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Taut branched surfaces from veering triangulations

MICHAEL LANDRY

Let M be a closed hyperbolic 3–manifold with a fibered face � of the unit ball of
the Thurston norm on H2.M/ . If M satisfies a certain condition related to Agol’s
veering triangulations, we construct a taut branched surface in M spanning � . This
partially answers a 1986 question of Oertel, and extends an earlier partial answer due
to Mosher.
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1 Introduction

Let M be a closed, irreducible, atoroidal 3–manifold. In [16], Oertel shows that each
closed face � of the Thurston norm ball of M possesses a finite collection of taut
oriented branched surfaces which together carry representatives of all integral classes
in cone.�/. We say that these branched surfaces span � . One question he asked and
left open was whether this collection could have size 1. That is, when is it possible
to find a single taut oriented branched surface which spans � ? Our main result is a
partial answer to this question when M is hyperbolic and � is fibered.

Main Theorem (Theorem 3.9) If every boundary torus of VM witnesses at most two
ladderpole vertex classes of H2.M/, then M has a taut homology branched surface
spanning � .

The definition of VM, and that of ladderpole vertex class, which involves Agol’s veering
triangulation, can be found in Sections 2 and 3.1, respectively.

To quickly summarize the previous study of Oertel’s question: Sterba-Boatwright [19]
shows by a counterexample that the answer is “not always”. However, Mosher [15]
proves that in the case when M is hyperbolic and � is fibered, there exists such a
branched surface if the vertices of � have positive intersection with the singular orbits
of the Fried suspension flow ' corresponding to � .

The main theorem, Theorem 3.9, strengthens Mosher’s result because ladderpole classes
in particular have intersection 0 with some singular orbits of the Fried flow ' . While
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1090 Michael Landry

the condition in the statement of the main theorem may seem mysterious, we prove in
Theorem 3.11 that it holds, in particular, when H2.M/ has rank at most 3. This gives
us the following corollary.

Corollary 3.12 If b2.M/� 3, then M has a taut homology branched surface span-
ning � .

The technique we employ to improve Mosher’s result uses Agol’s veering triangulation
of a pseudo-Anosov mapping torus M 0 which is missing the singular orbits of Fried’s
flow ' . One nice property of this veering triangulation is that its 2–skeleton has the
structure of a taut oriented branched surface which spans a fibered face � 0 of M 0.

We work in the cusped manifold M 0 and make use of the veering triangulation before
moving back to M by Dehn filling. By understanding how the veering triangulation
sits in M, we can construct a face-spanning taut oriented branched surface in M as
long as our condition regarding ladderpole vertex classes is met.

Veering triangulations were introduced in Agol [1], where they were used to provide an
alternative proof of the theorem in Farb, Leininger and Margalit [4], stating that the map-
ping tori of small-dilatation pseudo-Anosovs come from Dehn filling on finitely many
cusped hyperbolic manifolds. Hodgson, Rubinstein, Segerman and Tillmann [12] show
that veering triangulations admit positive angle structures, and Futer and Guéritaud [7]
give a lower bound on the smallest angle in such a triangulation in terms of combinatorial
data coming from the veering triangulation. In light of these results, one could hope
that veering triangulations might be realized geometrically. However, in Hodgson, Issa
and Segerman [11] there is an explicit example of a nongeometric veering triangulation.
Guéritaud [10] proved that the veering triangulation controls the combinatorics of the
Cannon–Thurston map associated to the fully punctured manifold M 0. Most recently,
Minsky and Taylor found connections between subsurface projections and the veering
triangulation in [14].
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2 Background

2.1 Notation

Throughout this document, certain notation will remain fixed. All homology groups
are assumed to have coefficients in R unless otherwise stated. We consider a closed
pseudo-Anosov mapping torus M, and a closed face � of the unit ball of the Thurston
norm x on H2.M/. There is a pseudo-Anosov flow ' on M which Fried showed in [5]
is associated to � in a natural way. We denote the union of the singular orbits of ' by c
and define VM WDM nU, where U is an open tubular neighborhood of c . The boundary
@ VM of VM is a union of tori. There is a natural embedding P W H2.M/!H2. VM; @ VM/,
which comes from the exact sequence 0DH2.U /!H2.M/!H2.M;U /!� � � and
the excision isomorphism H2. VM; @ VM/ŠH2.M;U /. This is induced at the level of
chains by sending a chain S to S nU. We use the notation P.˛/D V̨ . More exposition
of some of these ideas will be provided in the following subsections.

2.2 Thurston norm

We begin by reviewing the definition of, and some salient facts about, the Thurston
norm. For a more detailed treatment, see Thurston’s original paper [20] or Candel and
Conlon’s textbook [3].

Let Z be an orientable three-manifold. The Thurston norm is a seminorm on H2.Z;@Z/
defined as follows. If S is a connected surface embedded in Z , define ��.S/ WD
maxf0;��.S/g, where � denotes Euler characteristic. If S has multiple connected
components, then ��.S/ WD

P
i ��.Si /, where the sum is over the components Si

of S .

If ˛ 2 H2.Z; @Z/ is an integral class, we can always find an embedded surface
representing ˛ . We define

x.˛/D min
ŒS�D˛

��.S/;

where the minimum is taken over embedded representatives of ˛ , and call x.˛/ the
Thurston norm of ˛ .
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The Thurston norm is homogeneous and satisfies the triangle inequality for integral
classes. It can be extended to all rational classes in H2.Z; @Z/ by homogeneity, where-
after it extends uniquely to a seminorm on all of H2.Z; @Z/. If Z is incompressible,
atoroidal, anannular and boundary-incompressible (ie has no essential surfaces of
nonnegative Euler characteristic), then x is a bona fide norm on H2.Z; @Z/, and not
just a seminorm. In this paper we will deal only with pseudo-Anosov mapping tori, so
we will assume x is a norm from this point forward.

