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Outer actions of Out.Fn/ on small right-angled Artin groups

DAWID KIELAK

We determine the precise conditions under which SOut.Fn/ , the unique index-two
subgroup of Out.Fn/ , can act nontrivially via outer automorphisms on a RAAG
whose defining graph has fewer than 1

2

�
n
2

�
vertices.

We also show that the outer automorphism group of a RAAG cannot act faithfully
via outer automorphisms on a RAAG with a strictly smaller (in number of vertices)
defining graph.

Along the way we determine the minimal dimensions of nontrivial linear representa-
tions of congruence quotients of the integral special linear groups over algebraically
closed fields of characteristic zero, and provide a new lower bound on the cardinality
of a set on which SOut.Fn/ can act nontrivially.

20F65; 20F28, 20F36

1 Introduction

The main purpose of this article is to study the ways in which Out.Fn/ can act
via outer automorphisms on a right-angled Artin group A� with defining graph �.
(Recall that A� is given by a presentation with generators being the vertices of � and
relators being commutators of vertices which span an edge in �.) Such actions have
previously been studied for the extremal cases: when the graph � is discrete, we have
Out.A�/D Out.Fm/ for some m, and homomorphisms

Out.Fn/! Out.Fm/

were investigated by Bogopol’skiı̆ and Puga [1], Khramtsov [11], Bridson and Vogt-
mann [3], and the author [12; 13]. When the graph � is complete, we have Out.A�/D
GLm.Z/, and homomorphisms

Out.Fn/! GLm.Z/;

or more general representation theory of Out.Fn/, have been studied by Grunewald
and Lubotzky [8], Potapchik and Rapinchuk [17], Turchin and Willwacher [20], and
the author [12; 13].
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There are two natural ways of constructing nontrivial homomorphisms

�W Out.Fn/! Out.A�/:

When � is a join of two graphs, � and † say, then Out.A�/ contains

Out.A�/�Out.A†/

as a finite-index subgroup. When additionally � is isomorphic to the discrete graph
with n vertices, then Out.A�/D Out.Fn/, and so we have an obvious embedding � .

In fact this method works also for a discrete � with a very large number of vertices since
there are injective maps Out.Fn/!Out.Fm/ constructed by Bridson and Vogtmann [3]
for specific values of m growing exponentially with n.

The other way of constructing nontrivial homomorphisms � becomes possible when �
contains n vertices with identical stars. In this case it is immediate that these vertices
form a clique ‚, and we have a map

GLn.Z/D Aut.A‚/! Aut.A�/! Out.A�/:

We also have the projection

Out.Fn/! Out.H1.Fn//D GLn.Z/;

and combining these two maps gives us a nontrivial (though also noninjective) � .

This second method does not work in other situations, by the following result of Wade.

Theorem 1.1 [21] Let n > 3. Every homomorphism

SLn.Z/! Out.A�/

has finite image if and only if � does not contain n distinct vertices with equal stars.

In fact Wade proved a much more general result, in which the domain of the homomor-
phism is allowed to be any irreducible lattice in a real semisimple Lie group with finite
centre and without compact factors, and with real rank n� 1.

The aim of this paper is to prove:

Theorem 3.7 Let n > 6. Suppose that � is a simplicial graph with fewer than 1
2

�
n
2

�
vertices, which does not contain n distinct vertices with equal stars and is not a join
of the discrete graph with n vertices and another (possibly empty) graph. Then every
homomorphism SOut.Fn/! Out.A�/ is trivial.
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Here SOut.Fn/ denotes the unique index-two subgroup of Out.Fn/.

The proof is an induction, based on an observation present in a paper of Charney,
Crisp and Vogtmann [4], elaborated further in a paper of Hensel and the author [9],
which states that, typically, the graph � contains many induced subgraphs † which
are invariant up to symmetry in the sense that the subgroup of A� that the vertices
of † generate is invariant under any outer action up to an automorphism induced by a
symmetry of � (and up to conjugacy).

To use the induction we need to show that such subgraphs are really invariant, that is,
that we do not need to worry about the symmetries of �. To achieve this we prove

Theorem 2.28 Every action of Out.Fn/ (with n>6) on a set of cardinality m6
�
nC1

2

�
factors through Z=2Z.

Since SOut.Fn/ is the unique index-two subgroup of Out.Fn/, the conclusion of this
theorem is equivalent to saying that SOut.Fn/ lies in the kernel of the action.

A crucial ingredient in the proof of this theorem is the following.

Theorem 2.27 Let V be a nontrivial, irreducible K–linear representation of

SLn.Z=qZ/;

where n > 3, q is a power of a prime p , and where K is an algebraically closed field
of characteristic 0. Then

dim V >
�

2 if .n;p/D .3; 2/;
pn�1� 1 otherwise.

This result seems not to be present in the literature; it extends a theorem of Landazuri
and Seitz [14] yielding a very similar statement for q D p (see Theorem 2.26).

At the end of the paper we also offer:

Theorem 4.1 There are no injective homomorphisms Out.A�/!Out.A� 0/ when � 0

has fewer vertices than �.

