval, as follows:

The four bullets on this interval indicate that this interval is of length three. The marked
point x denotes the point where the color of the interval changes. We often call this
marked point the defect point. Strictly speaking we should include an orientation
of our interval, for example from left to right. (Later our intervals will often sit on
the boundary of 2-manifolds embedded in the plane. Such a 2-manifold inherits its
orientation from the plane and the interval from the boundary of the 2-manifold.) For a
defect ADB we think of the above interval as representing a collection of von Neumann
algebras indexed by subintervals of our interval. If I is a subinterval to the left of x,
then it represents the algebra A.I /DD.I/; if I is a subinterval containing x, then it
represents D.I/; if I is a subinterval to the right of x, then it represents B.I /DD.I/.
Sometimes we will simplify our graphical notation and drop the marked point from
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the interval. If we need coordinates on the above interval, then we will identify it
with Œ0; 3�, where 0 corresponds to the left boundary point and 3 to the right boundary
point. The defect point then has the coordinate 1:5.

[0-2] Sectors

Consider the standard regular hexagon with side length 1:

In this paper S1 is defined to be the boundary of this hexagon. Sometimes we emphasize
this and write S16 for the boundary of this hexagon. Later we will also need the regular
octagon with side length 1; we denote its boundary as S18 . The hexagon inherits an
orientation from the plane; this also orients its boundary. We will pick the clockwise
orientation of the plane; thus the circle is also clockwise oriented. We think of the
above circle as bicolored: the left-hand side is white ı, while the right-hand side is
black � . The two marked points are the points where the color changes. In particular,
every subinterval of S16 that contains at most one of the marked points (and none on
the boundary) inherits a bicoloring.

Let ADB and AEB be defects. A D-E-sector is a Hilbert space H equipped with
actions of algebras represented by the bicolored subintervals of S16 as follows: for
every white subinterval I � S16 , the algebra A.I / acts; for every black subinterval
I � S16 , the algebra B.I / acts; for every bicolored subinterval containing the upper
defect point, the algebra D.I/ acts; for every bicolored subinterval containing the
lower defect point, the algebra E.I / acts. These actions are subject to compatibility
axioms [3, Definition 2.2]. We often write H D DHE to emphasize that H is a
D-E-sector. For fixed D and E , the D-E-sectors form a category whose morphisms
are the bounded linear maps that commute with the actions associated to the bicolored
subintervals of S16 . There is also a natural notion of morphism f W DHE!D0H

0
E 0 . In

this case f includes morphisms A!A0 , B! B0 , ADB! A0D
0
B0 , AEB0! A0E

0
B0

and an operator T W H !H 0 that commutes with the induced maps D.I/!D0.I /

and E.I /!E 0.I /. The tensor product of Hilbert space yields a symmetric monoidal
structure on sectors. Thus we obtain the symmetric monoidal category CN2 of sectors [3,
Definition 2.7]. This is the 2-morphism category of our 3-category CN.

In the graphical notation we think of a sector DHE as represented by the above hexagon.
We then think of the upper defect point as the D point and the lower defect point as
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the E point. By definition every bicolored subinterval of S16 corresponds then to a
von Neumann algebra that acts on the sector H . (Later, other 2-manifolds will also
be thought of as representing certain sectors.) Often we will drop the marked points
from the picture. Moreover, we will often draw the hexagon in a rectilinear fashion,
for example as one of the following:

Despite their appearance, all these pictures refer to the standard regular hexagon with
its two marked points as drawn.

Later it will sometimes be convenient to have coordinates on S16 and S18 . Then we
will make the identification S1 ŠR=6Z such that the coordinates of the corner points
are 0; 1; : : : ; 5, where we start on the left and proceed clockwise from there. The
coordinate of the upper defect point is then 1:5, and the coordinate of the lower defect
point is �1:5� 4:5. In a similar fashion we will identify S18 with R=8Z.

Proposition The symmetric monoidal functor s � t W CN2! CN1 �CN0�CN0 CN1 is a
fibration in the sense of [8, Definitions 2.1 and 2.2].

Proof Observe as follows that the underlying (nonmonoidal) functor s � t is a fi-
bration of categories. Given finite semisimple conformal nets A, B , A0 , B0 , finite
semisimple defects ADB , AEB , A0D

0
B0 , A0E

0
B0 , natural isomorphisms �W D!D0

and  W E!E 0 , and a sector D0H 0E 0 , we must construct a sector DHE and an
isomorphism DHE !D0H

0
E 0 . We may take the Hilbert space H to be H 0 , together

with d 2 D.I/ acting by �.d/ 2 D0.I / when I does not contain the lower defect
point and with e 2E.I / acting by  .e/ 2E 0.I / when I does not contain the upper
defect point. The isomorphism DHE !D0H

0
E 0 is the identity on the Hilbert space,

and is � and  on D and E respectively. That s� t is in fact a fibration of symmetric
monoidal categories is similarly straightforward.

Implementation of diffeomorphisms

Let A be a net, I an interval, and 'W I ! I a diffeomorphism that is the identity in a
neighborhood of the boundary of I . To this diffeomorphism, there is an associated
automorphisms A.'/ of A.I /, and it is one of the requirements for conformal nets that
this automorphism is inner: there is a unitary U' 2A.I / such that A.'/.a/DU'aU'� .
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We then say that U' implements ' on A.I /. Of course, U' is not unique. If ˛W A!B
is a morphism of CN0 , then ˛.I /.U'/ is an implementation of ' on B.I /.

Let ADB and AEB be defects and let DHE be a sector. Let 'W S16 ! S16 be a
diffeomorphism that fixes a neighborhood of both defect points. We can then pick
subintervals IL of the left half of S16 and IR of the right half of the circle S16 such
that ' is the identity on a neighborhood of the complement of IL[ IR . In particular,
' restricts to diffeomorphisms 'L and 'R of IL and IR . We obtain automorphisms
A.'L/ of A.IL/ and B.'R/ of B.IR/. A unitary U W H!H is said to implement ' if

A.'L/.a/ ıU D U ı a and B.'R/.b/ ıU D U ı b

as operators on H for all a2A.IL/, b2B.IR/. Such an implementation always exists;
for example we can set U WD UL ıUR where UL implements 'L on A.IL/ and UR
implements 'R on B.IR/. (It is part of the axioms for sectors that the actions of A.IL/
and B.IR/ on H commute; in particular UL is B.IR/-linear and UR is A.IL/-linear.)

1 Composition and identity operations

1A Horizontal identity and composition

[1-1] Horizontal identity Let AW INT! VN be a conformal net. Then the identity
defect idA for A is defined by

idA DA ı forget

where forgetW INTı�! INT is the functor that forgets the bicoloring. The 1-cell identity
CN0! CN1 is defined to be the functor A 7! idA . We will draw the identity defect as

[1-1]

where we use an equal sign (rotated) in the place of the usual x at the defect point.
Sometimes we simplify this by dropping the defect marker altogether:

[1-2] Horizontal composition The horizontal composition is defined as the horizon-
tal composition of defects as introduced in [3, Section 1.E]. We write this horizontal
composition functor CN1 �CN0 CN1! CN1 as .ADB; BEC/ 7!D~B E and draw the
composite of two defects as

[1-2]
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Here the left defect point is associated to D and the right defect point is associated
to E . We will review horizontal composition of defects and explain the picture in more
detail in Section 1C.

1B Vertical identity and composition

[1-3] Vertical identity Let D D ADB be a defect, and let S be a circle with a
bicoloring-preserving automorphism that exchanges the two color change points;
we refer to such an automorphism as a reflection. The vacuum sector H0.D; S/ D

DH0.D; S/D of D on S was introduced in [3, Section 1.B]. If S is the standard
circle S16 , then the reflection along the horizontal axis is a canonical choice of a
bicoloring-preserving reflection. (In coordinates the reflection is t 7! 6� t .) We call
H0.D/ WDH0.D; S

1
6 / the vacuum sector of D . The functor D 7!H0.D/ defines the

2-cell identity CN1! CN2 . The underlying Hilbert space of the vacuum sector is the
standard form L2.D.I // of the von Neumann algebra D.I/, where I is the upper
half of the circle S16 . (This is also the interval of length 3 used earlier.) Pictorially we
denote the vacuum sector as

[1-2]

In this picture, the gray shading indicates that the sector is a vacuum sector; an arbitrary
sector would have no interior shading. The upper and the lower half of S16 are both
copies of our bicolored interval I and correspond to the two actions of D.I/ on
L2.D.I //. Sometimes we will drop the defect points from our pictures. Moreover, we
might draw the picture in a rectilinear fashion such as

We point out that whenever the boundary of the circle is split into two intervals each
of which contains a defect point in the interior, then the corresponding algebras are
commutants of each other [3, Proposition 1.16].

