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A rank inequality for the annular Khovanov homology of
2–periodic links

MELISSA ZHANG

For a 2–periodic link zL in the thickened annulus and its quotient link L , we exhibit
a spectral sequence with

E1
Š AKh. zL/˝F F Œ�; ��1�� E1 Š AKh.L/˝F F Œ�; ��1�:

This spectral sequence splits along quantum and sl2 weight-space gradings, proving
a rank inequality rkAKhj ;k.L/ � rkAKh2j�k;k. zL/ for every pair of quantum and
sl2 weight-space gradings .j ; k/ . We also present a few decategorified consequences
and discuss partial results toward a similar statement for the Khovanov homology of
2–periodic links, as well as some frameworks for obstructing 2–periodicity in links.

57M25, 57M27; 57M60

1 Introduction

The world of topological objects is rich with spaces exhibiting interesting symmetries.
These symmetries manifest themselves in the algebraic invariants we use to study the
objects and can be manipulated to provide insights into the object itself. As fundamental,
ubiquitous objects in low-dimensional topology, knots and links are some of the most
natural objects to have algebraic invariants associated to them.

The rise of homology-type invariants categorifying polynomial link invariants have led
to the study of equivariant homology theories by Chbili [7], Seidel and Smith [23],
Hendricks [11; 12], Politarczyk [18; 19], Borodzik and Politarczyk [6], and many
others, building and improving upon earlier work of Murasugi [16; 17], Yokota [24],
and Przytycki [20] relating the polynomial invariants of periodic links with those of
their quotient links.

A link zL in S3 is p–periodic if there is a p–periodic automorphism � of S3 with
fixed set an unknot B restricting to a diffeomorphism on zL; the quotient link L is the
quotient of zL under the action of � . Since zL can naturally be viewed in a thickened
annulus A� I by deleting the fixed set B from S3 , Asaeda, Przytycki, and Sikora’s
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annular Khovanov homology [2] seems particularly suitable for probing periodic links.
We refer to a link in the thickened annulus as an annular link.

In this article, we construct a Tate-like bicomplex (Section 4) to show rank inequalities
for the annular Khovanov homology of a 2–periodic annular link zL and that of its
quotient link L. For any annular link L, let AKhj ;k.L/ denote the annular Khovanov
homology of L at quantum grading level j and sl2 weight-space grading level k .

Theorem 1 Let zL be a 2–periodic link with quotient link L. For each pair of integers
.j ; k/, there is a spectral sequence with

E1
Š AKh2j�k;k. zL/˝F2

F2Œ�; �
�1�� E1 Š AKhj ;k.L/˝F2

F2Œ�; �
�1�:

A rank inequality immediately follows:

Corollary 2 For zL and L as above,

rkF2
AKhj ;k.L/� rkF2

AKh2j�k;k. zL/:

This result generalizes [8], where Cornish proves a rank inequality between the next-to-
top sl2 weight-space gradings in the annular Khovanov homologies of a 2–periodic link
and that of its quotient by employing the Lipshitz–Treumann spectral sequence [14] with
Auroux, Grigsby, and Wehrli’s identification [3] of the next-to-top winding grading with
the Hochschild homology of a Khovanov–Seidel bimodule. He remarks that by using
Beliakova, Putyra and Wehrli’s generalization [5] of Auroux, Grigsby, and Wehrli’s
work, one should be able to prove similar rank inequalities in other sl2 weight-space
gradings, but that this requires checking the Lipshitz–Treumann algebraic conditions
for larger dg algebras.

While our result does not require the links to be braid closures, annular Khovanov
homology is often used to study braids, as the set of conjugacy classes of a braid
group Bn embed into the set of isotopy classes of annular links. In particular, Bn can
be viewed as the mapping class group of a disk with n punctures, and Corollary 2
suggests that the rank of annular Khovanov homology could provide a measure of
complexity in the mapping class group.

Following the notation in Roberts [21] (page 418, under Definition 2.2; also see
Section 7 in this article), the decategorification of Theorem 1 can be written as follows:

Algebraic & Geometric Topology, Volume 18 (2018)



A rank inequality for the annular Khovanov homology of 2–periodic links 1149

Corollary 3 For all j and k ,

hq
k; zL
.�1; q/; q2j�k

i � hqk;L.�1; q/; qj
i mod 2;

where hf;gi denotes the coefficient of g in f .

However, the spectral sequence hints that the grading j1 WD j � k is actually more
pertinent to annular links (see Grigsby, Licata and Wehrli [10; 9] for more evidence).
With this in mind, one can write down the decategorification as a statement similar to
Murasugi’s theorem on the Jones polynomial of periodic links [17]:

Corollary 4 V zL.1; q; q
�1/� ŒVL.1; q; q

�1/�2 mod 2.

The Jones polynomial of a periodic link zL is related to the decategorification of the
annular Khovanov homology of its quotient link L in the following way:

Corollary 5 V zL.1; q; 1/� VL.1; q
2; q�1/ mod 2.

Moreover, we conjecture that a similar spectral sequence also relates the Khovanov
homology [13] of zL with the annular Khovanov homology of L (see Section 8):

Conjecture 6 Let zL be a 2–periodic link in S3 with quotient link L. There is a
spectral sequence with

E1
Š Kh. zL/˝F2

F2Œ�; �
�1�� E1 Š AKh.L/˝F2

F2Œ�; �
�1�:

This implies the cascade of rank inequalities

rkF2
AKh. zL/� rkF2

Kh. zL/� rkF2
AKh.L/� rkF2

Kh.L/;

where the first and third inequalities are due to Roberts’ spectral sequence [21] coming
from the sl2 weight-space filtration on CKh.D. zL// and CKh.D.L//.

Note that this conjecture predicts much more than a rank inequality for Khovanov
homology. In many contexts, spectral sequences from the homology of an associated
graded object like AKh to the homology of the filtered complex tends to dramatically
decrease rank, so it is surprising to find so much evidence for the middle inequality
rkF2

Kh. zL/ � rkF2
AKh.L/. In fact, Corollary 5 would be the decategorification of

Conjecture 6. We can show that the conjecture and consequent rank inequalities hold
for the following family of annular links:
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Theorem 7 If the annular braid closure LD y̌ has a diagram with at most 1 positive
crossing, then the spectral sequence in Conjecture 6 exists, and the cascade of rank
inequalities holds.

Furthermore, it follows from Theorem 7 that the cascade of rank inequalities also holds
for positive braid closures (and more):

Corollary 8 If the annular braid closure LD y̌ has a diagram with at most 1 negative
crossing, then the cascade of rank inequalities holds.