This theorem follows from looking at the Z=2Z–rank, ie the largest subgroup isomor-
phic to .Z=2Z/k .
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2 The tools

2.1 Automorphisms of free groups

Definition 2.1 (SOut.Fn/) Consider the composition

Aut.Fn/! GLn.Z/! Z=2Z;

where the first map is obtained by abelianising Fn , and the second map is the determi-
nant. We define SAut.Fn/ to be the kernel of this map; we define SOut.Fn/ to be the
image of SAut.Fn/ in Out.Fn/.

It is easy to see that both SAut.Fn/ and SOut.Fn/ are index-two subgroups of, respec-
tively, Aut.Fn/ and Out.Fn/.

The group SAut.Fn/ has a finite presentation given by Gersten [7], and from this
presentation one can immediately obtain the following result.

Proposition 2.2 (Gersten [7]) The abelianisation of SAut.Fn/, and therefore of
SOut.Fn/, is trivial for all n > 3.

It follows that SOut.Fn/ is the unique subgroup of Out.Fn/ of index two.

We will now look at symmetric and alternating subgroups of Out.Fn/ and list some
corollaries of their existence.

Proposition 2.3 [2, Proposition 1] Let n > 3. There exists a symmetric subgroup of
rank n,

Symn < Out.Fn/;

such that any homomorphism �W Out.Fn/!G that is not injective on Symn has image
of cardinality at most 2.

The symmetric group is precisely the symmetric group operating on some fixed basis
of Fn . It is easy to see that it intersects SOut.Fn/ in an alternating group Altn .
Whenever we talk about the alternating subgroup Altn of SOut.Fn/, we mean this
subgroup. Note that SOut.Fn/ actually contains an alternating subgroup of rank nC1,
which is a supergroup of our Altn ; we will denote it by AltnC1 . There is also a
symmetric supergroup SymnC1 of AltnC1 contained in Out.Fn/.

The proof of [2, Proposition 1] actually allows one to prove the following proposition.

Algebraic & Geometric Topology, Volume 18 (2018)
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Proposition 2.4 Let n > 3. Then SOut.Fn/ is the normal closure of any nontrivial
element of Altn .

Following the proof of [2, Theorem A], we can now conclude:

Corollary 2.5 Let
�W SOut.Fn/! GLk.Z/

be a homomorphism with n > 6 and k < n. Then � is trivial.

Proof For n > 6, the alternating group AltnC1 does not have nontrivial complex
representations below dimension n. Thus �jAltnC1

is not injective, and is therefore
trivial since AltnC1 is simple. Now we apply Proposition 2.4.

More can be said about linear representations of Out.Fn/ in somewhat larger dimen-
sions; see [12; 13; 20].

Another related result that we will use is the following.

Theorem 2.6 [12] Let n > 6 and m<
�
n
2

�
. Then every homomorphism Out.Fn/!

Out.Fm/ has image of cardinality at most 2, provided that m¤ n.

In fact, in the next section we will go back to the proof of the above theorem and show:

Theorem 2.7 Let n > 6 and m< 1
2

�
n
2

�
. Then every homomorphism

SOut.Fn/! Out.Fm/

is trivial, provided that m¤ n.

2.2 Homomorphisms SOut.Fn/ ! Out.Fm/

To study such homomorphisms we need to introduce finite subgroups Bn and B of
SOut.Fn/ that will be of particular use. Let Fn be freely generated by fa1; : : : ; ang.

Definition 2.8 Let us define ı 2 Out.Fn/ by ı.ai/ D ai
�1 for each i . (Formally

speaking, this defines an element in Aut.Fn/; we take ı to be the image of this element
in Out.Fn/.) Define �12 2 Symn < Out.Fn/ to be the transposition swapping a1

with a2 . Define � 2 SOut.Fn/ by

� D

�
ı if n is even,
ı�12 if n is odd,

and set Bn D hAltnC1; �i6 SOut.Fn/.
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We also set A to be either Altn�1 , ie the pointwise stabiliser of f1; 2g when AltnC1

acts on f1; 2; : : : ; nC 1g in the natural way (in the case of odd n), or AltnC1 (in the
case of even n). Furthermore, we set B D hA; �i.

It is easy to see that Bn is a finite group: it is a subgroup of the automorphism group
of the (suitably marked) .nC1/–cage graph, that is, a graph with 2 vertices and nC 1

edges connecting them.

To prove Theorem 2.7 we need to introduce some more notation from [12]. Throughout,
when we talk about modules or representations, we work over the complex numbers.

Definition 2.9 A B–module V admits a convenient split if and only if V splits as a
B–module into

V D U ˚U 0;

where U is a sum of trivial A–modules and � acts by negation on U 0.

Definition 2.10 A graph X with a G–action is called G–admissible if and only if it
is connected, has no vertices of valence 2, and any G–invariant forest in X contains
no edges. Here by “invariant” we mean setwise invariant.

Proposition 2.11 [12] Let n > 6. Suppose that X is a Bn–admissible graph of rank
smaller than

�
nC1

2

�
such that the following hold:

(1) the B–module H1.X IC/ admits a convenient split;

(2) any vector in H1.X IC/ which is fixed by AltnC1 is also fixed by � ;

(3) the action of Bn on X restricted to A is nontrivial.

Then X is the .nC1/–cage.

The above proposition does not (unfortunately) appear in this form in [12]; it does
however follow from the proof of [12, Proposition 6.7].