[1-4] Vertical composition The vertical composition CN2 �CN1 CN2 ! CN2 is
defined as the vertical fusion from [3, Section 2.C]. Our picture for the vertical fusion is

[1-4]
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Note that the boundary of this picture is canonically S16 . In particular, no boundary
reparametrization is needed in the definition of vertical fusion. Often the picture is
simplified by omitting defect points and is drawn as a rectilinear equivalent:

The underlying Hilbert space of the vertical fusion of sectors is the Connes fusion
of the Hilbert spaces for the two sectors over the algebra associated to the horizontal
interval of length 3 in the middle of the pictures. Sometimes we will draw this picture
in the following different, but equivalent, forms:

These versions will be helpful when we discuss the vertical fusion of three sectors.

1C Horizontal whiskers

Horizontal fusion The definition of a 3-category that we are using in this paper does
not (for reasons of efficiency) directly include a notion of horizontal composition
of 2-morphisms. Nevertheless, there is such a composition for our sectors called
horizontal fusion of sectors and this operation will be the basis for many pieces of
structure in our 3-category. Horizontal fusion is a functor CN2 �CN0 CN2! CN2 and
is defined in [3, Section 2.B]. In symbols, given defects A.D1/B , A.D2/B , B.E1/C ,
and B.E2/C , we will write the horizontal fusion functor as

.D1HD2 ;E1KE2/ 7! .D1~BE1.H �BK/D2~BE2/:

We draw H �BK as

The underlying Hilbert space is the Connes fusion of H and K along the algebra
associated by B to the vertical interval I of length 2 in the middle of the picture.
Note that I inherits two different orientations from the two (deformed) hexagons. If
we orient I using the right hexagon (corresponding to K ), then B.I / acts on K ,
while B.�I /D B.I /op acts on H . It is exactly this situation that allows the use of
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Connes fusion (just as one may take the tensor product of a right module and a left
module). Sometimes we drop defect points from the picture. Moreover, we often draw
a rectilinear version of the picture:

We can now give a brief summary of the composition of defects. Let ADB and BEC

be defects. Consider H0.D/�BH0.E/, the horizontal composition of the vacuum
sectors for D and E :

The boundary of this picture is drawn as an irregular hexagon, but its boundary has
length 8. Thus it can be identified with the octagon S18 , and the upper four segments
of the boundary can be identified with the interval I4 of length 4:

The evaluation of the composed defect D~B E on this interval is generated in the
algebra of bounded operators on H0.D/�B H0.E/ by the evaluation of D on the
first two segments and by the evaluation of E on the last two segments. Similarly,
we obtain an algebra acting on H0.D/�B H0.E/ for any subinterval of I4 . The
interval I4 is not bicolored, but there is a map onto a bicolored interval I3 of length 3
that collapses the two half segments between the two defect points to a single defect
point, and this collapse map is used to view D ~B E as a functor on INTı� . The
evaluation of D~B E on a subinterval of I3 is defined via its preimage in I4 under
the collapse map. In our pictures we never indicate this collapse map in any way. Thus
the pictures remember more than just the structure of D~B E as a defect: we see
more subintervals to which we can associate algebras, for example we could consider a
little neighborhood of the left (say) defect point. In a similar fashion our picture for the
horizontal fusion remembers more than just the structure of a sector; it also encodes
the actions of some additional algebras. If we compose more than two defects, then we
obtain intervals of yet longer length with yet more defect points.

To formally define the horizontal fusion of sectors a similar collapse map � W S18 ! S16
is used. It collapses four half segments to two points. On the upper half this is just the
collapse map used before, on the lower half this is the reflection of that collapse map.
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[1-5] Right whisker The right composition of a 1-cell with a 2-cell

CN2 �CN0 CN1! CN2

is defined using horizontal fusion and the vacuum sector. Let A, B , and C be nets,
let A.D1/B , A.D2/B , and BEC be defects, and let D1HD2 be a sector. The right
composition of H with E is defined as the horizontal fusion H �BH0.E/. We draw
this as

[1-5]

Again, often this is drawn as

Here we omitted defect points from the pictures, but sometimes we will include them
for clarity.

[1-6] Left whisker The left composition of a 1-cell with a 2-cell is defined similarly
to the right composition, and is drawn as

[1-6]

The data discussed so far is part of the definition of both a 2-category object and a
dicategory object (in the 2-category of symmetric monoidal categories). We remind the
reader that our 3-category of conformal nets is a dicategory object; the next two pieces
of data labeled here [1-7] and [1-8] are labeled [D1-7] and [D1-8] in the appendix and
correspondingly in [8].

1D Directional identity cells

[1-7] Left identity The (upper) left 2-cell identity is a functor CN1! CN2 . Its role
is to show that the composition of a defect with an identity defect is, at least in a weak
sense, equivalent to the original defect.

Let ADB be a defect. There is no canonical isomorphism between idA~AD and D
in CN1 . (For this reason our 3-category of conformal nets is not a 2-category object in
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symmetric monoidal categories.) There is however a canonical .idA~AD/-D-sector,
the left identity for D . Our picture of this left identity is

[1-7]

This sector is the vacuum sector H0.D/ for D (this is the box part of the picture),
twisted by a diffeomorphism (indicated by the balloon in the picture). Details of this
construction follow.

We begin by reviewing the defect idA~AD . Consider the collapse map � W S18 ! S16
used earlier. This map is symmetric with respect to the reflection along the horizontal
axis (in coordinates the reflection is given by x 7! �x ). The restriction of � to the
upper half of S18 is a map I4! I3 , which collapses Œ1:5; 2:5�� I4 to 1:5 2 I3 , sends
x 2 Œ0; 1:5�� I4 to x 2 Œ0; 1:5�, and sends x 2 Œ2:5; 4�� I4 to x�12 Œ1:5; 3�� I3 . The
evaluation of idA~AD on a bicolored subinterval I of I3 is the algebra D.��1.I //.
(This algebra is isomorphic to D.I/, but there is no canonical isomorphism if I
contains the upper defect point 1:5.)

To construct the left identity we pick a diffeomorphism ˆLW S
1
8 ! S16 such that

ˆL.x/ D x on a neighborhood of Œ0; 1� and ˆL.x/ D x � 1 on a neighborhood
of Œ2:5; 4� and is symmetric with respect to the vertical reflection of the circles; that
is, we require that ˆL.�x/ D �ˆL.x/. In particular, ˆL coincides with � on
Œ0; 1�[ Œ2:5; 4�. Now we start with the vacuum sector H0.D/ for D :

It is a D-D-sector. We can twist the upper D-action by the restriction of ˆL to the
upper half I3 of S16 , turning H0.D/ into an .idA~AD/-D-sector. More precisely,
if I � S16 is a bicolored interval containing the upper defect point, then the action of
.idA~AD/.I / on H0.D/ is defined via the isomorphism

.idA~AD/.I /DD.�
�1.I //

D.ˆLj��1.I//
���������!D.ˆL.�

�1.I ///:

Because ˆL.x/Dx on a neighborhood of Œ0; 1� and ˆL.x/Dx�1 on a neighborhood
of Œ2:5; 4� it follows that this construction indeed defines a sector. We define the left
identity for D to be this sector. (The left identity functor CN1! CN2 constructed in
this section, and similarly the right identity functor in the next section, depends on
the choice of the diffeomorphism ˆL . However, as discussed in the later Remark 7,
distinct choices here will result in isomorphic 3-categories.)
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The small balloon in the above picture represents the restriction of ˆL to Œ1; 2:5�!
Œ1; 1:5�. Occasionally we use the abbreviated notation

or

in which a small vertical tick indicates that the top is a composition of two defects, or,
when there could be no confusion, simply by

[1-8] Right identity The right identity is defined similarly to the left identity; specif-
ically the right identity is a horizontal reflection of the left identity. Thus we re-
place the diffeomorphism ˆL by the diffeomorphism ˆRW S

1
8 ! S16 defined by

ˆR.x/ WD 3�ˆL.4� x/. The pictures for the right identity are

[1-8]

Lemma The left and the right identity sectors are invertible with respect to vertical
fusion of sectors, as required in the definition of a dicategory object.