From the fact that x takes integer values on the integral lattice, one can show that
the unit sphere of x is a finite-sided convex polyhedron. Moreover, this polyhedron
encodes information about how Z fibers over S1 . If F is a fiber of some fiber bundle
F !Z! S1 , then ŒF � lies in the interior of the positive cone over a top-dimensional
face. If ˛ is any integral class in the interior of the same cone, then ˛ is represented by
a fiber of some fiber bundle over the circle. The closed top-dimensional face associated
to this cone is called a fibered face.

In the setting of this paper, a closed hyperbolic manifold M with fibered face � , David
Fried proved in [5] that we can associate to � a flow ' with very nice properties.
Namely, any primitive integral class ˛ 2 int cone.�/, where int denotes interior, is
represented by a cross-section S to ' , and the first return map of S is pseudo-Anosov.
Hence we can think of ' as the simultaneous suspension flow of all monodromies
of fibers corresponding to � , and the singular orbits of ' as the suspensions of the
singular points of those monodromies.

2.3 Taut branched surfaces

A branched surface B is a smooth codimension-1 object in a 3–manifold, analogous
to a train track in a surface, which organizes the data of various embedded surfaces.
Locally, a branched surface looks like a stack of disks D1; : : : ;Dn such that Di is
glued to DiC1 for i < n along the closure of one component of the complement of
a smooth arc through Di . The union of the images of smooth curves is called the
branching locus. The smooth structure of B is such that the inclusion of each Di is
smooth [17]. The sectors of B are the connected components of the complement of
the branching locus; these are analogous to the edges of a train track.

A regular neighborhood N.B/ of a branched surface B can be foliated by line segments
transverse to B . This foliation is called the vertical foliation of N.B/. If it is possible
to consistently orient the leaves of the vertical foliation, then B is called an oriented
branched surface.
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We say that B carries S if S is embedded in N.B/ transverse to the vertical foliation;
this is analogous to a train track carrying a curve. In the same way that a train track
inherits nonnegative integer edge weights from a carried curve, a surface S carried
by B assigns a weight to each sector of B . If these weights are all positive, we say B
fully carries S .

Conversely, a collection of nonnegative integral weights on sectors of B which satisfy
the linear equations determined by the branching determines an isotopy class of surface
carried by B . In fact, any real weights satisfying the branching equations naturally
determine a homology class; we say that the homology classes corresponding to
nonnegative weights are carried by B .

If we allow negative weights, there is a natural vector space whose elements are
collections of real weights satisfying the branching equations. In this vector space, the
integral points in the cone of nonnegative weights correspond to surfaces carried by B .

Branched surfaces are interesting in part because of the surfaces they carry, so it
is natural to distinguish types of branched surfaces which carry surfaces with nice
properties. If a branched surface carries only surfaces realizing the minimal �� in their
homology class, we say it is almost taut. Following Oertel, we say B is taut if it carries
only incompressible surfaces which attain the minimal �� in their homology class. We
say B is a homology branched surface if B is oriented and for each point p 2B , there
exists a closed oriented transversal through p , ie an oriented loop through p whose
intersection with N.B/ consists of leaves of the vertical foliation with the correct
orientation. Since any surface carried by a homology branched surface has nonzero
algebraic intersection number with a closed curve, homology branched surfaces carry
only homologically nontrivial surfaces.

The following lemma, which we will use later, is probably known to many. We record
a proof here for convenience.

Lemma 2.1 Let Z be a compact 3–manifold, and B � Z a homology branched
surface. Then the cone of classes carried by B is closed.

Proof Consider the natural linear map L from the vector space V of weights satisfying
the branching equations on B to H2.Z; @Z/. Let A � V be the closed cone of
nonnegative weights on B ; our goal is to show that L.A/ is closed.
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Choose a norm k � k on V , and let A1 D fv 2 A j kvk D 1g. Then A1 is compact, and
hence L.A1/ is compact. Moreover, 0 … L.A1/ because B is a homology branched
surface.

Note that L.A/D cone.L.A1//. Since the cone over a compact set not containing 0
is closed, we are done.

Note that an almost taut branched surface is not necessarily taut. For example, if B
carries the boundary of a solid torus, B is not taut. However, since this torus realizes
the Thurston norm of the homology class 0, carrying the torus does not preclude B
from being almost taut.

If an almost taut homology branched surface B lies in a pseudo-Anosov mapping torus,
it is taut. In general, we have the following.

Lemma 2.2 Let N be a manifold such that the Thurston norm x is a norm (ie not
just a seminorm) on H2.N; @N /, and let B �N be an almost taut branched surface. If
B is also a homology branched surface, then B is taut.

Proof Suppose S is a compressible surface carried by B , and let S 0 be the surface
obtained by compressing S along a compression disk. Since B is almost taut, ��.S/D
��.S

0/, and since �.S 0/D�.S/C2, S must be a torus, annulus, disk or sphere. Since
B is a homology branched surface, S is homologically nontrivial, a contradiction.

In the course of proving Theorem 4 in [16], Oertel proves the following useful criterion
for almost tautness. Since he doesn’t state the result explicitly, we record a proof here
for the reader’s convenience.

Lemma 2.3 [16] Let N be as above. Suppose B �M is an oriented branched sur-
face which fully carries a minimal-�� representative † of a single class in H2.N; @N /.
If B does not carry any spheres or disks, then B is almost taut.