Proof of Theorem 2.7 Let �W SOut.Fn/! Out.Fm/ be a homomorphism. Using
Nielsen realisation for free groups (due to, independently, Culler [6], Khramtsov [10]
and Zimmermann [23]) we construct a finite connected graph X with fundamental
group Fm , on which Bn acts in a way realising the outer action �jBn

. We easily arrange
for X to be Bn–admissible by collapsing invariant forests. Note that V DH1.FmIC/

is naturally isomorphic to H1.X IC/ as a Bn–module.

Algebraic & Geometric Topology, Volume 18 (2018)
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We have a linear representation

SOut.Fn/
�
�! Out.Fm/! GL.V /:

The corresponding induced linear representation

Out.Fn/! GL.W /

has dimension dim W D 2 dim V D 2m. Since we are assuming that

m<
1

2

� n

2

�
;

the combination of [12, Lemma 3.8 and Proposition 3.11] tells us that W splits as an
Out.Fn/–module as

W DW0˚W1˚Wn�1˚Wn;

where the action of Out.Fn/ is trivial on W0 but not on Wn , and the action of the
subgroup SOut.Fn/ is trivial on both. Moreover, as SymnC1 modules, W1 is the sum
of standard and Wn�1 of signed standard representations. We also know that ı acts
on Wi as multiplication by .�1/i.

When n is even this immediately tells us that, as a B D Bn–module, we have

W D U ˚U 0;

where U D W0 ˚Wn is sum of trivial A D AltnC1–modules, and � D ı acts by
negation on

U 0 DW1˚Wn�1:

When n is odd we can still write

W D U ˚U 0

as a B–module, with A acting trivially on U and � acting by negation on U 0 . Here we
have W0˚Wn<U , but U also contains the trivial A–modules contained in W1˚Wn�1 .
The module U 0 is the sum of the standard A–modules. Thus W admits a convenient
split.

Now we claim that V also admits a convenient split as a B–module. To define the
induced Out.Fn/–module W we need to pick en element Out.Fn/X SOut.Fn/; we
have already defined such an element, namely �12 . The involution �12 commutes
with � and conjugates A to itself. Thus, as an A module, V could only consist of the
trivial and standard representations, since these are the only A–modules present in W .
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Moreover, any trivial A–module in V is still a trivial A–module in W , and so � acts
on it by negation. Therefore V also admits a convenient split as a B–module. Thus
we have verified assumption (1) of Proposition 2.11.

Observe that the SOut.Fn/–module V embeds into W . In W every AltnC1–fixed
vector lies in W0 ˚Wn , and here � acts as the identity. Thus assumption (2) of
Proposition 2.11 is satisfied in W and therefore also in V .

We have verified the assumptions (1) and (2) of Proposition 2.11; we also know that
the conclusion of Proposition 2.11 fails, since the .nC1/–cage has rank n, which
would force mD n, contradicting the hypothesis of the theorem. Hence we know that
assumption (3) of Proposition 2.11 fails, and so A acts trivially on X. But this implies
that A 6 ker� .

Note that A is a subgroup of the simple group AltnC1 , and so we have

AltnC1 6 ker�:

But then Proposition 2.4 tells us that � is trivial.

2.3 Automorphisms of RAAGs

Throughout the paper, � will be a simplicial graph, and A� will be the associated
RAAG, that is the group generated by the vertices of � with a relation of two vertices
commuting if and only if they are joined by an edge in �.

We will often look at subgraphs of �, and we always take them to be induced subgraphs.
Thus we will make no distinction between a subgraph of � and a subset of the vertex
set of �.

Given an induced subgraph †� � we define A† to be the subgroup of A� generated
by (the vertices of) †. Abstractly, A† is isomorphic to the RAAG associated to †
(since † is an induced subgraph).

Definition 2.12 (links, stars, and extended stars) Given a subgraph †�� we define

� lk.†/D fw 2 � j w is adjacent to v for all v 2†g;

� st.†/D†[ lk.†/;

� bst.†/D lk.†/[ lk.lk.†//.

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 2.13 (joins and cones) We say that two subgraphs †;�� � form a join
†��� � if and only if †� lk.�/ and �� lk.†/.

A subgraph † � � is a cone if and only if there exists a vertex v 2 † such that
†D v � .†X fvg/. In particular, a singleton is a cone.

Definition 2.14 (join decomposition) Given a graph † we say that

†D†1 � � � � �†k

is the join decomposition of † when each †i is nonempty and is not a join of two
nonempty subgraphs.

Each of the graphs †i is called a factor, and the join of all the factors which are
singletons is called the clique factor.

We will often focus on a specific finite-index subgroup Out0.A�/ of Out.A�/, called
the group of pure outer automorphisms of A� . To define it we need to discuss a
generating set of Out.A�/ due to Laurence [15] (it was earlier conjectured to be a
generating set by Servatius [18]).

Aut.A�/ is generated by the following classes of automorphisms:

(1) inversions;

(2) partial conjugations;

(3) transvections;

(4) graph symmetries.

Here, an inversion maps one generator of A� to its inverse, fixing all other generators.

A partial conjugation needs a vertex v ; it conjugates all generators in one connected
component of � X st.v/ by v and fixes all other generators.

A transvection requires vertices v , w with st.v/� lk.w/. For such v and w , a trans-
vection is the automorphism which maps w to wv and fixes all other generators.

A graph symmetry is an automorphism of A� which permutes the generators according
to a combinatorial automorphism of �.