Proof An inverse for the left identity is given by a vertical reflection of the left identity.
Similarly, an inverse for the right identity is given by a vertical reflection of the right
identity.

The procedure of twisting with a diffeomorphism as in the construction of the left
identity [1-7] can be applied to other defects than the vacuum sector. We can twist
any ADB-AEB-sector by a diffeomorphism to obtain an .idA~AD/-E-sector. Varying
the position of the diffeomorphism we can also produce a .D~B idB/-E-sector or a
D-.idA~AE/-sector or a D-.E~B idB/-sector. Moreover this process can be reversed.
For example given an .idA~AD/-E-sector we can twist by the inverse of ˆL to obtain
a D-E-sector. These constructions are inverse to each other. Also note that in vertical
compositions we will often move the diffeomorphism from one sector to another, when
this does not affect the resulting composite sector; for example the following pictures
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are interchangeable:

2 Compatibility transformations for composition
and identity operations

2A Transformations for vertical identity and composition

[2-1] Top identity There is a canonical natural isomorphism

[2-1]

because the underlying Hilbert space of the identity defect on the left-hand side is the
standard form of the algebra associated to the interval of length 3 in the middle of the
picture on the left-hand side. (Here we have denoted the isomorphism between the left
and right Hilbert spaces simply as a horizontal dash, without an arrowhead, to indicate
that the morphism may be read in either direction.) This is the top identity.

[2-2] Bottom identity The bottom identity is similarly depicted

[2-2]

[2-3] Vertical associator Connes fusion of bimodules over von Neumann algebras
is not strictly associative, but there is a coherent associator for this operation (similar
to the associator for the algebraic tensor product of bimodules over rings). Because
vertical fusion is defined using fusion along the algebra corresponding to the upper,
respectively lower, half of our standard circle, the associator for Connes fusion over
von Neumann algebras is also an associator for vertical fusion of sectors. We will draw
this associator as

[2-3]
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The little gap on the left-hand side illustrates that here we first do the Connes fusion
along the upper algebra; on the right-hand side the gap illustrates that we first do the
Connes fusion along the lower algebra. Because this associator just comes from the
fact that Connes fusion over von Neumann algebras is not strictly associative we will
henceforth very often suppress this isomorphism and treat the right-hand and left-hand
sides of the above picture as equal; we therefore simply draw this vertical fusion as

2B Transformations for horizontal composition and whiskers

.1�1/-isomorphism Crucial for the construction of our 3-category is the .1�1/-
isomorphism from [3, Theorem 6.2]. The .1�1/-isomorphism provides a natural
isomorphism between two functors CN1 �CN0 CN1 ! CN2 defined as follows. Let

ADB and BEC be defects. The first functor sends .D;E/ to H0.D/�BH0.E/ and the
second functor sends .D;E/ to H0.D~B E/. Thus the .1�1/-isomorphism shows
in particular that the horizontal fusion of two vacuum sectors is again a vacuum sector.
In pictures the .1�1/-isomorphism is denoted

[2-4], [2-5] Right and left vertical identity expansions The right and left vertical
identity expansions coincide and are both given by the .1�1/-isomorphism. In pictures
we have

[2-4], [2-5]

but often we will drop the defect points from the notation.

The categories CN�2 , CN�2 and CN��2 We will later need variants of CN2 that
have more morphisms.

The following notation will be helpful. If 'W A!B is a map of von Neumann algebras,
H is an A-module, and K is a B-module, then we denote by Hom'.H;K/ the space
of all bounded linear maps T W H !K that are '-linear, that is, such that for all a 2A
and � 2H we have T .a�/D '.a/T .�/.
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We start by recalling the precise definition of the morphisms in CN2 . For defects ADB ,

AEB , A0D
0
B0 , and A0E

0
B0 and sectors DHE and D0H

0
E 0 , a morphism f W DHE !

D0H
0
E 0 is a triple f D .T; ı; "/ where T W H ! H 0 is a bounded linear map and

ıW D!D0 and "W E!E 0 are morphisms from CN1 such that s.ı/D s."/W A!A0

and t .ı/D t ."/W B! B0 . Moreover, T is required to be ı.I /-linear for all bicolored
subintervals I of S16 not containing the lower defect point, and to be ".I /-linear for
all bicolored subintervals not containing the upper defect points. (On subintervals not
containing a defect point these two requirements coincide.)

Informally, the categories CN�2 , CN�2 , CN��2 are obtained, respectively, by relaxing
the linearity of morphisms around the lower defect point (for CN�2 ), around the upper
defect point (for CN�2 ), or around both defect points (for CN��2 ). In all three cases
the objects coincide with the objects of CN2 . Morphisms are defined more formally as
follows. We use the following subintervals of our standard circle S16 :

I� WD Œ4; 5�; I�
c
WD Œ�1; 4�;

I� WD Œ1; 2�; I�c WD Œ2; 7�;

Il WD Œ�1; 1�; Ir WD Œ2; 4�:

Let ADB , AEB , A0D
0
B0 , and A0E

0
B0 be defects and let DHE and D0H 0E 0 be sectors.

A morphism f W H!H 0 in CN�2 is a pair f D .T; "/ where "W E!E 0 is a morphism
of CN1 and T 2 Hom".I�c/.H;H 0/. A morphism f W H ! H 0 in CN�2 is a pair
f D .T; ı/ where ıW D ! D0 is a morphism of CN1 and T 2 Homı.I�c/.H;H

0/.
Finally, a morphism f W H!H 0 in CN��2 is a triple f D .T; ˛; ˇ/ where ˛W A!A0 ,
ˇW B!B0 are morphisms of CN0 and T W H!H 0 belongs to both Hom˛.Il /.H;H

0/

and Homˇ.Ir /.H;H
0/. Note that there are forgetful functors CN�2 ! CN��2 and

CN�2 ! CN��2 that are the identity on objects and for morphisms are defined by
.T; "/ 7! .T; s."/; t."// and .T; ı/ 7! .T; s.ı/; t.ı//.

We remark that many of our previous constructions extend to these variants of CN2 .
For example the vertical fusion [1-4] is natural for these more general morphisms
and thus extends canonically to a functor CN�2 �CN1 CN�2! CN��2 . As a rule of
thumb: whenever we have a neighborhood of a defect point on the boundary of the
picture describing one of our functors, we can canonically extend that functor, adding
an appropriate � to source and target of the functor.

Homomorphisms in CN�2 (or CN�2 ) between vacuum sectors can be more concretely
described, as follows:
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Lemma 4 Let ADB , A0D
0
B0 be defects and ıW D!D0 an (iso)morphism of defects.

Then there is an isomorphism of vector spaces D0.I�/!Homı.I�c/.H0.D/;H0.D0//
given by b 7! b ıH0.ı/. Here we use “b” to refer both to an algebra element and to
the linear map given by multiplying by that element.

In particular, if we view H0.D/ and H0.D0/ as objects of CN�2 , then given a bounded
linear map F W H0.D/!H0.D

0/, the pair f WD .F; ı/ defines a morphism H0.D/!

H0.D
0/ in CN�2 if and only if F D b ıH0.ı/ for some b 2D0.I�/.

Proof Haag duality for defects [3, Proposition 1.16] implies that

HomD0.I�c/
�
H0.D

0/;H0.D
0/
�
DD0.I�/;

ie every D0.I�c/-linear operator on H0.D0/ is given by the action of a unique element
in D0.I�/.