We conclude by discussing frameworks for obstructing 2–periodicity in links which
arise from our results.

Acknowledgements I am grateful to John Baldwin for suggesting the problem and
guiding me; to Eli Grigsby for her constant support, advice, and guidance; to Spencer
Leslie and David Treumann for enlightening conversations about equivariant homology
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about the main result; and to Adam Saltz, Eli, and John for reading and commenting
on drafts. I would also like to thank the referees for insightful suggestions and helpful
corrections. This work was partially supported by NSF grants DMS-1151671 and
DMS-1510444.

2 Algebraic preliminaries

We begin by discussing the necessary homological algebra. The main theorem follows
from computing two related spectral sequences arising from a particular bicomplex
(constructed in Section 4). Spectral sequences from bicomplexes are a special case of
spectral sequences from filtered complexes, which we discuss first.

The spectral sequences will be computed explicitly by making use of a well-known
cancellation lemma (Lemma 10). Due to a special property of our complexes (see
Definition 9), the algebraic computations can be described visually using dots and
arrows; we describe this at the end of Section 2.1.

In Section 2.5, we give a brief overview of the ideas in Borel equivariant cohomology
which motivate the constructions in this article.

Algebraic & Geometric Topology, Volume 18 (2018)
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2.1 Filtered chain complexes

Let C� be a chain complex of F2 vector spaces, with differential @.

A decreasing Z–filtration of C� is a sequence of subcomplexes indexed by decreasing
integers:

� � � � FnC� � Fn�1C� � Fn�2C� � � � � � FmC� � � � � � C�:

For the chains in C� the filtration F�C� provides a filtration grading: x 2 C� has
filtration grading p if and only if x 2 FpC� and x 62 FpC1C� . The associated graded
vector space G�C� is given by

GpC� D FpC�=FpC1C�:

The existence of the filtration on C� implies that every component of @ originating
from x 2 C� maps to targets y where the filtration grading of y is at least that of x ;
we say that @ is nonnegative with respect to the filtration grading.

Let H� denote the homology of the chain complex C� . The filtration F�C� induces a
filtration F�H� on H� : the class Œx� 2H� is in FpH� if and only if it is represented by
some chain x 2 Œx� where x 2 FpC� . The induced filtration gives rise to the associated
graded vector space for homology, G�H� .

Definition 9 In our work, the underlying vector space of C� is always freely generated
by a finite collection of distinguished generators which come equipped with some
Z–grading gr, and the differential is nonnegative with respect to gr. In this case,
gr induces a Z–filtration and takes on the role of the filtration grading. We call the
distinguished generators a filtered graded basis. A component @s of the differential
shifts the filtration grading by s 2 Z or is of degree s with respect to the filtration
grading if @s.x/ is a linear combination of basis elements in grading gr.x/C s for all
filtered graded basis elements x .

Similarly, a bigraded underlying vector space induces a Z˚Z–filtration if the differ-
ential is monotone with respect to each grading.

Let .C; @/ be such a complex. We can visualize .C; @/ by using dots to represent the
distinguished generators and arrows to represent components of the differential, as
shown in Figure 1. We write @.x;y/ for the coefficient of y in @.x/, so that @.x/ is the
sum of @.x;y/ �y as y runs over all the distinguished generators of C . If @.x;y/D 1,
we draw an arrow from x to y .

Algebraic & Geometric Topology, Volume 18 (2018)
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x y z

wvu

Figure 1

.C; d/ .C0; d 0/

Figure 2: The cancellation process. On the left is the original complex. In
the middle, the dotted arrow represents the arrow about to be canceled. On
the right is the resulting complex, with fewer generators and arrows, but with
the same homology as the original complex.

2.2 Spectral sequences from filtered complexes

Spectral sequences are used to gradually approximate the true homology of a complex
by gradually simplifying the complex, whilst preserving the homology. We execute
this by repeatedly applying the cancellation operation (Figure 2), which relies on the
following well-known “cancellation lemma”.

Lemma 10 [4, Lemma 4.1] Let .C; @/ be a complex of F2 vector spaces freely gen-
erated by elements xi . Let @.xi ;xj / be the coefficient of xj in @.xi/. If @.xk ;xl/D 1,
define a new complex .C0; @0/ with generators fxi j i ¤ k; lg and differential

@0.xi/D @.xi/C @.xi ;xl/@.xk/:

Then .C0; @0/ is chain homotopy equivalent to .C; @/.

Given a decreasing Z–filtered complex F�C� with filtered differential @, we can build
a spectral sequence to compute the homology by starting with the associated graded
complex and sequentially canceling components of the differential of larger and larger
filtration degree.
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.C; @/

E0 E1

E2 E3 DE1 ŠH�.C/

Figure 3: The spectral sequence which computes the homology of a filtered complex

The pages of our spectral sequence are denoted by .Er ; dr /, where Er
p is the vector

space at filtration grading p surviving to page r , Er D
L

p Er
p , and dr is the

induced differential on Er induced by cancellation on the previous pages. For example,
E0

p D GpC=Gp�1C , and d0 is the sum of all the components of @ which preserve
the filtration grading gr. The next page .E1; d1/ is obtained by canceling all the
components of d0 , and is chain homotopy equivalent to .E0; d0/; the underlying
vector space C0 injects into C and therefore has an induced filtration.

Iterating this process, we obtain pages .Er ; dr / for all r � 0. In some situations,
the spectral sequence eventually collapses, ie there is some N such that dr D 0 for
all r � N , and all pages are identical from then on. In such cases, the limit term
E1 WDEN DENC1 D � � � is identified with the homology of the original complex
.C; @/. Figure 3 shows the cancellation process (the spectral sequence) used to compute
the homology of a filtered complex.
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:::
:::
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Figure 4

2.3 Bicomplexes

A bicomplex C�;� (Figure 4) is a bigraded F2 vector space with differentials

@h
p;qW Cp;q! CpC1;q; @v

p;qW Cp;q! Cp;qC1

such that @hı@vC@vı@hD0. Here @h is the sum of all @h
p;q , the horizontal differentials,

and @v is the sum of all @v
p;q , the vertical differentials.

The corresponding total complex Tot.C/� is given by

Tot.C/n D
M

pCqDn

Cp;q

with differential @Tot D @hC @v .