The group Aut0.A�/ of pure automorphisms is defined to be the subgroup generated by
generators of the first three types, ie without graph symmetries. The group Out0.A�/
of pure outer automorphisms is the quotient of Aut0.A�/ by the inner automorphisms.

Let us quote the following result of Charney, Crisp and Vogtmann:

Algebraic & Geometric Topology, Volume 18 (2018)
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Proposition 2.15 [4, Corollary 3.3] There exists a finite subgroup

Q< Out.A�/

consisting solely of graph symmetries such that

Out.A�/D Out0.A�/Ì Q:

Corollary 2.16 Suppose that any action of G on a set of cardinality at most k is
trivial, and assume that � has k vertices. Then any homomorphism

�W G! Out.A�/

has image contained in Out0.A�/.

Proof Proposition 2.15 tells us that

Out.A�/D Out0.A�/Ì Q

for some group Q acting faithfully on �. Hence we can postcompose � with the
quotient map

Out0.A�/Ì Q!Q

and obtain an action of G on the set of vertices of �. By assumption this action has to
be trivial, and thus �.G/ lies in the kernel of this quotient map, which is Out0.A�/.

Definition 2.17 (G–invariant subgraphs) Given a homomorphism G ! Out.A�/
we say that a subgraph †� � is G -invariant if and only if the conjugacy class of A†

is preserved (setwise) by G .

Definition 2.18 Having an invariant subgraph †� � allows us to discuss two addi-
tional actions:

� Since, for any subgraph †, the normaliser of A† in A� is equal to A†C.A†/,
where C.A†/ is the centraliser of A† (see eg [5, Proposition 2.2]), any invariant
subgraph † gives us an induced (outer) action G! Out.A†/.

� When † is invariant, we also have the induced quotient action

G! Out.A�=hhA†ii/' Out.A�X†/:

Let us quote the following.

Algebraic & Geometric Topology, Volume 18 (2018)
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Lemma 2.19 [9, Lemmata 4.2, 4.3] For any homomorphism G!Out0.A�/we have:

(1) for every subgraph †� � which is not a cone, lk.†/ is G–invariant;

(2) connected components of � which are not singletons are G–invariant;

(3) bst.†/ is G–invariant for every subgraph †;

(4) if † and � are G–invariant, then so is †\�;

(5) if † is G–invariant, then so is st.†/.

Definition 2.20 (trivialised subgraphs) Let �W G! Out.A�/ be given. We say that
a subgraph †� � is trivialised if and only if † is G–invariant and the induced action
is trivial.

Lemma 2.21 Let �W G! Out.A�/ be a homomorphism. Suppose that † is a con-
nected component of � which is trivialised by G . Consider the graph

� 0 D .� X†/t fsg;

where s denotes a new vertex not present in �. There exists an action

 W G! Out.A� 0/

for which fsg is invariant and such that the quotient actions

G! Out.A�X†/

induced by � and  by removing, respectively, † and s , coincide.

Proof Consider an epimorphism f W A� !A� 0 defined on vertices of � by

f .v/D

�
v if v 62†;
s if v 2†:

The kernel of f is normally generated by elements vu�1 , where v;u 2 † are ver-
tices. Since the induced action of G on A† is trivialised, the action preserves each
element vu�1 up to conjugacy. But this in particular means that G preserves the
(conjugacy class of) the kernel of f , and hence � induces an action

G! Out.A� 0/

which we call  . It is now immediate that  is as required.
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2.4 Finite groups acting on RAAGs

Definition 2.22 Suppose that � has k vertices. Then the abelianisation of A� is
isomorphic to Zk , and we have the natural map

Out.A�/! Out.H1.A�//D GLk.Z/:

We will refer to the kernel of this map as the Torelli subgroup.

We will need the following consequence of independent (and more general) results of
Toinet and Wade.

Theorem 2.23 (Toinet [19]; Wade [21]) The Torelli group is torsion free.

Lemma 2.24 Let �W H ! Out.A�/ be a homomorphism with a finite domain. Sup-
pose that � D†1[ � � � [†m and each †i is trivialised by H . Then so is �.

Proof Consider the action

 W H ! Out.H1.A�//D GLk.Z/

obtained by abelianising A�, where k is the number of vertices of �. This Z–linear
representation  preserves the images of the subgroups A†i

and is trivial on each of
them. Thus the representation is trivial, and so �.H / lies in the Torelli group. But the
Torelli subgroup is torsion free. Hence � is trivial.

Lemma 2.25 Let �W G! Out.A�/ be a homomorphism. Let

� D .�1[ � � � [�n/t‚;

where n > 1, each �i is trivialised by G , and ‚ is a discrete graph with m vertices.
Suppose that for some l 2 fm;mC 1g any homomorphism

G! Out.Fl/

is trivial. Then � is trivialised, provided that G is the normal closure of a finite
subgroup H and that G contains a perfect subgroup P , which in turn contains H .

Proof We can quotient out all of the groups A�i
and obtain an induced quotient action

(�) G! Out.A‚/:

Algebraic & Geometric Topology, Volume 18 (2018)
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We claim that this map is trivial. To prove the claim we have to consider two cases:
the first case occurs when l D m in the hypothesis of our lemma, that is, every
homomorphism

G! Out.Fm/

is trivial. Since ‚ is a discrete graph with m vertices, we have Out.A‚/D Out.Fm/,
and so the homomorphism (�) is trivial.