Now H0.ı/W H0.D/!H0.D
0/ is a ı.K/-linear isomorphism for all intervals K�S16 .

In particular it is ı.I�c/-linear and induces an isomorphism

D0.I�/D HomD0.I�c/
�
H0.D

0/;H0.D
0/
�
! Homı.I�c/

�
H0.D/;H0.D

0/
�
:

The second statement follows from the first and the definition of CN�2 .

The categories CN'2 and CN'2 We define CN'2 as the full subcategory of CN�2
on objects of the form H0.D/˝`, where ADB is a defect and ` is a separable Hilbert
space. It is a monoidal subcategory. Similarly we obtain a monoidal subcategory CN'2

of CN�2 .

Proposition 5 Every object from CN2 is isomorphic in CN�2 (resp. in CN�2 ) to a
direct summand of an object from CN'2 (resp. from CN'2 ).

Proof Let ADB , AEB be defects and let DKE be a sector (in other words, an object
of CN2 ). In particular, K is an E.I /-module, where I D Œ2; 7� is the complement of
the interval .1; 2/ of our standard circle S16 . Observe that the vacuum sector H0.E/
is faithful as an E.I /-module. (In fact H0.E/ is isomorphic to the standard form
L2.E.I //.) Recall that whenever A is a separable von Neumann algebra acting on
a separable Hilbert space H and acting faithfully on a separable Hilbert space H 0 ,
then there is an A-linear isometric embedding H ˝ `!H 0˝ `, and in particular an
isometric embedding H !H 0˝ `, where ` is an infinite-dimensional Hilbert space.
We can therefore find an E.I /-linear isometric embedding of K into H0.E/˝ ` for
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some separable Hilbert space `. By the definition of CN�2 this embedding defines a
morphism K!H0.E/˝ ` in CN�2 , as desired.

Proposition 6 Let ADB and A0D
0
B0 be defects and let ` and `0 be separable Hilbert

spaces. Consider X WDH0.D/˝ ` and X 0 WDH0.D0/˝ `0 as objects of CN'2 . Let
f D . zF ; ı/W X ! X 0 be a morphism in CN�2 . Let Y WDH0.D0/˝ `. Then f can
be factored through Y as f D f2 ıf1 in CN'2 where f1 is induced by ı and f2 is
the identity on D0 . More precisely we have

(i) f1 D .H0.ı/˝ id`1 ; ı/W X ! Y ;

(ii) f2 D .T; idD0/W Y !X 0 , where T 2D0.I /˝B.`; `0/ with I D Œ1; 2�.

Here, the space B.`; `0/ of bounded linear maps `! `0 is a corner in the von Neumann
algebra B.` ˚ `0/, and the tensor product D0.I / ˝ B.`; `0/ is defined to be the
closure of the corresponding algebraic tensor product in the von Neumann algebra
D0.I /˝B.`˚ `0/.

Proof of Proposition 6 We have to find T 2 D0.I�/˝ B.`; `0/ such that zF D
T ı .H0.ı/˝ id`/.

By the definition of CN�2 we have

zF 2Homı.I�c/
�
H0.D/˝`;H0.D

0/˝`0
�
ŠHomı.I�c/

�
H0.D/;H0.D

0/
�
˝B.`; `0/:

By Lemma 4, the map T0 7! T0 ıH0.ı/ gives an isomorphism

D0.I�/Š Homı.I�c/
�
H0.D/;H0.D

0/
�
:

Therefore T 0 7! zT ı .H0.ı/˝ id`/ yields an isomorphism

D0.I�/˝B.`; `0/ Š�!Homı.I�c/
�
H0.D/˝ `;H0.D

0/˝ `0
�
:

The inverse image of zF under this isomorphism provides the desired factorization.

[2-6] Right dewhisker The right dewhisker is an isomorphism

[2-6]

The left and right sides of the above picture describe functors

L;RW .CN2 �CN1 CN2/�CN0 �CN1! CN2

and the right dewhisker is a natural isomorphism � W L!R . Its construction will be
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a bit involved. We will show that in order to construct � it suffices to define � on
the image of the functor I W CN1�CN0 CN1! .CN2�CN1 CN2/�CN0 �CN1 defined by
I.ADB; BEC/D .H0.D/;H0.D/;E/. Here the natural isomorphism �0W LıI!RıI

can be constructed as the following composition:

The darker shading indicates that those sectors are assumed to be vacuum sectors in the
definition of �0 , but will need to be replaced by arbitrary sectors in order to define � .
The first and third isomorphisms are given by the isomorphisms [2-1] or [2-2] (which
are equivalent by axiom [3-1]). The second and fourth isomorphisms are given by the
.1�1/-isomorphism.

In order to promote �0 to � we use the following diagram of functors:

CN1 �CN0 CN1
I

//

i0

��

.CN2 �CN1 CN2/�CN0 CN1

L

''

R

77

i1

��

CN2

i2

��

.CN'2 �CN1 CN'2/�CN0 CN1
zI
// .CN�2 �CN1 CN�2/�CN0 CN1

zL

((

zR

66
CN��2

Here we use the variations of CN2 introduced earlier. The functors zL and zR are the
canonical extensions of L and R . The functor I applies the identity sector twice in
the first entry and has already been defined. The vertical functors i1 and i2 are induced
from the three inclusions of CN2 into CN�2 , CN�2 , and CN��2 . The functor zI is
induced from the inclusions CN'2! CN�2 and CN'2! CN�2 . The composition
i1 ı I canonically factors as zI ı i0 .

In the next step we use �0 to construct a natural isomorphism z�0W zL ı zI ! zR ı zI . Let
X0 WD .D;E/ be an object of CN1�CN0CN1 and let X D .H0.D/˝`;H0.D/˝`0; E/
be an object from .CN'2 �CN1 CN'2/ �CN0 CN1 . We have natural identifications
zL. zI .X//D L.I.X0//˝ `˝ `

0 and zR. zI .X//DR.I.X0//˝ `˝ `0 . We set .z�0/X WD
.�0/˝id`˝id`0 . However, there are more morphisms in .CN'2�CN1CN'2/�CN0CN1
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than there are in CN1�CN0 CN1 , and we need to check that z�0 is natural with respect to
these extra morphisms. Note that z�0 is natural for morphisms from CN1 , because �0 is.
By Proposition 6, to check naturality with respect to morphisms in CN'2 , it suffices
to consider morphisms of the form

(i) f1 D .H0.ı/˝ id`; ı/, where ı WD 7!D0 , or

(ii) f2 D .T; idD/, where T 2D.I/˝B.`; `0/ for I D Œ1; 2�.

Now z�0 is natural with respect to morphisms of the first kind because �0 is natural
for the morphisms from CN1 . As �0 is equivariant for the action of D.I/, it follows
that z�0 is also natural for morphisms of the second kind. Similarly, z�0 is natural for
morphisms from CN'2 . Thus z�0 is a natural transformation.

By Proposition 5 every object of .CN�2�CN1 CN�2/�CN0 CN1 can be embedded as a
direct summand in an object of .CN'2�CN1 CN'2/�CN0 CN1 . Thus we can extend z�0
canonically to a natural transformation z� W zL! zR .

Let X be an object from .CN2 �CN1 CN2/�CN0 CN1 . Then

z�i1.X/W
zL.i1.X//! zR.i1.X//

is a morphism in CN��2 . In fact we will see that z�i1.X/ is a morphism in CN2 , and so
we can define �X WD z�i1.X/ and obtain the desired natural isomorphism. To check that
z�i1.X/ is in CN2 , we write X D .DHD0 ;D0H 0D00 ; E/, where D , D0 , and D00 are A-B-
defects and E is a B-C-defect. For convenience we ignore the collapse map S18 7! S16
and think of the .D ~B E/-.D00 ~B E/-sectors L.X/ and R.X/ as defined on S18
instead of on S16 . We have to show that z�i1.X/ is equivariant for the actions of D.I�/
and D00.I�/, where we now view I� D Œ1; 2� and I� D Œ6; 7� as subintervals of S18 .
Elements of D.I�/ and D00.I�/ can be viewed as morphisms in CN�2 and CN�2 ,
and therefore as morphisms in .CN�2 �CN1 CN�2/�CN0 CN1 . Therefore the required
equivariance of z�i1.X/ follows from the naturality of z� . This finishes the construction
of the right dewhisker.