The total complex has two standard filtrations vF (the rowwise filtration) and hF (the
columnwise filtration) induced by the rows and columns of the bicomplex, respectively,
defined below, and depicted in Figure 5:

.vFmC/p;q D
�
Cp;q if q �m;

0 otherwise,
.hFmC/p;q D

�
Cp;q if p �m;

0 otherwise.

With respect to either of these filtrations, the total differential @Tot is nonnegative.

2.4 Spectral sequences from bicomplexes

The standard filtrations vF and hF induce spectral sequences of filtered complexes
hvE and vhE , respectively.
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vF2

vF1

vF0

C0;2

C0;1

C0;0

C1;2

C1;1

C1;2

C2;2

C2;1

C2;0

hF0
hF1

hF2

C0;2

C0;1

C0;0

C1;2

C1;1

C1;2

C2;2

C2;1

C2;0

Figure 5

For example, consider the rowwise filtration vF shown on the left of Figure 5. The
pages of the attached spectral sequence hvE approximate H�.Tot.C// via the following
process. On page hvE0 , the differential d0 consists of all the components of @Tot which
preserve the filtration grading; that is, d0 D @h . The induced differential on the next
page .@Tot/0 now only has components which shift the filtration grading by 1 or more.

The following proposition says that in certain situations, both spectral sequences
eventually collapse to hvE1Š vhE1ŠH�.Tot.C//, where the vector space generated
by the surviving basis elements at the level set with filtration level p C q D m is
identified with Hm.Tot.C//. A proof may be found in [15].

Proposition 11 If for each n, the number of p such that Cp;n�p ¤ 0 is finite, then

hvE1p;q D
vFqHpCq.Tot.C//=vFqC1HpCq.Tot.C//;

vhE1p;q D
vFpHpCq.Tot.C//=vFpC1HpCq.Tot.C//:

Both spectral sequences converge to the total homology.

2.5 Equivariant homology and the Tate spectral sequence

Our bicomplex will be modeled on the bicomplex used to compute the Borel equivariant
cohomology of a topological space X with an involution � :

H�Z=2Z.X IF2/ WD ExtF2ŒZ=2Z�.C�.X /;F2/:

Here C�.X / is the singular chain complex for X with F2 coefficients. Since we are
working over F2 coefficients, .1C �/2 D 0, so this is indeed a complex. Moreover,
one can check that the differentials of C�.X / and the induced involution �# commute,
and therefore so do their duals. Thus we can build the double complex

0! C �.X IF2/
1C�#

���! C �.X IF2/
1C�#

���! C �.X IF2/
1C�#

���! � � �
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which computes the Borel equivariant cohomology of X . Equipped with the rowwise
and columnwise filtration, this is a bicomplex.

We can view the underlying vector space of the bicomplex as a module

C �.X IF2/˝F2
F2Œ� �;

where � shifts the columnwise filtration degree by 1 (to the right).

Localizing at � gives the bi-infinite Tate bicomplex

C �.X IF2/˝F2
F2Œ�; �

�1�D
�
� � �

1C�#

���! C �.X IF2/
1C�#

���! C �.X IF2/
1C�#

���! � � �
�
;

whose total homology, under some finiteness conditions, is isomorphic to

H�.X fix
IF2/˝F2

F2Œ�; �
�1�:

Here X fix is the �–invariant topological subspace of X . See Section 2 in [14] for more
details on Z=2Z–localization in Borel equivariant cohomology.

3 Topological preliminaries

The purpose of this section is to give an overview of the annular Khovanov homology
of a link while establishing the notation to be used in the proof of the main result. In
Section 3.1 we define annular links and relate them to braid and tangle closures. As
annular Khovanov homology is computed from an annular link diagram, in Section 3.2
we set up the annular link diagram such that the topological involution on the link
translates nicely to an involution on the diagram. Section 3.3 reviews the construction
of the annular Khovanov chain complex via a cube of resolutions and defines the three
gradings attached to the complex.

Throughout, we work in the smooth category with oriented links and F2 coefficients.

3.1 Annular links and tangles

An annular link is a finite disjoint union of embedded circles
Fn

1 S1 in a thickened
annulus A� I . See Figure 6 for an example.

Annular links are tangle closures. A tangle T is a properly embedded compact
1–manifold in D2�I , with @T �D2�f0; 1g. If the number of boundary components
of T on the two disks agree, then after arranging for @T D fx1; : : : ;xng˝ f0; 1g, we

Algebraic & Geometric Topology, Volume 18 (2018)
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Figure 6: A Hopf link embedded in a thickened annulus

* *

Figure 7: On the left is an annular diagram for the Hopf link from Figure 6.
On the right is an annular diagram for the quotient knot, a positively stabilized
annular unknot.

can glue D2�f0g to D2�f1g (via idD2 ) to obtain a link yT D T =.xi ; 0/� .xi ; 1/ in
a solid torus D2 � I=.D2 � f0g �D2 � f1g/.

Braids constitute a well-studied case of tangles. Closures of n–strand braids form
the braid group Bn . Isotopy classes of n–braid closures correspond to the conjugacy
classes in Bn . With this important case in mind, we think of A as the xy–plane
punctured at the origin � and call f�g� I �R2 � I ŠD2 � I the braid axis.

A generic projection of an annular link L�A� I to A is an immersion with at most
double points, as in Figure 7. If we also remember the crossing information (which
strand was over the other before the projection), then we call the image of this projection
a diagram of L in A, denoted by D.L/. By abuse of notation, sometimes we will
think of D. � / as the projection A� I !A, and refer to the image D.L/�A as the
annular link diagram, even though the image doesn’t actually capture the crossing
information.

3.2 2–periodic links and their diagrams

Given a 2–periodic link zL� S3 with involution � W S3! S3 , the fixed point set B

(for “braid axis”) is an unknotted S1 in S3 .

Algebraic & Geometric Topology, Volume 18 (2018)
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With some choice of coordinates on S3 minus a point f1g on B , we can view B

as the z–axis in R3 and � as the rotation of 180ı about the z–axis, and let A be the
xy–plane minus the origin. Hence zL ,!A�RŠA� I is an annular link.

Remark 12 We define a 2–periodic link zL � S3 as one that comes with a chosen
involution of S3 which fixes an unknot in S3 . It is important to note that a link zL
in S3 may come with multiple involutions �i in the sense that the link zL[B1 is not
isotopic to zL[B2 (where Bi is the fixed-point set of involution �i ). In this case zL
with involution �1 defines a different annular link from zL with involution �2 .