The second case occurs when l D mC 1 in the hypothesis of our lemma. In this
situation we quotient A� by each subgroup A�i

for i > 1, but instead of quotienting
out A�1

, we use Lemma 2.21. This way we obtain an outer action on a free group with
mC1 generators, and such an action has to be trivial by assumption. Thus we can take
a further quotient and conclude again that the induced quotient action (�) on A‚ is
trivial. This proves the claim.

Now consider the action of G on the abelianisation of A� . We obtain a map

 W G! GLk.Z/;

where k is the number of vertices of �. Since each �i is trivialised, and the induced
quotient action on A‚ is trivial, we see that  .G/ lies in the abelian subgroup of
GLn.Z/ formed by block upper-triangular matrices with identity blocks on the diagonal,
and a single nontrivial block of fixed size above the diagonal. But P is perfect, and
so  .P / must lie in the Torelli subgroup of Out.A�/. This is however torsion free
by Theorem 2.23, and so H must in fact lie in the kernel of � . We conclude that the
action of G on � is also trivial, since G is the normal closure of H .

2.5 Some representation theory

Let us mention a result about representations of PSLn.Z=pZ/, for prime p , due to
Landazuri and Seitz:

Theorem 2.26 [14] Suppose that we have a nontrivial, irreducible projective repre-
sentation PSLn.Z=pZ/! PGL.V /, where n > 3, p is prime, and V is a vector space
over a field K of characteristic other than p . Then

dim V >
�

2 if .n;p/D .3; 2/;
pn�1� 1 otherwise.

We offer an extension of their theorem for algebraically closed fields of characteristic 0,
which we will need to discuss actions of Out.Fn/ and SOut.Fn/ on finite sets.
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Theorem 2.27 Let V be a K–linear representation of SLn.Z=qZ/ that is nontrivial
and irreducible, where n>3, q is a power of a prime p , and where K is an algebraically
closed field of characteristic 0. Then

dim V >
�

2 if .n;p/D .3; 2/;
pn�1� 1 otherwise.

Proof Let �W SLn.Z=qZ/! GL.V / denote our representation. Consider Z , the
subgroup of SLn.Z=qZ/ generated by diagonal matrices with all nonzero entries equal.
Note that Z is the centre of SLn.Z=qZ/. Hence V splits as an SLn.Z=qZ/–module
into intersections of eigenspaces of all elements of Z . Since V is irreducible, we
conclude that �.Z/ lies in the centre of GL.V /.

First suppose that q D p . Consider the composition

SLn.Z=qZ/! GL.V /! PGL.V /:

We have just showed that Z lies in the kernel of this composition, and so our repre-
sentation descends to a representation of PSLn.Z=pZ/Š SLn.Z=pZ/=Z . This new,
projective representation is still irreducible. It is also nontrivial since otherwise V

would have to be a 1–dimensional nontrivial SLn.Z=qZ/–representation. There are
no such representations since SLn.Z=qZ/ is perfect when p D q . Now Theorem 2.26
yields the result.

Suppose now that q D p˛ , where ˛ > 1. Let N E SLn.Z=qZ/ be the kernel of the
natural map SLn.Z=qZ/! SLn.Z=pZ/. As an N –module, by Maschke’s theorem,
V splits as

V D

kM
iD1

Ui ;

where each Ui ¤ f0g is a direct sum of irreducible N –modules, and irreducible
submodules W 6 Ui and W 0 6 Uj are isomorphic if and only if i D j .

Observe that we get an induced action of SLn.Z=qZ/=N Š SLn.Z=pZ/ on the set
fUi ;U2; : : : ;Ukg. As V is an irreducible SLn.Z=qZ/–module, the action is transitive.

Note that an action of a group on a finite set S induces a representation on the vector
space with basis S . If k > 1 then this representation is not the sum of trivial ones
because of the transitivity just described, and so

k >
�

2 if .n;p/D .3; 2/;
pn�1� 1 otherwise
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since our theorem holds for SLn.Z=pZ/. Since dim Ui > 1 for all i , we get dim V > k

and our result follows.

Let us henceforth assume that k D 1. We have

V D U1 D

lM
jD1

W;

where W is an irreducible N –module.

Note that we have an alternating group Altn < SLn.Z=qZ/ satisfying

Altn\N D f1g:

Let � 2 Altn be an element of order o.�/ equal to 2 or 3.

Consider the group M D hN; �i < SLn.Z=qZ/. Note that M Š N Ì Zo.�/ . The
module V splits as a direct sum of irreducible M –modules by Maschke’s theorem.
Let X be such an irreducible M –module.

Note that X, as an N –module, is a direct sum of, say, m copies of the N –module W

(with m > 1). Frobenius reciprocity (see eg [22, Corollary 4.1.17]) tells us that the
multiplicity m of W (as an N –module) in X is equal to the multiplicity of the M –
module X in the M –module induced from the N –module W . Hence the multiplicity
of W in the M –module induced from the N –module W is at least m2 . But it is
bounded above by o.�/, and o.�/6 3, which forces mD 1 since m > 1.