[2-7] Left dewhisker The left dewhisker is defined analogously to the right de-
whisker and is drawn as

[2-7]
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[2-8] Switch The switch isomorphism is a composite of two isomorphisms

[2-8]

Each of those two isomorphisms is referred to as a half-switch. Arguing as in the
construction of the right dewhisker it suffices to construct these isomorphisms in the
cases where all sectors are vacuum sectors. In this case the first half-switch is defined as

Here the first and third isomorphisms are both the .1�1/-isomorphism and the second
is [2-1] (which agrees in this case with [2-2]). The second half-switch is defined
analogously.

2C Transformations for horizontal associators

[2-9], [2-10], [2-11] Whisker associators The associators for twice whiskered sec-
tors are given, using the .1�1/-isomorphism and the associativity of Connes fusion, as

[2-9]

[2-10]

[2-11]

As in the case of the vertical associator [2-3] we will also here often suppress the
associator for Connes fusion. In particular, we will suppress [2-11].

[2-12] Horizontal associator The associator for the composition of defects is in-
duced from the associator for fusion (or fiber product) of von Neumann algebras and is
discussed in [3, Equation 1.55]. Here we will suppress this isomorphism.

In [3, Proposition 4.32] we proved that the .1�1/-isomorphism is associative in the
following sense.
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Lemma J The .1�1/-isomorphism is associative for the composition of defects, that
is, the following diagram commutes:

We point out that in the upper left corner of the diagram in this lemma, we have
suppressed the morphism of sectors associated to the associator of horizontal fusion.
Similarly, in the lower right corner of the diagram we have suppressed the morphism
of sectors associated to the associator for fusion of defects.

2D Transformations for horizontal identities

The 2-data discussed so far is part of the definition of both a 2-category object and a
dicategory object (in the 2-category of symmetric monoidal categories). We remind the
reader that our 3-category of conformal nets is a dicategory object; the remaining pieces
of data labeled here [2-13] to [2-18] are labeled [D2-13] to [D2-18] in the appendix
and correspondingly in [8].

Left and right quasi-identities Let ADB and AEB be defects and let DHE be a
sector. There is no canonical isomorphism H0.idA/�A H Š H in CN2 . In fact,
H0.idA/�AH is an .idA~AD/-.idA~AE/-sector and not a D-E-sector. There is
however such an isomorphism if we are willing to twist H on top and bottom by the
diffeomorphism ˆL introduced in the construction of the left identity [1-7]. The left
quasi-identity has been constructed in [3, Definition 6.20] (where it was called the “left
unitor” y‡ l ), and will be drawn as

Here the balloons on the right box signal that the D-E-sector structure on H has been
twisted to an .idA~AD/-.idA~AE/-sector structure using A.ˆL/ at the indicated
portions of the picture. Of course we can move one or two of the balloons to the left
box by composing with the appropriate inverse diffeomorphism. For example we obtain
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from the left quasi-identity an isomorphism of .idA~AD/-E-sectors drawn as

Similarly, there is a right quasi-identity using ˆR drawn as

Lemma K [3, Equation 6.23] The following diagram commutes:

quasi-id

id

1
�
1

id

Lemma L [3, Lemma 6.21] The .1�1/-isomorphism is natural with respect to the
left quasi-identity in the sense that this diagram commutes:

quasi-id

quasi-id

1
�
1

1
�
1

Similarly, there are “right versions” of Lemma K and Lemma L for the right quasi-
identity.

[2-13] Left identity pass The pass through a left identity is defined as the following
composite:

[2-13]
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For the first map observe that we can move the diffeomorphism from the lower defect
to the horizontal composition of the two upper defects. The first map is then obtained
by the bottom identity [2-2]. The second map is obtained from the left quasi-identity
by applying the inverse of ˆL on the lower half — this moves the lower bubble from
the right-hand picture to the left-hand picture. The third map is the top identity [2-1].

[2-14] Right identity pass The pass through a right identity is a reflection along a
vertical axis of the pass through a left identity, and is defined similarly:

[2-14]

[2-15] Swap The swap is an isomorphism

[2-15]

The construction of the swap depends on the flip and will be given after the construction
of the flip below.

[2-16] Left identity expansion The left identity expansion is obtained from the
.1�1/-isomorphism and is drawn as

[2-16]

[2-17] Right identity expansion The right identity expansion is a reflection along a
vertical axis of the left identity expansion, and is defined similarly:

[2-17]

[2-18] Flip The flip is an isomorphism

[2-18]

and is defined as follows. Note that both the left-hand and right-hand sides of the flip
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are obtained from the horizontal composition of two identity sectors

by two different diffeomorphisms �L and �R from an interval of length 2 to an interval
of length 1— the intervals under consideration are those between the nonidentity
defect points. (The diffeomorphisms �L and �R are extensions by an identity of
the restrictions of the diffeomorphisms ˆL and ˆR used in the construction of the
left identity [1-7] and right identity [1-8].) Note that �L and �R coincide on a
neighborhood of the boundary of this interval. In order to define the flip we need to
implement the diffeomorphism � WD �R ı .�L/

�1; this is possible, because � acts as
the identity in a neighborhood of the boundary of the interval. However, there is no
canonical implementation. In order to choose these implementations consistently we
proceed as follows. The group Diff0.Œ0; 1�/, of diffeomorphisms that are the identity
on a neighborhood of the boundary, is perfect by [12]. Thus it admits a universal
central extension � W ADiff0 .Œ0; 1�/! Diff0.Œ0; 1�/. For any net A we can implement
any ' 2 Diff0.Œ0; 1�/ by a unitary U' 2 U.A.I //; thus U'aU'� D A.'/.a/ for all
a 2A.Œ0; 1�/. Moreover, U' is unique modulo the center Z.A.Œ0; 1�//. This induces a
unique homomorphism U W ADiff0 .Œ0; 1�/!A.Œ0; 1�/ such that Uz'aUz'�DA.�.z'//.a/
for all a2A.Œ0; 1�/, and all z' 2ADiff0 .Œ0; 1�/. The uniqueness of this map implies that it
is compatible with tensor products of nets. Now we choose z� such that �.z�/D � . The
flip is the map induced by the action of Uz� . (Though the flip map depends on the choice
of lift z� , the overall resulting 3-category does not, up to isomorphism; see Remark 7.)

We note that Uz� also provides an isomorphism

for general sectors. This generalization of the flip will be helpful in Lemma M.

Construction of the swap [2-15] The domain and target of the swap isomorphism
are obtained by twisting the vacuum sector of the same identity defect with different
diffeomorphisms. Using implementation of diffeomorphisms for the net in question we
can implement the difference between these diffeomorphism (as in the construction
of the flip [2-18]) and see that domain and target of the swap are indeed isomorphic.
However, there is a priori no preferred implementation and therefore no canonical
choice for the swap. Because every net can be canonically written as a direct sum of
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irreducible nets, it suffices to determine the swap for irreducible nets. In this case there
is up to phase a unique implementation. Therefore it remains to determine the phase of
the swap in this case. Consider the diagram:

flip

quasi-id

qu
as

i-
id

sw
ap

Here the lower horizontal map is obtained by twisting the quasi-identity

while the left vertical map is obtained by applying the quasi-identity to the left identity

(In particular, for the lower horizontal map in the above square diagram, the inner
diffeomorphism of the two upper diffeomorphisms in the lower left-hand item is added
by the quasi-identity; by contrast, for the left vertical map the outer of those two
diffeomorphisms is added by the quasi-identity.) The phase of the swap is now fixed
by requiring the above diagram to commute.

The defining diagram for the swap generalizes as follows.

Lemma M The following diagram commutes:

Later we will only need Lemma M for vacuum sectors, but the proof of the more
general statement is a bit cleaner.