Proof Suppose for a contradiction that B carries a surface S which is homologous
to S 0 with ��.S/ > ��.S 0/. Since † is fully carried, there exists n 2N such that n†
(ie n parallel copies of †) is carried with greater weights than S on each sector of B .
We have

n†D .n†�S/CS;
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where n†�S denotes the surface arising from subtracting the weights corresponding
to S from the weights corresponding to n†, and C denotes oriented sum in a regular
neighborhood of B . Let F WD n†�S . Now

��.n†/D ��.F /C��.S/ (because B does not carry disks or spheres)

> ��.F /C��.S
0/

� x.ŒF �/C x.ŒS 0�/

� x.Œn†�/:

The last inequality is the triangle inequality for x . This is a contradiction since n†
realizes the minimal �� in Œn†�.

2.4 Branched surfaces and faces of the Thurston norm ball

If two homologically nontrivial surfaces S and T are carried by a taut oriented branched
surface B , we can perform an oriented cut-and-paste along the branching locus of B
to form a surface S C T representing ŒS�C ŒT � and carried by B . Since B is taut,
SCT is norm-minimizing. Also, ��.SCT /D ��.S/C��.T /, as none of S , T or
S C T has any sphere or disk components. This is because they are all carried by a
taut branched surface. Thus,

x.ŒS�C ŒT �/D x.ŒS CT �/D ��.S CT /D ��.S/C��.T /D x.ŒS�/C x.ŒT �/:

The faces of the Thurston norm unit ball are projectivizations of the maximal cones on
which x is linear, so we conclude that ŒS� and ŒT � lie in cone.�/ for some face � of
the Thurston norm ball. Oertel observed this and asked the following question.

Question 2.4 [16] Let M be a simple (compact, irreducible, atoroidal) 3–manifold.
For each face of the unit ball of the Thurston norm on H2.M; @M/, is it possible to
find a taut oriented branched surface which carries a norm-minimizing representative
of every projective homology class in cone.�/?

In [19], a closed 3–manifold is constructed for which the answer to Question 2.4 is
no. More specifically, Sterba-Boatwright produces a face of this manifold’s Thurston
norm ball with the following property: any branched surface carrying norm-minimizing
representatives of all classes in that face also carries a compressible torus, so it cannot
be taut. Hence the answer to Oertel’s question is not an unqualified yes. However,
in [15], Question 2.4 is answered in the affirmative for a fibered face of a closed
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pseudo-Anosov mapping torus in the case that each integral class in the cone over the
face has positive intersection number with the singular orbits of the suspension flow
for that face.

In this paper we extend Mosher’s result by using the relatively new technology of
veering triangulations, which we describe now.

2.5 Veering triangulations

A taut ideal tetrahedron is an ideal tetrahedron with the following extra data: each edge
is labeled 0 or � so that the sum of the labels of edges incident to any ideal vertex
is � , each face is coöriented so that two faces point out and two faces point in, and
face coörientations change only along edges labeled 0. Note that the word “taut” is
used here in a different sense than when it modifies “branched surface”. A taut ideal
triangulation of a 3–manifold is an ideal triangulation by taut tetrahedra such that
face coörientations agree, and for each edge e , the sum of e ’s labels over all incident
tetrahedra is 2� . The 2–skeleton of such a triangulation 4 can be pinched along each
edge to give a branched surface B4 in the manifold, as seen in Figure 3. In this way
we think of the edge labels of a taut tetrahedron as angles. Taut ideal triangulations
were introduced in [13].

The condition that makes a triangulation veering is simple to draw but more complicated
to define.

Consider a taut ideal triangulation of an oriented 3–manifold L. Up to combinatorial
equivalence there is only one taut ideal tetrahedron. However, if we distinguish a
0–edge, there are 2 types embedded in L up to oriented equivalence, as you can see
in Figure 1. The taut ideal triangulation is veering if, for each edge e ,

(i) if we circle around e and read off edge angles, no two angles of � are circularly
adjacent, and

(ii) each tetrahedron for which e is a 0–edge is of the same type when e is distin-
guished.

This situation is shown in Figure 2. If L is not orientable, a taut ideal triangulation
of L is veering if its lift to the orientation cover of L is veering.

There is an alternative definition of veering, due to Guéritaud [10], which says that a
taut triangulation is veering if its 1–skeleton possesses a certain type of two-coloring.
That definition is equivalent to the one given above, which we use throughout the paper.
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Figure 1: The two types of taut tetrahedron with distinguished (bold) 0–edge.
In this drawing the coörientation is pointing out of the paper, the vertical and
horizontal edges are 0–edges, and the diagonal edges are � –edges.

Recall that c denotes the union of singular orbits of the Fried suspension flow in our
pseudo-Anosov mapping torus M. In [1], Ian Agol shows how to construct a canonical
veering triangulation of M n c . He builds this triangulation using a sequence of ideal
triangulations of the punctured surface which are dual to a periodic train track splitting
sequence. The triangulations are related by Whitehead moves which determine the
incidences of taut tetrahedra. Taut ideal triangulations obtained from Whitehead moves
in this way, a construction due to Lackenby [13], are called layered triangulations.

Agol has proven the following theorem, which shows that his veering triangulation
of M n c is canonically associated to a fibered face of M. Guéritaud provided an
alternative proof, which is exposited in [14], based on his alternative construction of
the canonical veering triangulation in [10].

Figure 2: The bold edge satisfies the veering condition.
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@ VM

B�

Figure 3

Theorem 2.5 (Agol) The ideal layered veering triangulation � of M nc coming from
a fibration associated to int cone.�/ is constant over int cone.�/. The 2–skeleton of this
triangulation is a branched surface B� such that if S is a fiber with ŒS� 2 int cone.�/,
some multiple of S n c is fully carried by B� .

We remark that B� is taut. Indeed, B� is transverse to ' , the flow associated to � , and
a generic orbit of ' is dense in M ; this allows us to find a closed transversal through
every point of B� , so B� is a homology branched surface. Since M n c is irreducible
and boundary-irreducible, this implies B� carries no disks or spheres. Indeed, any
carried disk or sphere would be homologically nontrivial because B� is a homology
branched surface, but this is ruled out by the irreducibility and boundary-irreducibility
of M n c .