Maintaining symmetry under � , isotope zL so that the projection DW A�I!A takes zL
to a link diagram D. zL/ in A. At the double points, we keep the crossing information.
Employing a small isotopy, we may also assume the double points occur away from
the y–axis, so that there is a clear notion of the “right side” of A� I or A (where
x � 0), and the “left side” of A� I or A (where x � 0).

The preimage of the right side of D. zL/ is a tangle T , which by symmetry has the
same number of loose strands on both ends. The quotient link of zL with respect to the
involution � is the tangle closure L WD yT . A diagram for L in A is given by D.T / on
the right side of A together with an identity braid on the left side of A. See Figure 7
for example.

3.3 Annular Khovanov homology

Annular Khovanov homology (with F2 coefficients) is a TQFT from properly embedded
1–manifolds in A� I and cobordisms between them to F2 vector spaces and linear
maps between them. Asaeda, Przytycki, and Sikora define this annular link invariant
in [2], where they construct a cube of resolutions from the diagram D.L/ and associate
to it a triply graded chain complex CKh.D.L// which computes their annular link
invariant AKh.L/.

We define two types of cubes, related by the TQFT. See Figure 8 and Figure 9 for
examples.

Definition 13 (cube of resolutions) We will use the notation Cube.D/ to denote the
cube of resolutions of the diagram D , where

� vertices are resolutions of D , which are closed 1–manifolds embedded in A,

� edges are 2–dimensional saddle cobordisms between two vertices.
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* *

*

*

*12

1

1

1

2

R00

R10

R01

R11

Cube

 !
D

Figure 8: The cube of resolutions for the annular Hopf link in Figure 7

V00

V10

V01

V11

CUBE

 
�

!
D

vC˝ vC

v�˝ vCvC˝ v�

v�˝ v�

wC

w�

wC

w�

wC˝wC

w�˝wCwC˝w�

w�˝w�

@00;10 @10;11

@00;01 @01;11

Figure 9: The cube of chains for the annular Hopf link in Figure 7

Definition 14 (cube of chains) The annular Khovanov TQFT takes Cube.D/ to
CUBE.D/, the cube of chains, where

� vertices are F2 vector spaces,

� edges are linear maps between the vertices.
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We outline the construction of Cube.D/ and CUBE.D/ in the rest of this subsection.
Let n be the number of crossings in D.L/, and label the crossings 1 through n in any
order. Let nC denote the number of positive crossings, and n� the number of negative
crossings.

Definition 15 (bitstring notation) We call ˛ 2 f0; 1gn a bitstring of length n. We
make the following definitions:

� ˛Œi � denotes the bit at the i th position, where indexing begins at i D 0.

� j˛j D
Pn�1

iD0 ˛Œi � is the Hamming weight of ˛ .

� Let ˛0 2 f0; 1gn . Suppose there is an index k such that ˛Œk� D 0, ˛0Œk� D 1,
and ˛Œj �D ˛0Œj � for all j ¤ k . In this case, we say that ˛0 is a bit increment
from ˛ .

� Let ˇ2f0; 1gn . Bitstrings of length n form a poset: we write ˛<ˇ if ˛Œi ��ˇŒi �
for all i .

� ˛ˇ represents the concatenation of ˛ and ˇ , in that order. That is, ˛ˇ is the
length-2n bitstring where

˛ˇŒi �D

�
˛Œi � for i < n;

ˇŒi � n� for i � n:

� For ˛ˇ as above, there is an involution � defined by �.˛ˇ/D ˇ˛ .

Remark 16 We will also use the symbol � to denote some topological involutions,
but the distinction from this bitstring operation should be clear from context. See
Section 4.1 for more on the notation for various involutions.

Vertices Let ˛ 2 f0; 1gn be a length-n bitstring. Figure 10 shows two ways of
resolving a local picture of a crossing. Associate to ˛ a resolution R˛ of D.L/,
where at crossing i we replace a local picture with a 0–resolution if ˛Œi � D 0, or a
1–resolution if ˛Œi �D 1. The resulting resolution R˛ is a closed 1–manifold embedded
in the annulus A.

Let jR˛j be the number of components of R˛ , and label the components C1; : : : ;CjR˛ j .
Let V D hv�; vCi be the 2–dimensional F2 vector space generated by the symbols v�
and vC . We associate to the resolution R˛ a vector space V˛ D V˝jR˛ j , generated
by the pure tensors of the form v D vp1

˝ vp2
˝ � � � ˝ vpjR˛ j 2 fv�; vCg

˝jR˛ j . We
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crossing

0-resolution

1-resolution

Figure 10

endow CKh.D.L// with the following three gradings by assigning gradings to these
distinguished generators. This notation is slightly modified from that in [9]:

� The (homological) i–grading of v is

gri.v/D j˛j � n�:

� Define p.v/ D #fpi W pi D Cg� #fpi W pi D �g. The (quantum) j –grading
of v is

grj .v/D p.v/Cj˛jC nC� 2n�:

� The components of R˛ come in two flavors with respect to the basepoint �:
� The nontrivial circles have nonzero winding number with respect to � (with

respect to either orientation).
� The trivial circles have zero sl2 weight space with respect to � (with respect

to either orientation).

The (sl2 weight-space) k–grading of v is given by

grk.v/D #fpi W pi DC; Ci nontrivialg� #fpi W pi D�; Ci nontrivialg:

We think of the i th tensor factor in V˝jR˛ j as corresponding to a labeling of the i th

component Ci with a � or C symbol. As such, for a trivial circle Ci we will henceforth
write the corresponding factor as W Dhw�; wCi, reserving the notation V Dhv�; vCi

for nontrivial circles. For example, if R˛ consists of one nontrivial circle and two
trivial circles, labeled in that order, one of the generators of V˛ is v�˝wC˝w� .

Remark 17 In [10], Grigsby, Licata, and Wehrli show that annular Khovanov ho-
mology over C enjoys a Lie algebra sl2.C/–action, which is why we refer to the
k–grading as the “sl2 weight-space grading”.
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Edges Let ˛; ˛0 2 f0; 1gn . If ˛0 is a bit increment from ˛ , we say that the resolu-
tion R0˛ is a successor to R˛ . In our cube of resolutions, we draw a directed edge
R˛ ! R0˛ corresponding to a linear map @˛;˛0 W V˛ ! V˛0 . This map depends on a
few characteristics of the resolutions R˛ and R˛0 :

� Since R˛ and R˛0 differ at the site of exactly one crossing, all but one or two
components remain unchanged between R˛ and R˛0 . The linear map @˛;˛0 may be
a merge map or a split map. If the site of the crossing touches only one component Ci

of R˛ , then Ci has split into two components in R˛0 . If the site of the crossing touches
two components Ci and Cj of R˛ , then Ci and Cj merge into one component in R˛0 .