Proof We denote the nonvacuum sector in the diagram by DHE . Here ADB and AEB

are defects. If D D idA and H D H0.idA/, then the diagram commutes by the
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construction of the swap. This also implies the diagram commutes if H DH0.idA/˝ `

for any Hilbert space `. For " > 0 we now use the subinterval I" D Œ�1:5C "; 1:5� "�
of the circle S16 bounding the nonvacuum sector. There exists an A.I"/-linear isometry
U"W H0.idA/˝`!H˝`. If " is sufficiently small, then U" will commute with all four
sides of the diagram. Thus the square also commutes for H˝` and thus for H itself.

Remark 7 The flip isomorphism [2-18] and the swap isomorphism [2-15] depended
on the choice of lift z� of the diffeomorphism � WD �R ı .�L/

�1; changing the lift
changes the flip by a scalar and the swap by the inverse scalar. However, the symmetric
monoidal 3-categories resulting from distinct choices are canonically isomorphic, as
follows. (Here the isomorphism will be given by a functor A!B of dicategory objects
in symmetric monoidal categories, which is a triple of functors A0! B0 , A1! B1 ,
A2!B2 , together with eight symmetric monoidal natural transformations, comparing
each piece of 1-data for A with the corresponding piece of 1-data for B , such that
eighteen squares of natural transformations commute, one for each piece of 2-data.)

Recall that the left identity [1-7] and right identity [1-8] depended on a choice of
diffeomorphism ˆL . Assume for a moment the diffeomorphism ˆL is fixed; let
CNŒˆL; z�� denote the dicategory object resulting from the choice z� of lift of � , and let
CNŒˆL; x�� denote the dicategory object resulting from the alternative choice of lift x�
of � . The ratio x�=z� is an invertible scalar. There is therefore a canonical isomorphism
of dicategory objects CNŒˆL; z��! CNŒˆL; x�� which is the identity functor on all
0-data, and the identity natural transformation on the 1-data [1-1] through [1-7], but is
the natural transformation given by scalar multiplication by .x�=z�/�1 on the 1-data [1-8].
These natural transformations commute with all the 2-data.

We can moreover remove the dependence of the 3-category CN on the choice of
the diffeomorphism ˆL . Suppose ˆ0L is an alternative choice of diffeomorphism
suitable for the construction of the left identity. Choose a lift zƒ 2ADiff0 Œ:5; 1:5� of the
diffeomorphism ƒ WDˆ0LjŒ:5;2:5� ı .ˆL/

�1jŒ:5;1:5� . Recall from the section on the right
identity [1-8] that ˆR is the reflection of the diffeomorphism ˆL ; similarly we let ˆ0R
be the corresponding reflection of ˆ0L . The lift zƒ determines by reflection a lift zP of
P WDˆ0RjŒ1:5;3:5�ı.ˆR/

�1jŒ1:5;2:5� . As before, let z� be a lift of � WD�Rı.�L/�1 . Note
that the diffeomorphisms �LW Œ1:5; 3:5�! Œ1:5; 2:5� and �RW Œ1:5; 3:5�! Œ1:5; 2:5�

were, up to a shift, determined by restrictions of ˆL and ˆR ; more specifically
�L.x/DˆL.x�1/C1 and �R.x/DˆR.x/. Therefore, the product ��0 WD zP � z� �Œzƒ��1
is a lift of �0 WD �0R ı .�

0
L/
�1 , where Œ�� denotes the canonical shift isomorphism

from ADiff0 Œ:5; 1:5� to ADiff0 Œ1:5; 2:5�.
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Now let U zƒ 2A.Œ:5; 1:5�/ be the unitary, associated to zƒ, implementing A.ƒ/; here
U W ADiff0 .Œ:5; 1:5�/! A.Œ:5; 1:5�/ is the homomorphism described in the section on
the flip. The action of U zƒ provides a natural isomorphism from the left identity of
CNŒˆL; z�� (a functor CN1! CN2 ) to the left identity of CNŒˆ0L;

��0� (also a functor
CN1 ! CN2 ). Similarly, the action of the unitary UzP 2 B.Œ1:5; 2:5�/ implementing
B.P/, provides a natural isomorphism from the right identity of CNŒˆL; z�� to the
right identity of CNŒˆ0L;

��0�. Altogether, this constructs an isomorphism of dicategory
objects CNŒˆL; z��! CNŒˆ0L;

��0� which is the identity functor on all 0-data, is the
identity natural transformation on the 1-data [1-1] through [1-6], and is the natural
transformation U zƒ on [1-7] and the natural transformation UzP on [1-8] — these natural
transformations commute with all the 2-data.

3 Coherence axioms for compatibility transformations

3A Axioms for vertical identity and composition

Proposition Axiom [3-1] is satisfied.

Proof Axiom [3-1] asserts that top and bottom identity agree in the case where both
sectors are vacuum sectors. This holds because the corresponding statement is already
true for Connes fusion.

Proposition Axioms [3-2] and [3-3] are satisfied.

Proof Axioms [3-2] and [3-3] assert that top and bottom identity are compatible with
the vertical associator. This holds because the corresponding statement is already true
for Connes fusion.

Proposition Axiom [3-4] is satisfied.

Proof Axiom [3-4] asserts that the vertical associator satisfies the pentagon identity.
This holds because the associator for Connes fusion satisfies the pentagon identity.

Remark It is possible to base the definition of sectors on a square rather than a
hexagon and to define vertical fusion using just a side of this square (rather than
half of the hexagon). Then our pictures would become a little simpler, but vertical
composition would require a diffeomorphism and the associator would then involve
this diffeomorphism. Axioms [3-1] through [3-4] would be more cumbersome to prove
in such a setup.
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3B Axioms for horizontal composition and whiskers

Proposition Axiom [3-5] is satisfied.

Proof The argument is summarized in Figure 1.

D

N

C

identity

w
hisker

expand

identity

Figure 1: Proof of Axiom [3-5].

Each of the four corners of the diagram displayed in Figure 1 denotes a functor
CN2 �CN0 CN1! CN2 . Each of the four lines on the boundary of the diagram denotes
a natural isomorphism determined by its label. These four natural isomorphisms (simply
referred to as maps for brevity) are explained in more detail as follows:

� The map labeled “whisker” is the “right dewhisker” [2-6].

� The horizontal map labeled “identity” is obtained by applying the top identity [2-1]
to the left half of the item in the top left corner of the diagram.

� The right vertical map labeled “identity” is obtained by applying the top identity
[2-1].

� The horizontal map labeled “expand” is obtained by applying the left (or equivalently
right) vertical identity expansion [2-4] to the top half of the item in the lower left corner
of the diagram.

Axiom [3-5] asserts that the boundary of this diagram commutes, that is, if we start
at some corner of the diagram and compose the four maps along the boundary of
the diagram then we should obtain the identity natural transformation on the functor
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corresponding to the corner where we started. (We remark that in [8], the axiom is
rotated by ��=2 from the version depicted above.) Now observe that each corner of the
diagram can also be viewed as determining a functor CN�2 �CN0 CN1! CN�2 . And
similarly each map on the boundary describes a natural isomorphism between these
functors. Moreover, the question whether the diagram commutes or not is invariant
under this change from CN2 to CN�2 . But the CN�2 version has the advantage that
because of Proposition 5, it suffices to check the commutativity of the diagram in
the case when the darker shaded sector is an identity sector, not an arbitrary sector.
Therefore we can and will assume that this sector is also an identity sector. Under this
assumption, the internal maps and nodes of the diagram make sense. Axiom [3-5] will
follow, once we have shown that the three cells in the interior commute:

The cell labeled D The composition of the maps not labeled “whisker” around this cell
is the definition of the map labeled “whisker”. Thus this cell commutes by definition.
This is the reason for the label D.

The cell labeled N The map that is counterclockwise after the map labeled “identity”
is the left (or equivalently right) vertical identity expansion [2-4]. The map clockwise
after the map labeled “identity” is the vertical fusion of the identity (on the top) and
the left vertical identity expansion (on the bottom). The remaining map is a top identity
(as is the map labeled identity). Thus this cell commutes by the naturality of the top
identity map. This is the reason for the label N.