The fact that B� fully carries a fiber (in fact, many fibers) of M n c means that B� is
almost taut by Lemma 2.3 since fibers are norm-minimizing; see [20]. By Lemma 2.2,
B� is taut.

Since we want to use the veering triangulation � to extract information about the Dehn
filling M of M n c , it will be useful to consider the restriction of � to VM DM nU
(recall that U is a small tubular neighborhood of the collection c of singular orbits
of ' ). That way we will have room to work in the solid tori of U. Homologically this
changes nothing, and we will use the notation V� and B

V� to denote � nU and B� nU,
respectively. A taut ideal triangulation of VM will mean a taut ideal triangulation of
M n c restricted to VM.
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Figure 4: On the left and right, respectively, are upward and downward flat
triangles. The coörientation of each edge points upward.

2.6 On the boundary of VM

Let 4 be a taut ideal triangulation of VM. Then we may assume its 2–skeleton B4
intersects @ VM transversely in a coöriented train track as in Figure 3. This train track
divides each component of @ VM into bigons, which we will think of as triangles with
one vertex whose interior angle is � (corresponding to a smooth path through a switch)
and two cuspidal vertices whose angles are 0.

A triangle as above, with two vertices of interior angle 0 and one with angle � , is
called flat. The edge between the two 0–vertices is called a 0–0 edge and the other
two are called 0–� edges. We say the triangle is upward or downward if the train
track’s coörientation points out of or into a flat triangle at its � –vertex, respectively.
See Figure 4.

We draw the train track with the convention that we view @ VM from inside VM and the
coörientation points upward. Having made this convention, we define the triangles
to the left and to the right of a switch p to be the triangles with interior angle 0 at p
which lie to the left and right of p .

Lemma 2.6 (veering condition on boundary) Let 4 be a taut ideal triangulation
of VM. Then 4 is veering if and only if the train track on @ VM has the property that, for
every switch p , the triangles to the left of p are all upward or all downward, and the
triangles to the right of p are all the opposite.

Figure 5: The edge of the taut ideal triangulation corresponding to the central
switch satisfies the veering condition.
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Proof Each switch p in the train track corresponds to an edge e in the triangulation,
and it is clear that, with respect to a single component of @ VM, the intersections with
tetrahedra to the right of the switch are flat triangles of the same type if and only if the
corresponding tetrahedra are of the same type when e is distinguished. The triangles
to the left of p will be of the opposite type if and only if their corresponding tetrahedra
are of the same type as those to the right of p .

An example of a switch satisfying the condition of Lemma 2.6 is shown in Figure 5.
In [7], Futer and Guéritaud observed the following structure in the intersection of a
veering triangulation with @ VM.

Lemma 2.7 Fix a component Ti of @ VM. Let u; d � Ti be the closed regions consist-
ing of upward and downward triangles, respectively. Then u and d are collections of
essential annuli. If t is a triangle, then all three vertices of t lie in @uD @d .

For example, if t is upward then each edge of t either lies entirely in @u D @d or
traverses u with its endpoints on the boundary.

Proof The reader can check that a violation of the lemma contradicts Lemma 2.6.

Figure 6: An example of a train track coming from a veering triangulation,
endowed with its inherited orientation, lifted to the plane. This particular
example comes from the veering triangulation associated to a minimal dilation
4–strand braid, discussed in [1]. This train track is associated to the cusp
coming from the suspension of the monodromy’s lone singular point.
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We will call the annulus connected components of u and d upward and downward
bands, respectively. Part of the content of Lemma 2.7 is that each band is only one
edge across. Guéritaud calls the edges forming the boundaries of bands ladderpole
edges, and the edges which traverse the bands rungs. For an example of one of these
triangulations lifted to R2 , see Figure 6.

3 Moving forward with Oertel’s question

3.1 More on the structure of @ V�

Define 
 WD @ V� , ie the intersection of the veering triangulation with @ VM. Fix a
component Ti of @ VM, and set 
i D 
 \Ti . We say the slope si corresponding to the
union of all ladderpole edges in 
i is the ladderpole slope for Ti . It will be convenient
to think of 
i as oriented in addition to being coöriented, meaning that each edge of 
i
has a preferred direction, and the preferred directions are compatible at switches. Our
choice of orientation is the one induced by the boundary of any surface carried by B

V� .
In particular, the orientation on all rungs of 
i is from right to left (as indicated in
Figure 6). We will say 
i positively carries an oriented curve a if the orientation of a
agrees with the orientations of the edges in 
i . Define an upward (resp. downward)
ladderpole to be the right (resp. left) boundary component of an upward band in Ti ,
endowed with the orientation it inherits from 
i . In our pictures, the upward ladderpoles
are oriented upwards.

Lemma 3.1 Let si and Ti be as above. Then

(1) 
i positively carries curves sCi and s�i with slope si such that ŒsCi �C Œs
�
i �D 0

in H1.Ti /, and si is the unique such slope on Ti ;

(2) any curve carried by 
i with slope si traverses only ladderpole edges; and

(3) 
i positively carries a representative of every integral class in a halfspace of
H1.Ti / bounded by R � ŒsCi �.

Proof The union of all edges in a positive ladderpole forms an oriented curve sCi
which is positively carried by 
i , and similarly a downward ladderpole gives an oriented
positively carried curve s�i . It is clear that ŒsCi � and Œs�i � sum to 0 in homology.

Let ˛ be a curve positively carried by 
i which traverses a rung of 
i , and recall that all
rungs of 
i are oriented from right to left. As we trace along ˛ , we must traverse a rung
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of every band in Ti from right to left, as otherwise ˛ could not close up. Therefore,
˛ intersects sCi , and after a perturbation we can assume that the intersections are all
positive, so i.ŒsCi �; Œ˛�/ > 0. Hence, any curve carried positively or negatively by

i which traverses a rung has nonzero intersection number with sCi and cannot have
slope si . This proves claim (2).