This shows in particular that X as an N –module is isomorphic to W . It also shows
that the M –module induced from W contains a submodule isomorphic to X. Since

M ŠN Ì Zo.�/;

an easy calculation shows that � acts on this copy of X as a scalar multiple of
the identity matrix, ie via a central matrix. This is true for every irreducible M –
submodule X of V , and hence � commutes with N when acting on V . Since the
above statement is true for each � 2 Altn of order 2 or 3, we conclude that � factors
through SLn.Z=qZ/=ŒN;Altn�. Note that we need to consider elements � of order 3

when we are dealing with the case nD 4.

Mennicke’s proof of the congruence subgroup property [16] tells us that N is normally
generated (as a subgroup of SLn.Z=qZ/) by the pth powers of the elementary matrices.
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Now SLn.Z=qZ/ itself is generated by elementary matrices; let us denote such a matrix
by Eij with the usual convention. Observe that for all � 2 Altn we have

�.E�1
˛ˇE

p
ij E˛ˇ/D �.�

�1E�1
˛ˇE

p
ij E˛ˇ�/D �.E

�1
�.˛/�.ˇ/E

p
ij E�.˛/�.ˇ//:

Choose � 2 An such that �.˛/ D i and �.ˇ/ D j . We conclude that �.N / lies
in the centre of �.SLn.Z=qZ//. In particular, �.N / is abelian, and hence (as K is
algebraically closed) dim W D 1 as W is an irreducible N –module. Since V is a
direct sum of N –modules isomorphic to W , the group N acts via matrices in the
centre of GL.V /. Hence N lies in the kernel of the composition

SLn.Z=qZ/
�
�! GL.V /! PGL.V /:

We have already shown that Z lies in this kernel, and so our representation descends
to a projective representation of PSLn.Z=pZ/. If we can show that this representation
is nontrivial, we can then apply Theorem 2.26 and our proof will be finished.

Suppose that this projective representation is trivial. This means that V is a 1–
dimensional, nontrivial SLn.Z=qZ/–representation. This is, however, impossible
since the abelianisation of SLn.Z=qZ/ is trivial when n > 3.

2.6 Actions of Out.Fn/ on finite sets

Theorem 2.28 Every action of Out.Fn/ (with n>6) on a set of cardinality m6
�
nC1

2

�
factors through Z=2Z.

Proof Suppose that we are given such an action. It gives us

Out.Fn/! Symm ,! GLm�1.C/;

where Symm denotes the symmetric group of rank m, and the second map is the
standard irreducible representation of Symm . Since

m� 1<
� nC1

2

�
;

the composition factors through the natural map Out.Fn/ ! GLn.Z/ induced by
abelianising Fn by [12, Theorem 3.13]. Thus we have

Out.Fn/! GLn.Z/! GLm�1.C/
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with finite image. The congruence subgroup property [16] tells us that the map
GLn.Z/! GLm�1.C/ factors through a congruence map

GLn.Z/! GLn.Z=p
˛Z/

for some positive integer ˛ and some prime p . Now

m� 1< 2n�1
� 1 6 pn�1

� 1;

and so the restricted map SLn.Z=p˛Z/!GLm�1.C/ must be trivial by Theorem 2.27.
Thus the given action factors through GLn.Z=p˛Z/=SLn.Z=p˛Z/, an abelian group.
Therefore SOut.Fn/ lies in the kernel of � since it is perfect (Proposition 2.2), and we
are finished.

Corollary 2.29 Every action of SOut.Fn/ (with n > 6) on a set of cardinality m 6
1
2

�
nC1

2

�
is trivial.

Proof Every action of an index-k subgroup of a group G on a set of cardinality m

can be induced to an action of G on a set of cardinality km.

3 The main result

Definition 3.1 Let Dn denote the discrete graph with n vertices.

Definition 3.2 Let �W G ! Out.A�/ be a homomorphism, and let n be fixed. We
define two properties of the action (with respect to n):

C (clique) For every G–invariant clique † in � with at least n vertices there
exists a G–invariant subgraph ‚ of � such that ‚\† is a proper nonempty
subgraph of †.

D (discrete) For every G–invariant subgraph � of � isomorphic to Dn , there
exists a G–invariant subgraph ‚ of � such that ‚\� is a proper nonempty
subgraph of �.

Lemma 3.3 Let �W G ! Out.A�/ be an action satisfying C and D. Let � be a
G–invariant subgraph of �. Then both the induced action and the induced quotient
action satisfy C and D.
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Proof Starting with a subgraph † or � in either � or � X�, we observe that the
subgraph is a subgraph of �, and so using the relevant property we obtain a G–invariant
subgraph ‚. We now only need to observe that ‚\� is G–invariant by Lemma 2.19(4),
and the image of ‚ in � X� is invariant under the induced quotient action

G! Out.A�X�/:

Theorem 3.4 Let us fix positive integers n and m > n. Suppose that a group G

satisfies all of the following:

(1) G is the normal closure of a finite subgroup H .

(2) All homomorphisms
G! Out.Fk/

are trivial when k ¤ n and k <m.

(3) All homomorphisms
G! GLk.Z/

are trivial when k < n.

(4) Any action of G on a set of cardinality smaller than m is trivial.

Let
�W G! Out.A�/

be a homomorphism, where � has fewer than m vertices. Then � is trivial, provided
that the action satisfies properties C and D (with respect to n).

Proof Formally, the proof is an induction on the number of vertices of � and splits
into two cases.

Before we proceed, let us observe that assumption (4) allows us to apply Corollary 2.16,
and hence to use Lemma 2.19 whenever we need to.