� The participating components may be trivial or nontrivial circles. The linear
map @˛;˛0 is constructed so that grj and grk are preserved, and gri is increased by 1.
Roberts shows in [21] that there are exactly six possible types of maps corresponding
to an edge in the cube resolutions. We can visually describe these maps by drawing
dots representing the distinguished generators of V˛ and V 0˛ , aligning them in rows
of constant grj , and drawing arrows between the dots to represent components of the
differential. Figure 11 shows the six maps defining all possible @˛;˛0 using this visual
representation.

One can check that @AKh D
P
@˛;˛0 is a differential by verifying that each face of the

cube of chains commutes. The triply graded homology of this complex CKh.D.L// is
independent of the choice of diagram D.L/ [2].

4 The annular Khovanov–Tate bicomplex

We are now prepared to construct the bicomplex which defines the spectral sequence
in Theorem 1. The motivation for this construction is discussed in Section 2.5.

4.1 An involution on CKh

The first task is to define an involution on CKh.D. zL// induced by the topological
involution � .

Definition 18 We will need to discuss many related involutions. By abuse of notation,
we utilize only three symbols; the distinctions within each group will be clear from
context. After presenting the notation, we discuss the involutions and their relationships
with each other in more detail.
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v�

vC

vC˝wC

vC˝w� v�˝wC

v�˝w�

Type A: v! vw

v�

vCvC˝wC

vC˝w� v�˝wC

v�˝w�

Type D: vw! v

w�

wC

vC˝ vC

vC˝ v� v�˝ vC

v�˝ v�

Type B: w! vv

w�

wCvC˝ vC

vC˝ v� v�˝ vC

v�˝ v�

Type E: vv! w

w�

wC

wC˝wC

wC˝w� w�˝wC

w�˝w�

Type C: w! ww

w�

wCwC˝wC

wC˝w� w�˝wC

w�˝w�

Type F: ww! w

Figure 11: The AKh differentials. Within each diagram, the rows have
constant j –grading.
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In the following contexts, we use the symbol � :

� the bitstring involution defined in Definition 15,

� the topological involution on S3 with fixed point set B ,

� the restriction of � to the 2–periodic link zL� S3 ,

� the involution induced on A� I and its restriction to zL ,!A� I .

We use the symbol �A to denote the following:

� the involution induced on A from � on A� I ,

� the restriction of �A to D. zL/�A,

� the involution induced on an equivariant resolution R˛˛ �A.

Finally, �# is used to denote the following:

� the involution induced on the chains of CKh.D. zL//,

� the involutions induced by �# on the pages of the spectral sequences.

We continue to use the setting described in Section 3.2. Let n be the number of
crossings in the quotient link diagram D.L/. Label the 2n crossings in D. zL/ by first
labeling crossings of D. zL/ on the right side of A (x > 0), then labeling the crossings
on the left side (x < 0) so that �A takes the i th crossing on the right to the .i C n/th

crossing on the left.

With this assignment, each 2n–bitstring ˛ D ˛1˛2 is the concatenation of two n–
bitstrings ˛1 and ˛2 , where ˛1 represents a sequence of resolution choices for the
crossings on the right and ˛2 represents a sequence of resolution choices for the
crossings on the left. Thus �A takes R˛ DR˛1˛2

to R�.˛/ DR˛2˛1
.

Thinking of the distinguished generators of the cube of chains CUBE.D. zL// as marked
resolutions, �A induces an involution �# on the chains of CKh.D. zL//.

Definition 19 A resolution R˛ is equivariant if �A.R˛/DR˛ . A generator x of the
cube of chains CUBE.D. zL// is equivariant if �#.x/D x . If a resolution or generator
is not equivariant, it is nonequivariant.

In fact, �# is an involution on the complex .CKh.D. zL//; @AKh/:

Lemma 20 The maps @AKh and �# commute.
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Proof It suffices to show that every edge belongs to a well-defined pair of edges
f@˛;˛0 ; @�.˛/;�.˛0/g of CUBE.D. zL//, where ˛0 is a bit increment from ˛ , so that the
following diagram commutes:

V˛0 �#.V˛0/

V˛ �#.V˛/

�#

�#

@˛;˛0 @�.˛/;�.˛0/

Since @AKh is the sum of all such pairs of edges, @AKh commutes with �# .

The edge @˛;˛0 may correspond to a change of resolution on the right or left side
of D. zL/. Without loss of generality, consider the case where the resolution change is
on the right:

V˛0
1
˛2

V˛2˛
0
1

V˛1˛2
V˛2˛1

�#

�#

@˛;˛0 @�.˛/;�.˛0/

The components of R˛1˛2
and R˛2˛1

are identified in pairs by the diffeomorphism �A ;
the same holds for the pair R˛0

1
˛2

and R˛2˛
0
1

. In this way, a merge (resp. split) map
V˛1˛2

! V˛0
1
˛2

corresponds to the isomorphic merge (resp. split) map V˛2˛1
! V˛2˛

0
1

.

Notice that @˛;˛0 D @�.˛/ if and only if they have the same source and target. This is
impossible as one of j˛j and j˛0j is odd, and hence corresponds to a nonequivariant
resolution.

4.2 Construction of the AKhTate bicomplex

This allows us to define a variant of the Tate bicomplex (see Section 2.5), constructed
as follows:

� Each column is a copy of the complex CKh.D. zL//, where the vertical filtration
is induced by gri .

� The underlying vector space is the F2Œ� �–module CKh.D. zL//˝F2
F2Œ� �, where

� acts on the columns by shifting right by one column.

� The horizontal differential is 1C �# .

Observe that this complex is quadruply graded by gri , grj , grk , and a column grading
grt , where t is the exponent of � .

Algebraic & Geometric Topology, Volume 18 (2018)



1166 Melissa Zhang

Definition 21 We call this bicomplex the annular Khovanov–Tate complex for the
2–periodic link zL with involution � , abbreviated AKhTate. zL/. We denote the total
complex of this bicomplex by Tot.AKhTate. zL//.

Remark 22 This notation requires some justification. We will show that

H�.Tot.AKhTate. zL///Š AKh.L/˝F2Œ�; �
�1�;

where the latter is independent of the choice of diagram by [2].

5 Proof of Theorem 1

We are now ready to prove the main result. Recall that AKhj ;k.L/ denotes the part of
AKh.L/ at quantum grading j and sl2 weight-space grading k .