If ˇ is a curve carried positively by 
i with slope ¤ si , then it traverses rungs of 
i
and has positive intersection with sCi as above. This means 
i cannot positively carry
a representative of �Œˇ�, completing the proof of claim (1).

Convex combinations of classes with positively carried representatives can be repre-
sented by oriented cut-and-paste sums carried by 
i . Also, if 
i positively carries
a curve representing ka for a 2 H1.Ti / and k 2 Z>1 , then 
i positively carries a
curve representing a . Indeed, if � is such a curve, we can perform oriented surgeries
to eliminate self-intersections that do not change the homology class of � , yielding
k parallel curves carried by 
i which represent a . In other words, to show that a
homology class is represented by a positively carried curve, it is enough to show some
multiple of the homology class is represented by a positively carried curve.

Therefore to prove claim (3), it suffices by (1) and (2) to show that 
i positively carries
a curve traversing a rung of 
i . It is easy to see that there is such a curve: you can
draw one by starting at a switch and tracing along rungs of 
i until you reach the
ladderpole containing your path’s initial point. Then the path can be closed up along
the ladderpole.

Lemma 3.1 concerned all curves carried by 
 . Now we consider the boundaries of
surfaces carried by B

V� . If an oriented surface is carried by B
V� , its boundary traces

out an oriented collection of curves on @ VM that is positively carried by 
 . Our
understanding of 
 allows us to deduce information about the surfaces carried by B

V� ,
and thus surfaces representing classes in � .

For example, we observe that every surface carried by B
V� has a nonladderpole boundary

component.

Lemma 3.2 There is no surface carried by B
V� whose boundary components are all

ladderpoles.

Proof Suppose S is a surface carried by B
V� . An edge of 
 traversed by @S corre-

sponds to a truncated ideal triangle of V� on which S has positive weight. Let t be
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such a triangle. Choose a truncated ideal tetrahedron Y of which t is a face. The
truncated vertices of t correspond to 3 edges of the truncated vertices of Y , which are
flat triangles lying in @ VM. Exactly one of these edges, which we will call e , is a 0–0
edge with respect to a truncated vertex of Y .

Each edge in 
 is incident to two flat triangles. Our knowledge of 
 gives us that a
ladderpole edge is 0–� with respect to both of its incident triangles, while a rung is
0–0 with respect to one incident triangle and 0–� with respect to the other. It follows
that e is a rung, so @S cannot consist of all ladderpole edges.

Recall from Section 2.1 the injective puncturing map P W H2.M/! H2. VM; @ VM/,
induced at the level of chains by sending S to S nU. As a reminder, we will write
P.˛/DW V̨ when convenient.

We can classify the possible boundaries of all surfaces carried by B
V� coming from M,

ie those representing classes that lie in the image of P.

Lemma 3.3 Let ˛ 2 cone.�/ be an integral class, and consider a surface Y � VM
carried by B

V� and representing V̨ . Then, for each component Ti of @ VM, @Y \Ti is
positively carried by 
i , and is either

(1) empty,

(2) a collection of ladderpoles which is nullhomologous in Ti , or

(3) a collection of meridians.

Further, if ˛ 2 int cone.�/, then @Y \Ti is a nonempty collection of meridians.

Proof Because the coörientation of Y agrees with that of B
V� , the orientation of

@Y \Ti agrees with that of 
i . Hence @Y \Ti is positively carried.

Let Q be the map H2.M/!H2.cl.U /; @ VM/ defined similarly to the puncturing map
P by excising M n cl.U /. Then we have the commutative diagram

(3.4)
H2.M/ H2. VM; @ VM/

H2.cl.U /; @ VM/ H1.@ VM/

P

Q @

�@

(A quick remark: the minus sign on the bottom boundary map of (3.4) reflects the fact
that @W H2.cl.U /; @ VM/!H1.@ VM/ is induced by the boundary map on 2–chains in-
side U, while the vertical boundary map is induced by the map on 2–chains outside U.)
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Fix a component Ui of U with boundary Ti and meridional disk Di and set miD�@Di .
Since the images of @ ıP and �@ ıQ are equal, and H2.cl.Ui /; Ti / D hŒDi �i, the
boundary of Y on Ti is homologous to kmi , where k 2Z. Moreover, @Y is embedded
and carried by 
 . In particular this means the curves of @Y \Ti are parallel.

If @Y \ Ti is nonempty and nullhomologous in Ti , then it must consist of an even
number of ladderpoles, by Lemma 3.1.

Otherwise k ¤ 0, in which case @Y \ Ti must be a collection of k meridians. If
˛ 2 int cone.�/, then by Fried’s results in [6], ˛ has positive intersection with each
singular orbit of ' . Thus k > 0 in the above analysis, completing the proof.

A vertex class of � is a primitive integral homology class v 2H2.M/ projecting to a
vertex of � .

Let Ti be a torus boundary component of VM . An embedded surface Y � VM carried
by B

V� is ladderpole at Ti if Y \Ti is a collection of ladderpoles. The homology class
˛ 2H2.M/ is ladderpole at Ti if V̨ has an embedded representative carried by B

V�

which is ladderpole at Ti .

Note that by Lemma 3.3, ladderpole classes must lie in @ cone.�/.

3.2 Our approach to Question 2.4

In [15], Mosher gives an example of how to construct a branched surface spanning
any fibered face F of a 3–manifold N. He simply takes embedded minimal-��
representatives Si of each vertex class vi for the face and perturbs them to intersect
transversely. Then there is an isotopy in a neighborhood of the intersection locus,
shown in Figure 7, which gives the union of the surfaces the structure of a branched
surface BF carrying each vertex class. We will refer to this operation on transverse
coöriented surfaces as branched sum. Since the vertex classes span F , the surface BF
spans F . The problem with this method, as Mosher notes, is that there is no guarantee
that all surfaces carried by the BF are incompressible.