Case 1 Suppose that � does not admit proper nonempty G–invariant subgraphs.

Note that this is in particular the case when � is a single vertex, which is the base case
of our induction.

We claim that � is either discrete, or a clique. To prove the claim, let us suppose that
� is not discrete.

Let v be a vertex of � with a nonempty link. Lemma 2.19(3) tells us that bst.v/ is
G–invariant, and thus it must be equal to �. Hence � is a join, and therefore admits a
join decomposition.
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If each factor of the decomposition is a singleton, then � is a clique as claimed.
Otherwise, the decomposition contains a factor † which is not a singleton and not a
join, and so in particular not a cone. Thus Lemma 2.19(1) informs us that lk.†/ is
G–invariant. This is a contradiction, since this link is a proper nonempty subgraph. We
have thus shown the claim.

Suppose that � is a clique with say, k vertices. Property C immediately tells us that
k < n, and so we are dealing with a homomorphism

�W G! Out.A�/D GLk.Z/;

where k < n. Such a homomorphism is trivial by assumption (3).

Suppose that � is a discrete graph with, say, k vertices. Property D immediately tells
us that k ¤ n, and so we are dealing with a homomorphism

�W G! Out.A�/D Out.Fk/;

where k ¤ n and k <m. Such a homomorphism is trivial by assumption (2).

Case 2 Suppose that � admits a proper nonempty G–invariant subgraph †.

Lemma 3.3 guarantees that the induced action

G! Out.A†/

satisfies the assumptions of our theorem, and thus, using the inductive hypothesis, we
conclude that this induced action is trivial.

We argue in an identical manner for the induced quotient action

G! Out.A�X†/

and conclude that it is also trivial.

These two observations imply that in particular the restriction of these two actions
to the finite group H from assumption (1) is trivial. Now Lemma 2.24 tells us that
H lies in the kernel of � , and hence so does G as it is a normal closure of H by
assumption (1).

Lemma 3.5 Suppose that � does not contain n distinct vertices with identical stars.
Then property C holds for any action G! Out0.A�/.
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Proof Let † be a G–invariant clique in � with at least n vertices. Since we know
that no n vertices of � have identical stars, we need to have distinct vertices of †, say
v and w , with st.v/ ¤ st.w/. Without loss of generality we may assume that there
exists u 2 st.v/X st.w/. In particular this implies that u and w are not adjacent.

Consider ƒD lk.fu; wg/: it is invariant by Lemma 2.19(1) since fu; wg is not a cone,
it intersects † nontrivially since the intersection contains v , and the intersection is
also proper since w 62ƒ. Thus property C is satisfied.

Proposition 3.6 In Theorem 3.4, we can replace the assumption on the action satis-
fying D by the assumption that � is not a join of Dn and another (possibly empty)
graph, provided that G satisfies additionally

(5) G contains a perfect subgroup P , which in turn contains H .

Proof We are going to proceed by induction on the number of vertices of � as before.
Assuming the inductive hypothesis, we will either show the conclusion of the theorem
directly, or we will show that in fact property D holds.

Note that the base case of the induction († being a singleton) always satisfies D.

Let � be as in property D, and suppose that the property fails for this subgraph.

Case 1 Suppose that there exists a vertex u of � with a nonempty link.

Let v be a vertex of � X� joined to some vertex of �. Consider bst.v/; this subgraph
is G–invariant by Lemma 2.19(3). If bst.v/ intersects � and does not contain it, then
� does satisfy property D. We may thus assume that �� bst.v/.

We would like to apply induction to bst.v/, and conclude that this subgraph, and
hence �, are trivialised. This would force � to satisfy property D.

There are two cases in which we cannot apply the inductive hypothesis to bst.v/: this
subgraph might be equal to �, or it might be a join of a subgraph isomorphic to Dn

and another subgraph.

In the former case, � is a join of two nonempty graphs. If there exists a factor ‚ of the
join decomposition of � which is not a singleton and which does not contain �, then let
us look at lk.‚/. This is a proper subgraph of �, it is G–invariant by Lemma 2.19(1),
and it is not a join of Dn and another graph since � is not. Thus we may apply the
inductive hypothesis to lk.‚/ and conclude that it is trivialised. But �� lk.‚/, and
so � is also trivialised and thus satisfies D.

Algebraic & Geometric Topology, Volume 18 (2018)



Outer actions of Out.Fn/ on small right-angled Artin groups 1061

If � has no such factor ‚ in its join decomposition, then � D st.†/, where † is
a nonempty clique. The clique † is a proper subgraph since it does not contain �.
It is G–invariant by Lemma 2.19(1), and so the inductive hypothesis tells us that it is
trivialised.

The induced quotient action G!Out.A�X†/ is also trivialised by induction as �X†
cannot be a join of Dn and another graph as before. We now apply Lemma 2.24 for
the subgroup H and conclude that H , and hence its normal closure G , act trivially.

Now we need to look at the situation in which bst.v/ is a proper subgraph of �, but it
is a join of Dn and another graph.

Let us look at ƒ, the intersection of bst.v/ with the link of all factors of the join decom-
position of bst.v/ isomorphic to Dn . The subgraph ƒ is G–invariant by Lemma 2.19(1)
and (4). It is a proper subgraph of �, and so the inductive hypothesis tells us that ƒ is
trivialised. If ƒ contains � then we are done.