Theorem 1 Let zL be a 2–periodic link with quotient link L. For each pair of integers
.j ; k/, there is a spectral sequence with

E1
Š AKh2j�k;k. zL/˝F2

F2Œ�; �
�1�� E1 Š AKhj ;k.L/˝F2

F2Œ�; �
�1�:

Before diving into the details, we first give a sketch of the main ideas behind the proof.
The reader may also wish to refer to the example in Section 6.

Since the complex CKh.D. zL// is finite-dimensional, our bicomplex AKhTate.D. zL//
has finite-dimensional columns, so by Proposition 11, the hvE and vhE spectral
sequences both converge to H�.Tot.AKhTate.D. zL////. We will compute the hvE

spectral sequence to find that hvE1 Š AKh.L/˝ F2Œ�; �
�1�. Then we will show

that vhE1 D AKh. zL/ ˝ F2Œ�; �
�1�. By Proposition 11, vhE1 Š hvE1 , with the

isomorphism respecting the .iCt/–grading. Observing that each diagonal level set
in vhE1 can be identified with

L
i AKhi.L/ (where AKhi.L/ refers to the piece of

AKh.L/ at gri D i ), we see that vhE is a spectral sequence from the .iCt/–filtered
AKh. zL/˝ F2Œ�; �

�1� to AKh.L/˝ F2Œ�; �
�1�. The total differential preserves j –

and k–gradings, so vhE splits along j – and k–gradings.

5.1 The first pages

The first pages of either spectral sequence can be understood readily and have topological
interpretations.
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x

�#x

x x x x

x x x x

x x x

�#x �#x �#x �#x

�#x�#x�#x�#x

�#x �#x �#x

Figure 12: Cancellation of the �# arrows eliminates all the nonequivariant generators.

Lemma 23 vhE1 Š AKh. zL/˝F2
F2Œ�; �

�1�.

Proof In each column, the cancellation of all the vertical arrows computes the homol-
ogy AKh.D. zL//. The fact that cancellation actually occurs in the greater context of
the bicomplex is irrelevant because any induced maps are no longer vertical.

Lemma 24 hvE1 is generated by the equivariant generators of AKhTate.D. zL//.

Proof Since 1C �# vanishes on all equivariant generators, it suffices to show that
all the nonequivariant generators vanish upon cancellation of all the horizontal arrows
in the bicomplex. In fact, cancellation of all the �# arrows suffices, as shown in
Figure 12.

Definition 25 A staircase of arrows (Figure 13) is a finite collection of arrows in a
bicomplex (generated by a distinguished filtered graded basis) which form a path with
the following properties:
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Figure 13: A staircase of arrows. In this example, the staircase has height 4 ,
so it induces an arrow of length 4 .

� The path alternates between vertical and horizontal arrows.
� Both arrows at a corner either both point away from or both point toward the

corner.
� If a vertical arrow and a horizontal arrow meet at a corner of the path, they either

have the same source or the same target.

The height of a staircase of arrows with respect to a given filtration is the change in
filtration degree between the generators at the ends of the path.

With respect to the rowwise filtration, if both ends of the staircase begin with a vertical
arrow, then cancellation of the horizontal arrows in the staircase (in any order) induces
a single arrow from one end of the path to the other. The length of this induced arrow
is the height of the staircase.

Lemma 26 If r is odd, then hvdr D 0.

Proof By Lemma 24, only equivariant generators survive to hvE1 . Since these belong
to vector spaces corresponding to equivariant resolutions of D. zL/, their Hamming
weights must be even. The i–grading is a shift of Hamming weight, so every other
row vanishes on hvE1 . Components of hvdr for odd r are represented by arrows of
length r , which must map to or from a vanishing row, so hvdr D 0.

Therefore the next interesting differential in the spectral sequence is hvd2 .

Lemma 27 Every component of hvd2 is induced by the cancellation of a �# arrow at
a row corresponding to an odd Hamming weight.

Proof Since we begin with only (rowwise) filtration degree 0 and 1 maps, the only
way to induce a length-2 differential is by canceling the horizontal arrow on a staircase
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of height 2. The source and target of a length-2 differential are equivariant generators,
so the canceled horizontal arrow must lie in a row corresponding to an odd Hamming
weight.

Remark 28 Later on it will become useful to view the computation of the induced dif-
ferentials in the spectral sequence as a sequence of maps (by @AKh ) and lifts (by 1C �# ),
traveling up the staircase in Figure 13. The maps constructed this way are the same
as the maps induced by cancellation of the �# arrows in the staircase. This is a more
intuitive reason why cancellation of only the �# arrows is sufficient for eliminating the
nonequivariant generators.

5.2 Relationship between .hvE2; hvd2/ and the quotient link

The crux of the theorem comes from the observation that the generators and differentials
on page 2 of the hvE spectral sequence correspond exactly with distinguished generators
in the cube of chains for the diagram of the quotient link. The following two propositions
verify the details of this correspondence.

Proposition 29 There is a one-to-one correspondence

fgenerators of hvE2
g  ! fgenerators of CKh.L/˝F2

F2Œ�; �
�1�g; zv ! v

induced by � such that

� gri.zv/D 2 gri.v/,

� grj .zv/D 2 grj .v/� grk.v/,

� grk.zv/D grk.v/,

� grt .zv/D grt .v/.

Proof By Lemma 24, we have that hvE1 is generated by the equivariant generators of
AKhTate.D. zL//, and Lemma 26 shows hvd1 D 0, so hvE1 D hvE2 .

Bijection of generators First of all, the correspondence is given by the identity on
the F2Œ�; �

�1� factor.

Let zv denote a generator of hvE2 , coming from the equivariant resolution R˛˛ . Think-
ing of zv as a �A–equivariant assignment of plusses and minuses to the components
of R˛˛ , let v be the quotient of zv by �A .

In the other direction, for v a generator of CKh.L/˝F2
F2Œ�; �

�1� coming from a
resolution R˛ , view v as an assignment of plusses and minuses to the components
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of R˛ . Pick any path connecting the two components of @A and take a double cover
of R˛ . The lift of v is zv .

Grading relationships The t–grading relationship follows by definition. For the
other three relationships, suppose v consists of

� a nontrivial circles labeled “C”,

� b nontrivial circles labeled “�”,

� c trivial circles labeled “C”,

� d trivial circles labeled “�”.

In this case, write v D va
Cv

b
�w

c
Cw

d
� to denote the distinguished generator, suppressing

the tensor signs in favor of compact notation. Then zv D va
Cv

b
�w

2c
C w

2d
� .