However, BF is frequently almost taut. Indeed, consider the surface
P
i Si , ie the

oriented cut-and-paste sum of the Si . We have

��

�X
i

Si

�
D

X
i

��.Si /D
X
i

x.vi /D x

�X
i

vi

�
;
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Figure 7: The branched sum operation. A generic intersection, shown on
the left, can be smoothed in a unique way, shown on the right, such that it
preserves coörientations. Here the coörientations are such that they all point
into the octant facing the reader.

where the last equality follows from the fact that x is linear on cone.F /. ThereforeP
i Si realizes the minimal �� in the homology class

P
i vi . Moreover,

P
i Si is

fully carried by BF , so almost-tautness follows from Lemma 2.3 as long as BF carries
no disks or spheres. Slightly more generally, we have proved the following lemma.

Lemma 3.5 Let F be a closed face of the Thurston norm ball in H2.N; @N /. If
fSig is a finite collection of norm-minimizing surfaces embedded in M such that
fŒSi �g � cone.F /, then the branched sum of the Si is almost taut provided it carries no
disks or spheres.

If BF is indeed almost taut and carries no disks or spheres, it follows that the only
way BF can fail to be an answer to Oertel’s Question 2.4 is if it carries a compressible
torus.

The method we use to address Oertel’s Question 2.4 is similar to Mosher’s example
above. The difference is that rather than take any embedded representatives of vertex
classes, we take representatives of their punctured images in H2. VM; @ VM/ lying in a
regular neighborhood of � . This is possible because, by Theorem 2.5, B

V� carries a
representative of V̨ for every integral class in int cone.�/. By Lemma 2.1, the same can
be said for representatives of classes V̌ for ˇ 2 @ cone.�/. With an extra hypothesis,
we show how to extend the surfaces over the Dehn filling so that their branched sum
B� carries no tori. Rather than show directly that no tori are carried, our method of
proof is to demonstrate that B� is a homology branched surface, which is enough to
imply tautness by Lemmas 2.3 and 2.2.
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3.3 A lemma concerning x and Dehn filling

We are particularly interested in the restriction of the puncturing map P W H2.M/!

H2. VM; @ VM/ to cone.�/, and it will be useful to have the following lemma concerning
the relationship of P to the norm x . The subject of how the Thurston norm behaves
under Dehn filling has been studied in [8; 9; 18], and more recently in [2].

Recall that c denotes the union of the singular orbits of ' , which is the flow associated
to � .

Lemma 3.6 Let ˛ 2 cone.�/ be an integral homology class. Then

x.˛/D x. V̨ /� i.˛; c/;

where i. ; / is the algebraic intersection number.

Before proving Lemma 3.6 we state some results from [15] that require some definitions.

We say a flow '0 is a dynamic blowup of ' if it is obtained by the following procedure:
We replace a singular orbit � by the suspension of a homeomorphism f of a finite
tree T . This homeomorphism’s first return map on each edge of T should fix the
endpoints and act without fixed points on the interior. Thus each edge of T can be
given an orientation according to the direction points are moved by its first return map,
and around each vertex these orientations should alternate between outward and inward.
The suspended tree forms a complex of annuli K which is invariant under '0. The new
flow '0 is semiconjugate to ' by a map which collapses K to � , and is one-to-one in
the complement of K . The vector fields generating ' and '0 differ only inside a small
neighborhood of � .

We say that a surface S embedded in M is almost transverse to ' if there is a
dynamic blowup '# of ' such that S is transverse to '#, and the sum of tangent spaces
TS ˚T '# is positively oriented in M. Here TS and T '# denote the tangent spaces
to the surface S and flow '#, respectively.

Lemma 3.7 [15] Let ˛ 2H2.M/ be an integral class. Then ˛ can be represented
by a surface almost transverse to ' if and only if ˛ 2 cone � (recall that ' depends
on � ). More specifically, there exists a way to dynamically blow up ' to a flow '#

along only singular orbits � of ' with i.˛; �/ D 0 such that ˛ is represented by a
surface S transverse to '#.
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Singular orbits � with i.˛; �/D 0 are called ˛–null and, if i.˛; �/ > 0, we will say
that � is ˛–positive. It will also be useful to know:

Lemma 3.8 [15] Let S be a surface almost transverse to a pseudo-Anosov flow
on M. Then S is norm-minimizing.

Proof of Lemma 3.6 First we will show that x.˛/� x. V̨ /� i.˛; c/.

Let Y be a representative of V̨ carried by B
V� , and let Ti D @Ui be one of the torus

boundary components of VM. By Lemma 3.3, @Y \Ti is either a collection of meridians
or a collection of ladderpoles that represents 0 in H2.Ti /. Such a nullhomologous
collection can be realized as the boundary of a family of closed annuli whose interiors
are embedded in Ui .

Observe that x.˛/ � x. V̨ /� n.Y; @ VM/, where n is the number of meridians of @ VM
in @Y . Indeed, we can glue a disk to each meridian boundary component, and cap
off all other boundary components with annuli. Because B

V� is taut and thus Y is
norm-minimizing, we obtain a representative S of ˛ with ��.S/D x. V̨ /�n.Y; @ VM/.

Now we claim that n.Y; @ VM/D i.˛; c/.