The graph ƒ does not contain � if and only if � is a factor of the join decomposition
of bst.v/. Observe that we can actually use another vertex of � X� in place of v ,
provided that this other vertex is joined by an edge to some vertex of �. Thus we
may assume that � is a factor of the join decomposition of every bst.v/ where v is
as described. This is however only possible when st.�/ is a connected component
of �. There must be at least one more component since � is not a join of � and
another graph.

Note that the component st.�/ is invariant by Lemma 2.19(5).

Suppose that the clique factor † of lk.�/ is nontrivial. As before, † is trivialised.
Observing that � X† is disconnected, and if it is discrete then it is has more than n

vertices, allows us to apply the inductive hypothesis to the quotient action induced
by †, and so, arguing as before, we see that � is trivialised.

Now suppose that lk.�/ has a trivial clique component. The join decomposition of
the component st.�/ consists of at least two factors, each of which is invariant by
Lemma 2.19(1). Let ‚ be such a factor. Removing ‚ leaves us with a disconnected
graph smaller than �. Thus, we may apply the inductive hypothesis, provided that
� X‚ is not Dn . This might however occur: in this situation st.�/X‚ fulfils the role
of the graph ‚ from the definition of D, and so we can use the inductive hypothesis
nevertheless.
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We now apply Lemma 2.24 to the subgroup H and the induced quotient actions
determined by removing two distinct factors of st.�/, and we conclude that H , and
hence its normal closure G , act trivially on A� .

Case 2 Suppose that lk.u/D∅ for every vertex u of �.

We write � D �1 t � � � t�k t‚, where the subgraphs �i are nondiscrete connected
components of �, and ‚ is discrete. By assumption ��‚.

If k > 2, then removing any component �i leaves us with a smaller graph, to which
we can apply the inductive hypothesis. Then we use Lemma 2.25.

If k D 0, then ‚ is not isomorphic to Dn by assumption. Then we know that the
action � is trivial by assumption (2).

If k D 1, then we need to look more closely at �1 . If �1 does not have factors
isomorphic to Dn in its join decomposition, then by induction we know that �1 is
trivialised. Now we use Lemma 2.25.

Suppose that �1 contains a subgraph � isomorphic to Dn in its join decomposition.
If �1 has a nontrivial clique factor, then this factor is invariant, induction tells us that
it is trivialised, and the induced quotient action is also trivial. Thus the entire action
of H is trivial thanks to Lemma 2.24, and thus the action of G is trivial as G is the
normal closure of H .

If the clique factor is trivial, then taking links of different factors of the join decompo-
sition of �1 allows us to repeat the argument we just used and conclude that H , and
thus G , act trivially.

Theorem 3.7 Let n > 6. Suppose that � is a simplicial graph with fewer than 1
2

�
n
2

�
vertices. Let �W SOut.Fn/!Out.A�/ be a homomorphism. Then � is trivial, provided
that there are no n vertices in � with identical stars and that � is not a join of the
discrete graph with n vertices and another (possibly empty) graph.

Proof We start by showing that G D SOut.Fn/ satisfies the assumptions (1)–(4) of
Theorem 3.4 and (5) of Proposition 3.6 with mD 1

2

�
n
2

�
.

(1) Let H D Altn . The group G is the normal closure of H by Proposition 2.4.

(2) All homomorphisms
G! Out.Fk/

are trivial when k ¤ n and k <m by Theorem 2.7.
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(3) All homomorphisms
G! GLk.Z/

are trivial when k < n by Corollary 2.5.

(4) Any action of G on a set of cardinality smaller than m is trivial by Corollary 2.29.

(5) G is perfect by Proposition 2.2.

To verify property C we use Lemma 3.5, and using Proposition 3.6 we replace prop-
erty D. Now we apply Theorem 3.4.

4 From larger to smaller RAAGs

In this section we will look at homomorphisms Out.A�/! Out.A� 0/, where � 0 has
fewer vertices than �.

Theorem 4.1 There are no injective homomorphisms Out.A�/!Out.A� 0/ when � 0

has fewer vertices than �.

Proof For a group G we define its Z2 –rank to be the largest n such that .Z2/
n

embeds into G .

We claim that the Z2–rank of Out.A�/ is equal to j�j, the number of vertices of �.

Firstly, note that for every vertex of � we have the corresponding inversion in Out.A�/,
and these inversions commute; hence the Z2–rank of Out.A�/ is at least j�j.

For the upper bound, observe that the Z2–rank of GLn.R/ is equal to n, since we can
simultaneously diagonalise commuting involutions in GLn.R/. Thus, the Z2–rank of
GLn.Z/ is equal to n as well (since it is easy to produce a subgroup of this rank).

Finally, note that the kernel of the natural map Out.A�/! GLn.Z/ with nD j�j is
torsion free by Theorem 2.23, and so the Z2–rank of GLn.Z/ is bounded below by
the Z2–rank of Out.A�/.

Remark 4.2 The proof of the above theorem works for many subgroups of Out.A�/
as well; specifically it applies to Out0.A�/, the group of untwisted outer automorphisms
U.A�/, and the intersection U0.A�/D U.A�/\Out0.A�/.

It also works when the domain of the homomorphisms is Aut.A�/, or more generally
any group with Z2–rank larger than the number of vertices of � 0 .
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