Let nC and n� denote the number of positive and negative crossings in D.L/, respec-
tively. For v ,

� gri.v/D j˛j � n� ,

� grj .v/D j˛jC .a� bC c � d/C nC� 2n� ,

� grk.v/D a� b .

Since the diagram D. zL/ obtained by taking the double cover of D.L/ has twice as
many positive and negative crossings as D.L/, respectively, we compute that

� gri.zv/D 2j˛j � 2n� D 2 gri.v/,

� grj .zv/ D 2j˛j C .a � b C 2c � 2d/ C 2nC � 4n� D 2 grj .v/ � .a � b/ D

2 grj .v/� grk.v/,

� grk.zv/D a� b D grk.v/.

Proposition 30 Under the correspondence above, each line with �2 slope in the
bicomplex .hvE2; hvd2/ is isomorphic to the complex .CKh.L/; @AKh/.

Proof Let ˛0 be a bit increment from ˛ . Lemma 27 implies that any component
of hvd2 lies along a line with �2 slope.

Upstairs, consider the components of hvd2 from V˛˛˝�
t to V˛0˛0˝�

t�1 ; see Figure 14.
The two resolutions R˛˛0 and R˛0˛ connecting R˛˛ and R˛0˛0 correspond to changing
the resolutions of some pair of crossings ci and ciCn from their 0–resolution in R˛˛

to their 1–resolution in R˛0˛0 .

Downstairs, consider the edge of CUBE.D.L// going from V˛ to V˛0 . This edge falls
into one of the six types of AKh differentials, as discussed in Section 3.3.
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b ı a

a b

�#

�# ı a b ı .�#/�1

Figure 14: Cancellation of �# arrows induce hvd2 arrows. For each diamond
of the form above, we obtain a length-2 differential.

��

v�

vC vCw�

v�w�

vCwC

v�wC vCw�w�

vCwCw�

v�w�w�

v�wCw�

vCw�wC

vCwCwC

v�w�wC

v�wCwC

Figure 15: Type A : zv! zv zw

We compare the hvd2 components induced by the cancellation of the �# arrows going
between V˛˛0 and V˛0˛ with the components of @AKh , in the six different cases.
Figures 15 through 20 show the computation of hvd2 in all six cases. Compare these
figures with Figure 11. Note that in contrast with the notation used in Figure 11, the
tensor signs are now suppressed for the sake of compactness. By inspection, under
the correspondence from Proposition 29, the induced length-2 arrows upstairs align
exactly with the differential downstairs.

5.3 Visualizing higher differentials

Just as all components of hvd2 are induced by cancellation of some �# arrow, longer
differentials are induced by the cancellation of multiple �# arrows. This can be seen by
inducting on the applications of the cancellation operation that result in a differential of
length 2r . At each step, the slope of the arrows representing the induced differentials
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��

v�

vC

vCw�

v�w�

vCwC

v�wC

vCw�w�

vCwCw�

v�w�w�

v�wCw�

vCw�wC

vCwCwC

v�w�wC

v�wCwC

Figure 16: Type D : zv zw! zv

��

w�w�

wCw� w�wC

wCwC

w�

wC vCv�

v�v�

vCvC

v�vC

Figure 17: Type B : zw! zvzv

��

w�w�

wCw� w�wC

wCwC

w�

wC

vCv�

v�v�

vCvC

v�vC

Figure 18: Type E : zvzv! zw
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� �

1

3

4

2

wCw�

w�w�

w�wC

wCwC

wCw�w�

wCwCw�

w�w�w�

w�wCw�

wCw�wC

wCwCwC

w�w�wC

w�wCwC wCwCw�w�

w�w�w�w�

wCwCwCwC

w�w�wCwC

Figure 19: Type C : zw ! zw zw . We begin with C1 [ C2 . In the first step,
C1 splits into C1[C3 . In the second step, C2 splits into C2[C4 .

are each of the form �k=.k � 1/. The generators at the ends of the staircase must be
equivariant, and all the intermediate generators (ie the corners of the staircase) must be
nonequivariant because they are adjacent to �# arrows.

To prove that there are no higher differentials in the hvE spectral sequence, we focus
on individual staircases. This directs us to restrict our focus to a local piece of the
complex surrounding the staircase which is large enough to determine the behavior of
the map induced by the staircase.

Definition 31 Let D be an annular link diagram with n crossings. Let ˛ and ˇ be
two n–bitstrings where ˛ < ˇ . The subcube of resolutions from R˛ to Rˇ , denoted
by Cube.R˛;Rˇ/, is the subgraph of Cube.D/ such that

� the vertex set consists of resolutions R , where  is an n–bitstring with  Œi �D
˛Œi �D ˇŒi � whenever ˛Œi �D ˇŒi �,

� the edge set consists of all edges of Cube.D/ whose endpoints are both in the
vertex set.
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1

3

4

2

� �

wCw�

w�w�

w�wC

wCwC

wCw�w�

wCwCw�

w�w�w�

w�wCw�

wCw�wC

wCwCwC

w�w�wC

w�wCwC

wCwCw�w�

w�w�w�w�

wCwCwCwC

w�w�wCwC

Figure 20: Type F : zw zw! zw . We start with C1 [C2 [C3 [C4 , where
C1 [C2 and C3 [C4 are each equivariant pairs of circles. In the first step,
C1[C3 merges to C1 and C2 stays put. In the second step, C2[C4 merges
to C2 and C1 stays put.

In CUBE.D/, the subcube of chains from V˛ to Vˇ , denoted by CUBE.V˛;Vˇ/, is
defined similarly, with

� underlying chain groups consisting of the vector spaces corresponding to the
vertex set of Cube.R˛;Rˇ/,

� differentials corresponding to the edge set of Cube.R˛;Rˇ/.

In this case the crossings ci in the diagram D for which ˛Œi � ¤ ˇŒi � are called par-
ticipating crossings, and all other crossings are called nonparticipating crossings.
Let D.˛; ˇ/ denote the link diagram obtained from D.L/ by smoothing only the
nonparticipating crossings based on the common values of ˛ and ˇ at these bits. Then
Cube.D.˛; ˇ//Š Cube.R˛;Rˇ/ and CUBE.D.˛; ˇ//Š CUBE.V˛;Vˇ/.
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Similarly, the components of R˛ fall into two categories: the participating circles,
which are adjacent to the sites of participating crossings, and the nonparticipating
circles, which are the components of R˛ that do not participate in a merge or split
along any edge in Cube.R˛;Rˇ/.