First, note that by the proof of Lemma 3.3, the images of the boundary maps

@jimage(P)W H2. VM; @ VM/!H1.@ VM/ and @W H2.cl.U /; @ VM/!H1.@ VM/

are contained in the subgroup
L
i hmi i of H1.@ VM/. Here mi is the homology class of a

meridional curve on Ti , oriented so that it is positively carried by 
i . Let �i W hmi i!Z

be the map kmi 7! k . Now, Y is carried by B
V� , so n.Y; @ VM/D

P
i �i .@. V̨ //, and it

thus makes sense to write n. V̨ ; @ VM/.

We can package this information into an updated version of the diagram (3.4):

H2.M/ H2. VM; @ VM/

H2.cl.U /; @ VM/
L
i hmi i

Z

P

Q @

�@

i.�;c/
P
�i

where the dotted arrows are defined on the integral lattice of their domains. Since
i.˛; c/D i.Q.˛/; c/, the claim that n. V̨ ; @ VM/D i.˛; c/ reduces to the claim that the
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above diagram is commutative, which is true since the square and triangle commute.
Therefore x.˛/� x. V̨ /� i.˛; c/.

Next we will show that x. V̨ /� x.˛/C i.˛; c/. The idea of this direction is to take a
norm-minimizing surface transverse to c representing ˛ and delete its intersections
with U. This will give a representative of V̨ with �� D x.˛/C i.˛; c/ as long as the
orientations of all intersections with c agree. Hence it suffices to show that there exists
such a norm-minimizing surface representing ˛ , and this is where we use Lemmas 3.7
and 3.8.

Let S be a representative of ˛ which is almost transverse to ' with blown-up flow '#,
let � be an ˛–null orbit of ' , let K� be the '# –invariant annulus complex blowing
up � , and let U #

�
be a solid torus containing K� . Since S is transverse to '# and

TS ˚T '# is positively oriented, we have in particular that each intersection point of
S with any ˛–positive singular orbit of '# is positively oriented. This is close to the
property we want, but we need it to hold for ' and not just '#. Thus we will show that
S intersects the solid torus U #

�
in a collection of disjoint annuli, and can be isotoped

outside U #
�

. Then the positivity of S with respect to the ˛–positive singular orbits of
' will be preserved by the semiconjugacy collapsing K� to � . Arguing in this way for
each ˛–null orbit, we will obtain a norm-minimizing surface representing ˛ that has
only positively oriented intersection points with c .

Observe that ŒS� maps to 0 under the map H2.M/! H2.cl.U #
�
/; @U #

�
/ because �

is ˛–null. After applying the boundary map H2.cl.U #
�
/; @U #

�
/! H1.@U

#
�
/ we see

that S \ @U #
�

represents 0 in H1.@U #
�
/. It follows that S \ @U #

�
, after perturbation

for transversality, is a possibly empty nullhomologous embedded collection of curves.
If it is empty, there is nothing for us to prove.

If S \ @U #
�

contains a curve a which is inessential in @U #
�

, then a bounds a disk
in @U #

�
. If a is essential in S , this contradicts the incompressibility of S . If a is

inessential in S , then we can perform an isotopy of S which removes a from @U #
�

.
Therefore we can assume S \ @U #

�
is a collection of curves essential in @U #

�
. Since

the collection is embedded and nullhomologous, there must be 2n curves of the same
slope, half having one orientation and half the other.

If this slope is the meridional slope for U #
�

, the norm-minimality of S implies that
S \ cl.U #

�
/ is a collection of 2n disks. However, since the orientations of these disks

must match up with those of S \ @U #
�

, n of the disks must intersect flow lines of '#

negatively, contradicting the definition of almost-transversality.
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The last possibility is that these curves do not have meridional slope, ie do not bound
disks in U #

�
. The norm-minimality of S then implies that S \cl.U #

�
/ is a collection of

annuli. As we noted before, this means S˛ can be isotoped outside of U #
�

, completing
the proof.

3.4 Main theorem

Theorem 3.9 If every boundary torus of VM has at most two ladderpole vertex classes,
then M has a taut homology branched surface spanning � .

Proof Let v1; : : : ; vn be the vertex classes of � . Take embedded representatives
VS1; : : : ; VSn of Vv1; : : : ; Vvn which lie in a regular neighborhood of B

V� , transverse to
its vertical foliation. After performing the Dehn filling at each boundary torus, these
surfaces with boundary are embedded in M. By capping off their boundaries as follows,
we can extend them over the Dehn filling so that they represent v1; : : : ; vn .

For each boundary torus Ti which VSj meets in a collection of meridians, we glue an
embedded family of disks Di;j � cl.Ui / to VSj \Ti .

If VSj is ladderpole at Ti for some i , then VSj \ Ti is an even-sized collection of
coöriented ladderpoles which sums to 0 in the first homology of Ti . Thus we may
glue in a disjoint collection of annuli embedded in Ui whose coörientation matches
that of VSj \Ti . Call this collection Ai;j .

By assumption, at most one other vertex class is ladderpole at Ti ; if VSk is also
ladderpole at Ti , we take another such collection of annuli, Ai;k . We isotope the
two families rel Ti so that they intersect essentially. These families of annuli, Ai;j
and Ai;k , have ladderpole boundaries by the construction, and in particular they cut the
solid torus Ui into smaller solid subtori. By possibly choosing a new Ai;j and Ai;k ,
we assume that they cut Ui into a minimal number of solid subtori among all possible
choices.

The boundaries of these solid subtori are partitioned into subannuli which are subsets
of either Ai;j , Ai;k or @Ui ; the subannuli coming from Ai;j and Ai;k are coöriented.