The cell labeled C Consider the item in the lower left corner of the diagram. Here
we can apply the left (or right) vertical identity expansion [2-4] to both the bottom and
top half of this item. These applications do not interact with each other and can be
done in any order or simultaneously. All three maps on the boundary of this cells are
obtained from these commuting operations. The cell therefore commutes. We recorded
this in the diagram by the label C, for commuting operations.

Formally the proofs of the remaining axioms will be very similar to the proof of
axiom [3-5]. We will however not repeat the arguments in every case in detail. In
particular, we will trust the reader to determine the correct maps from our pictures.
Moreover, the trick that allows us to assume that some sector is not an arbitrary sector
but an identity sector (by replacing CN2 temporarily with CN�2 or CN�2 ) will be
used very often in the remainder of this paper. We will always refer to this as the corner
trick and indicate the sector to which it is applied by a darker shading.

Proposition Axiom [3-6] is satisfied.
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Proof This axiom asserts that the diagram in Figure 2 commutes.

D

3-6a

3-6b

expand

sw
itch

identity
identity

expand

Figure 2: Proof of Axiom [3-6].

The diagonal maps are the two half-switches from the definition of the switch iso-
morphism [2-8]. Thus the cell labeled D commutes by definition. There is a mirror
symmetry between the two remaining cells. Thus it suffices to prove that [3-6a]
commutes: this is the content of the next lemma.

Lemma The diagram [3-6a] commutes.

Proof The argument is similar to the proof of axiom [3-5] and is summarized in
Figure 3.

C

N

D

expand

half-switch

identity

Figure 3: Proof that diagram [3-6a] commutes.
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Proposition Axiom [3-7] is satisfied.

Proof The argument is summarized in Figure 4.

C

3-5

C

N

C

3-5

N

N

N

3-5

N 3-5N

whisker

w
hisker

w
hisker

whisker

Figure 4: Proof of Axiom [3-7].

The boundary of the diagram in Figure 4 is a square, not a hexagon as in [8], because
we suppress the vertical associativity isomorphisms. To help the reader to decode the
precise meaning of the items of this diagram we give a more detailed picture of the left
top corner where the bullets are added (even though these can be reconstructed from
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the form of the picture):

Each cell of the diagram commutes for the reason indicated in the diagram.

Proposition Axiom [3-8] is satisfied.

Proof Consider the diagram in Figure 5.

* *

3-8b

D D

3-8a 3-8c

D

switch switch

w
hisker w

hi
sk

er

switch

Figure 5: Proof of Axiom [3-8].

Here, the left isomorphism labeled � is defined using the corner trick (as in the
construction of the right dewhisker [2-6]) to be the following composite:

expand identity identity

The second isomorphism labeled � is defined similarly. There is a horizontal symmetry
between the cells labeled [3-8a] and [3-8c]. Thus it suffices to prove that [3-8a] and
[3-8b] commute. This is the content of the next two lemmas.
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Lemma The diagram [3-8a] commutes.

Proof Applying the corner trick twice, the cell [3-8a] can be filled as in Figure 6.

C

C

C

N

3-6a
D

C

C

3-5

C

N

3-6a

half-switch

w
hisker

*

half-switch

Figure 6: Proof that diagram [3-8a] commutes.

Lemma The diagram [3-8b] commutes.

Proof Using the corner trick twice, we fill the cell [3-8b] as in Figure 7.

3C Axioms for horizontal associators

Proposition Axioms [3-9] and [3-10] are satisfied.
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C

C

C C

D D

3-6a 3-6a
ha

lf-
sw

itc
h half-switch

* *

Figure 7: Proof that diagram [3-8b] commutes.

Proof Both are a consequence of the associativity of the .1�1/-isomorphism, in the
form of Lemma J.

Proposition Axiom [3-11] is satisfied.

Proof Using the corner trick this axiom is proved by the diagram in Figure 8. The
cells labeled J commute by Lemma J.

Proposition Axiom [3-12] is satisfied.
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C

J

D

D D

J N

expand whisker

w
hisker

expand
w

hi
sk

er

Figure 8: Proof of Axiom [3-11].

Proof The formulation of axiom [3-12] simplifies from a hexagon to a square because
we suppress the whisker associator [2-11]. Using the corner trick we can fill in this
square as in Figure 9.

Proposition Axiom [3-13] is satisfied.

Proof The axiom follows from the commutativity of the diagram in Figure 10.

There is a horizontal symmetry between the cells labeled [3-13a] and [3-13b]. Thus it
remains to prove that [3-13a] commutes. This is the content of the next lemma.

Lemma The diagram [3-13a] commutes.

Proof Using the corner trick we can fill in the diamond as in Figure 11.
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N

D

D

N
J

D

D

J

whisker

w
hisker

w
hisker

whisker

Figure 9: Proof of Axiom [3-12].

3-13a

3-13b

D D

whisker expand

sw
itch

sw
itch

whisker expand

Figure 10: Proof of Axiom [3-13].

Algebraic & Geometric Topology, Volume 18 (2018)



Conformal nets IV 937

N J

3-5

3-6a 3-6a

whis
ke

r expand

half-switch half
-sw

itch

Figure 11: Proof that diagram [3-13a] commutes.

Proposition Axiom [3-14] is satisfied.

Proof The axiom follows from the commutativity of the diagram in Figure 12.

D D

3-14a

3-14b

expand

sw
itch

sw
itch

expand

Figure 12: Proof of Axiom [3-14].

There is a horizontal symmetry between the cells [3-14a] and [3-14b]. Thus it suffices
to show that [3-14a] commutes. This is the content of the next lemma.

Lemma The diagram [3-14a] commutes.

Proof Using the corner trick twice we can fill in [3-14a] as in Figure 13.
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C

C C

C

N N
N N

J

3-6a 3-6a

expand

half-sw
itch ha

lf-
sw

itc
h

Figure 13: Proof that diagram [3-14a] commutes.

Proposition Axiom [3-15] is satisfied.

Proof This follows from the associativity of the .1�1/-isomorphism (Lemma J):

J

expand

expand

expand

expand
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Proposition Axiom [3-16] is satisfied.

Proof Upon suppression of horizontal associators, three of the nodes of the axiom
reduce to the left-hand picture below. The remaining two nodes reduce to the right-hand
picture; both edges between these sets of nodes are the indicated expansion:

expand

Proposition Axiom [3-17] is satisfied.

Proof This axiom asserts that the associator for defects [2-12] satisfies the pentagon
identity. This holds because the corresponding statement is already true for fusion (or
fiber product) of von Neumann algebras.

3D Axioms for horizontal identities

The axioms [3-1] to [3-17] do not involve identity defects. These axioms are part of
the definition of both a 2-category object and a dicategory object (in the 2-category of
symmetric monoidal categories). The remaining axioms labeled here [3-18] to [3-26]
are the axioms labeled [D3-18] to [D3-26] in the appendix and correspondingly in [8].

Proposition Axiom [3-18] is satisfied.

Proof This axiom follows from the commutativity of the diagram in Figure 14.

The cells labeled N and D commute by naturality and by definition. The remaining
cell commutes for a reason that we have not yet encountered, namely by Lemma K.

Proposition Axiom [3-19] is satisfied.

Proof Axiom [3-19] reduces to a square, because we are suppressing the vertical
associator [2-3]. We can partially fill the square as in Figure 15. For readability and
ease of comparison with a subsequent diagram, we use the abbreviated notation for
the four corner configurations, and the full bullet and bubble notation for the interior
configurations.

For the remaining cell we can use the corner trick and assume that the top left sector is
an identity sector. This reduces axiom [3-19] to the case where only one of the sectors
is not an identity sector. Using this additional assumption we can fill in axiom [3-19]
as in Figure 16 (using the simpler notation that suppresses the bullets and bubbles for
diffeomorphisms).
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N

K

D

pass

expand

identity

identity

Figure 14: Proof of Axiom [3-18].

D

D

pass

pass

w
hisker

pass

Figure 15: Partial filling for Axiom [3-19].
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N

C

N3-18 3-5

pass

pass

w
hisker

pass

Figure 16: Proof of Axiom [3-19] in the case of only one nonidentity sector.