We now describe configurations of annuli which we call sources and sinks, and we
will then explain why the Ai;j and Ai;k do not form these configurations. A source
is a solid subtorus of Ui having a boundary composed of subannuli from Ai;j and
Ai;k whose coörientations point out of the subtorus. Similarly, a sink has coöriented
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A

Figure 8: Cross-sectional views of (from left to right) a source, surgered
source, sink and surgered sink. The solid lines are portions of the intersections
of a meridional disk of Ui with an embedded family of annuli, and the
dashed lines correspond to a separate family of annuli. By examining the
coörientations in the leftmost picture, we see that none of the regions incident
to A correspond to sources, so that all of the incident regions correspond
to subtori distinct from the source corresponding to A . Thus the surgery
merges distinct subtori, reducing the total number of subtori; the argument
is symmetric for sinks. In the general case, sources and sinks may have any
even number of boundary subannuli.

boundary subannuli all pointing inward. Note that because Ai;j is embedded, no two
subannuli from Ai;j are adjacent on the boundary of a source or sink; the same holds
for Ai;k . Given a source or sink, we can perform an oriented cut-and-paste surgery
on Ai;j and Ai;k as shown in Figure 8. As explained in the caption of Figure 8, this
surgery reduces the number of solid subtori of Ui . Because we chose Ai;j and Ai;k
to minimize the number of subtori, we conclude there are no sources or sinks in Ui .

Now define S` D VS` [
�S

i Ai;`
�
[
�S

i Di;`
�
. This gives us a collection of closed

surfaces S1; : : : ; Sn embedded in M. We see from the definition of the puncturing
map P that P.ŒS`�/D Vv` , and since P is injective, it follows that ŒS`�D v` .

Each disk of
S
i Di;` intersects c positively because VS` is carried by V� . Therefore,

#
�S

i Di;`
�
D i.v`; c/. Each annulus of

S
i Ai;` contributes 0 to ��.S`/. Therefore,

we have

(3.10) ��.S`/D ��. VS`/� i.v`; c/D x. Vv`/� i.v`; c/D x.v`/;

where the second equality follows from the fact that VS` is carried by V� and is thus
norm-minimizing, and the third comes from Lemma 3.6.

Let B� be the branched sum of S1; : : : ; Sn . As the branched sum of norm-minimizing
surfaces, it will be almost taut by Lemma 3.5 provided it carries no spheres (we need not
consider disks since B� has no boundary). It spans � because it carries a representative
of each vertex.
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Let us briefly review the structure of B� . Inside VM, B� is a branched surface lying
in a regular neighborhood of B

V� . Its boundary is a train track lying in a regular
neighborhood of 
 . Inside each Ui , B� is a branched sum of meridional disks with
at most two embedded collections of annuli whose boundaries have ladderpole slope
on Ti . We will use the notations Ai;` and Di;` to denote the images of the Ai;` and
Di;` under the branched sum isotopy.

We now show that B� is a homology branched surface, which will show that B� carries
no spheres, whence it is almost taut by Lemma 2.3. Since an almost taut homology
branched surface in a pseudo-Anosov mapping torus is taut by Lemma 2.2, this will
complete the proof.

If p is any point in B� outside of U, there is a closed positive transversal through p
because B

V� is a homology branched surface. Now suppose p 2 B� lies inside Ui
for some i . We construct a path f from p to the interior of VM which is a positive
transversal to B� .

Begin the path f at p by traveling from B� into U n B� in the direction of the
coörientation of B� . The endpoint of f lies in a component C of cl.Ui / n

�S
`Di;`

�
that is homeomorphic to a solid cylinder fx 2 R2 j kxk � 1g � .0; 1/. The annuliS
`Ai;` cut C into smaller subcylinders whose sides are either coöriented portions ofS
`Ai;` or subsets of @Ui .

Because there are no sinks in Ui , this subcylinder is either adjacent to @Ui or possesses
an outwardly coöriented wall. If the subcylinder is adjacent to @Ui , extend f to a
point q outside of Ui . Otherwise, extend f through an outwardly coöriented wall
to enter a new subcylinder of C , and iterate this procedure. Each component of�S

`A
1
i;`

�
\C is a coöriented rectangle separating C into two components. Each time

f passes through one of these rectangles, f is blocked from passing through a second
time because of the rectangle’s coörientation. It follows that f never returns to the
same subcylinder of C . Thus the procedure eventually terminates, and f may be
extended to q … Ui .

A symmetric construction using the fact that there are no sources in Ui shows that
there is a negative transversal h�1 from p to a point r exterior to Ui . Using the fact
that B� is transverse to the pseudo-Anosov suspension flow in M n c , we can find a
positive transversal g from q to r . The concatenation fgh is then a closed positive
transversal through p .
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We remark that Theorem 3.9 extends Theorem 1.5 in [15], which states that if every
vertex of the fibered face � has positive intersection with each singular orbit of ' (and
in particular is nonladderpole), then M has a taut oriented branched surface.

Theorem 3.11 If b2.M/� 3, then each boundary torus of VM witnesses at most two
ladderpole vertex classes.

Proof The oriented sum of two surfaces which are ladderpole at a component Ti of T
is again ladderpole at Ti . Therefore the same is true for homology classes, and in
particular the sum of two ladderpole classes lies in the boundary of � by Lemma 3.3. We
conclude that all vertex classes which are ladderpole at the same boundary component
of VM lie in the same facet of � . The dimension of � is at most 2 by assumption, so
this facet has dimension at most 1. Since a 1–cell has two boundary points, at most
two vertex classes can be ladderpole at the same Ti .

Corollary 3.12 If b2.M/� 3, then M has a taut homology branched surface span-
ning � .

The following corollary was known to Mosher in [15], but we include it here because
it follows very easily from our results.

Corollary 3.13 If ' has only one singular orbit, then M has a taut homology branched
surface spanning � .

Proof In this case there are no ladderpole classes in H2.M/. Indeed, if ˛ 2H2.M/,
then a representative of V̨ carried by B

V� cannot have all ladderpole boundary compo-
nents by Lemma 3.2. Since VM has only one boundary component, such a representative
of V̨ cannot have any ladderpole boundary components. The result follows from
Theorem 3.9.
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