Proposition Axiom [3-20] is satisfied.

Proof We can fill in axiom [3-20] partially as in Figure 17. Here we used the more
precise notation using bullets and bubbles. Figure 17 shows that axiom [3-20] is
equivalent to the commutativity of the remaining hexagon. By the corner trick this
hexagon commutes if and only if it commutes for the identity sector, and the hexagon
with identity sector commutes if and only if axiom [3-20] commutes for the identity
sector. Thus it suffices to establishes axiom [3-20] for the identity sector. This follows
from the diagram in Figure 18 (where we drop bullets and bubbles from the notation).

Proposition Axiom [3-21] is satisfied.

Proof We can partially fill axiom [3-21] as in Figure 19.

Thus it remains to prove the commutativity of the cell [3-21a]. This is the content of
the next lemma.
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D

3-6a

N
N

3-5

D

switch

flip
w

hisker

expand,flip
w

hisker

pass

Figure 17: Partial filling for Axiom [3-20].

Lemma Diagram [3-21a] commutes.

Proof Using the corner trick, we can fill in [3-21a] as in Figure 20. Here we use
Lemma L for the first time. It ensures that the cell labeled L commutes. The hexagon
labeled N at the bottom of the diagram commutes by naturality of the bottom identity
with respect to two applications of .1�1/-isomorphisms. On one of the sides of this
pentagon these two applications of the .1�1/-isomorphism are denoted by just one
map.
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3-18 N

3-5

C

C

J

C

C

C

3-5

C 3-6

flip
switch

w
hisker

pass

expand,flip

whisker

Figure 18: Proof of Axiom [3-20] for the identity sector.

Proposition Axiom [3-22] is satisfied.

Proof This follows from the diagram in Figure 21.
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D

3-6a 3-21a

D

switch

expand

expand,expand

pass

Figure 19: Proof of Axiom [3-21].

3-6a

N

L

K

C

N

half-switch
quasi-id

expand,expand

identity

Figure 20: Proof that diagram [3-21a] commutes.
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3-5 3-5

D

D

pass
ex

pa
nd

whisker

pass

expand

whis
ke

r
Figure 21: Proof of Axiom [3-22].

Almost all of the axioms of a dicategory object assert that a diagram and a number
of variants of the diagram commute. So far we have ignored the variants — their
commutativity can always be established by a straightforward variation of the argument
for the original diagram. The only exception to this is axiom [3-23]. Here our definition
of the swap [2-15] was designed to ensure that [3-23L], the left-hand version of [3-23],
holds. For the right-hand version [3-23R] we will have to use a different argument.

Proposition Axiom [3-23L] is satisfied.

Proof Axiom [3-23L] can be filled as in Figure 22. The inner square commutes by
Lemma M.

Proposition Axiom [3-23R] is satisfied.

Proof Consider again the diagram from the proof of [3-23L]; see Figure 22. This
diagram reduced [3-23L] to Lemma M. The proof of Lemma M in turn reduced to
the case where all defects are identity defects. The same argument can be applied
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N

K

D M N

N

flip

pass

sw
ap

expand

Figure 22: Proof of Axiom [3-23L].

to [3-23R] to reduce to the case of identity defects: we therefore only need to prove
[3-23R] in the case where all the defects are identity defects. In this case the diagram
in Figure 23 reduces [3-23R] to [3-23L] (which is already proved) and [3-24] (which
we prove next).

Proposition Axiom [3-24] is satisfied.

Proof Axiom [3-24] can be filled as in Figure 24.
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C

C 3-23L

C C C

3-24N

C

expand

pass

sw
ap

flip

Figure 23: Proof of Axiom [3-23R].

Proposition Axiom [3-25] is satisfied.

Proof This follows from the associativity of 1� 1:

J

expand

expand

expand

expand
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N

N

K

K

D

D

expand

pass

pass

expand

Figure 24: Proof of Axiom [3-24].

Proposition Axiom [3-26] is satisfied.

Proof This follows from the naturality of the flip, applied to the expand isomorphism:

N

flip

expand

expand

flip
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Appendix: Internal dicategories

For ease of reference while reading the above proof, we compile here the definition of
an internal dicategory, as introduced in [8]. We also list, in Table 1, a single pictorial
abbreviation for each piece of data and each axiom in the definition; the meaning of
these pictograms is given in the full Definition below.

0–data 1–data 2–data

3–axioms

Table 1: Abbreviated definition of an internal bicategory

Definition [8, Definition 3.3] A dicategory object C in the 2-category C consists of
the following three collections of data, subject to the listed axioms.
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0-data There are three objects of C as follows:

[D0-0] C0 , a groupoid object, denoted and called the object of 0-cells.

[D0-1] C1 , a groupoid object, denoted and called the object of 1-cells.

[D0-2] C2 (typically not a groupoid object), denoted and called the object
of 2-cells.

In addition, there are morphisms s; t W C1 ! C0 and s; t W C2 ! C1 , the source and
target, such that st D ss and t t D ts , and such that s � t W C1 ! C0 � C0 and
s � t W C2! C1 �C0�C0 C1 are fibrations.

1-data There are eight 1-morphisms of C as follows:

[D1-1] i W C0! C1 , denoted and called the 1-cell identity.

[D1-2] mW C1 �C0 C1! C1 , denoted and called the horizontal composition.

[D1-3] ivW C1! C2 , denoted and called the 2-cell identity.

[D1-4] mvW C2 �C1 C2! C2 , denoted and called the vertical composition.

[D1-5] wr W C2 �C0 C1! C2 , denoted and called the right composition or
whisker of a 2-cell with a 1-cell.

[D1-6] wl W C1 �C0 C2! C2 , denoted and called the left composition or
whisker of a 1-cell with a 2-cell.

[D1-7] il W C1! C2 , denoted and called the (upper) left 2-cell identity.

[D1-8] ir W C1! C2 , denoted and called the (upper) right 2-cell identity.

These morphisms are compatible with source and target maps.

The morphisms [D1-7] and [D1-8] are required to be invertible, in the following sense.
There exists a morphism of C , denoted (the lower left 2-cell identity), such that
there are invertible 2-morphisms from

to and to

such that the two resulting 2-morphisms from

to
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are equal, and similarly the two 2-morphisms from

to

are equal. Similarly there exists a morphism (the lower right 2-cell identity)
satisfying the corresponding conditions.

2-data There are eighteen 2-isomorphisms of C as follows:

[D2-1] +3 [D2-10] +3

[D2-2] +3 [D2-11] +3

[D2-3] +3 [D2-12] +3

[D2-4] +3 [D2-13] +3

[D2-5] +3 [D2-14] +3

[D2-6] +3 [D2-15] +3

[D2-7] +3 [D2-16] +3

[D2-8] +3 [D2-17] +3

[D2-9] +3 [D2-18] +3

These 2-isomorphisms are compatible with source and target maps in the sense that
the sources and targets of [D2-1] through [D2-8] and of [D2-13] through [D2-15]
are identity 2-morphisms, the sources and targets of [D2-9] through [D2-11] are the
2-isomorphism [D2-12], the sources of [D2-16] and [D2-18] are [D2-12], the source
of [D2-17] is the inverse of [D2-12], and the targets of [D2-16] through [D2-18] are
identity 2-isomorphisms.
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3-axioms The above data are such that the following twenty-six diagrams, as well as
the variant diagrams abbreviated in parentheses, commute:

[D3-1]

[D3-2]

h i

[D3-3]

[D3-4]

[D3-5]

h i

[D3-6]

h i

[D3-7]

h i

[D3-8]

h i
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[D3-9]

h i

[D3-10]

[D3-11]

h i

[D3-12]

[D3-13]

h i

[D3-14]
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[D3-15]

h i

[D3-16]

h i

[D3-17]

[D3-18]

h i

[D3-19]

h i

[D3-20]

h i
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[D3-21]

h i

[D3-22]

h i

[D3-23]

h i

[D3-24]

[D3-25]

h i

[D3-26]

h i
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