Definition 32 If R˛ and Rˇ are equivariant resolutions of an equivariant annular
link diagram D , and ˛ < ˇ , we say Cube.R˛;Rˇ/ is equivariantly split if the set of
participating circles can be divided into two or more equivalence classes under the
equivalence relation

Ci � Cj if there is a (site of a) crossing adjacent to both Ci and Cj :

Proposition 33 For an equivariantly split 2–periodic diagram D with 2r crossings,
there are no induced differentials of length 2r .

Proof If D were equivariantly split, it could be written as a split diagram D1tD2 ,
and hence

CUBE.D/Š CUBE.D1/˝CUBE.D2/:

Let ∅ ¤ fCj gj2J1
denote the set of circles in R˛ corresponding to the all-zeros

resolution of D1 , and ∅ ¤ fCj gj2J2
the set of circles in R˛ corresponding to the

all-zeros resolution of D2 .

The marked resolution x corresponds to a choice of markings a 2 fv�; vCg
jJ1j for

fCj gj2J1
plus a choice of markings fv�; vCgjJ2j for fCj gj2J2

, so for computational
reasons we write x D a ˝ b , even though in reality we might have ordered the
tensor components differently. (We are implicitly using the isomorphism CUBE.D/Š
CUBE.D1/˝CUBE.D2/.) Since x D a˝ b is an equivariant generator, a and b must
be equivariant generators for CUBE.D1/ and CUBE.D2/, respectively.

As the differential respects the tensor factors, we may use the product rule to compute
d2r .x/:

x D a˝ b;

@x D @a˝ bC a˝ @b;

.1C �#/�1@x D .1C �#/�1@a˝ bC a˝ .1C �#/�1@b;

@.1C �#/�1@x D @.1C �#/�1@a˝ bC .1C �#/�1@a˝ @b

C @a˝ .1C �#/�1@bC a˝ @.1C �#/�1@b;
:::
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Here we abuse notation and write @ to mean the differential in CUBE.D/, CUBE.D1/,
or CUBE.D2/, depending on context. Writing z@ WD .1C �#/�1@, where .1C �#/�1

represents “lifting by 1C �# ” (see Remark 28), the above computation becomes

d2r x D @z@2r�1x

D @

2r�1X
iD0

�2r�1

i

�
z@ia˝z@2r�1�ib

D

2r�1X
iD0

�2r�1

i

�
@z@ia˝z@2r�1�ibCz@ia˝ @z@2r�1�ib:

We want to show that each summand must be 0 on E2r , where all the survivors are
necessarily equivariant. Note that in order for a0˝b0 2 CUBE.D1/˝CUBE.D2/ to be
equivariant, a0 and b0 must be simultaneously equivariant, and hence must fall in a
column corresponding to even Hamming weight in their respective CUBES .

Case 1 For i odd, @z@ia and z@2r�1�ib have even Hamming weight, while z@ia and
@z@2r�1�ib have odd Hamming weight. If any component of @z@ia˝z@2r�1�ib is equi-
variant, then z@2r�1�ib is equivariant, contradicting the fact that .1C �#/z@2r�1�ib D

@z@2r�2�ib ¤ 0.

Case 2 For i even, @z@ia and z@2r�1�ib have odd Hamming weight, while z@ia and
@z@2r�1�ib have even Hamming weight. If any component of z@ia˝ @z@2r�1�ib is
equivariant, then z@ia is equivariant, which contradicts the fact that .1C �#/z@ia D

@z@i�1a¤ 0.

5.4 Grading shifts of higher differentials

Again let ˛; ˇ be equivariant 2r–bitstrings with ˛ < ˇ . By Proposition 33, we may
now assume that D.˛; ˇ/ is not equivariantly split. This is will allow us to perform
computations by describing parts of the complex using connected graphs.

A first obstruction to the existence of a hvd2r map between distinguished generators x

and y is that x and y must have the same j –grading. For this reason, we compare
the j –span of V˛ and Vˇ , defined as follows.

Definition 34 The j –span of the vector space V! associated with the binary string !
is the range of j –gradings of the distinguished generators of V! .
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Split maps shift the upper bound of the j –span up by 2, and merge maps shift the
lower bound of the j –span up by 2.

Definition 35 A path through a cube of resolutions is a sequence of vertices R˛i

such that ˛iC1 is a bit increment from ˛i , together with the edges between successive
resolutions.

Since any component of hvd2r will come from repeatedly mapping via @ and lifting by
1C �# along a (directed) path from V˛ to Vˇ in CUBE.D.˛; ˇ//, and 1C �# affects
neither of the j – or k–gradings, we focus on paths through CUBE.D.˛; ˇ// and which
combinations of merges and splits they involve.

Lemma 36 Any two paths through a cube CUBE.D/ from the all-zeros resolution to
the all-ones resolution have the same number of merges, and also have the same number
of splits.

Proof Let #m and #� denote the number of merge and split maps along a path from
V˛ to Vˇ . These quantities satisfy the linear equations

#mC #�D 2r; jRˇj � jR˛j D #�� #m:

So, in order to count merge and splits, we may without loss of generality choose any
path we’d like. Choose  to be a path through the cube for which every other vertex
is equivariant. In other words, after every two steps along this path, we land on an
equivariant resolution. Each such set of two-steps corresponds to one step in a path in
CUBE.D.˛; ˇ/=�A/, since each equivariant pair of crossings corresponds to a crossing
downstairs. We can thus classify the six different two-step paths in  by looking at the
classification of edges in the cube downstairs.

Definition 37 We can describe each two-step using modular pieces of a graph, which
we call atoms (Figure 21). These pieces are oriented in the sense that the lines on the
left of the circle represent input circles, or circles in the source resolution, and the lines
on the right of the circle represent the output circles, or circles in the target resolution
of the two-step. A double bond indicates an equivariant twin pair of W circles, and
a single bond indicates a single equivariant V circle. While attaching these atoms
together, we can only attach V circles to V circles, and equivariant pairs of W circles
to equivariant pairs of W circles. A connected graph obtained by attaching these atoms
together is called a molecule.
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A D

B E

C F

Figure 21: The six atoms representing the six possible equivariant two-steps

Since the D.˛; ˇ/=�A diagram downstairs is nonsplit, when the pieces of  are attached
at their equivariant ends, we obtain a single molecule � . Let A, B , C , D , E and F

denote the number of modular pieces of type A , B , C , D , E and F , respectively. In
particular, this means that ACBCC CDCECF D r .

Proposition 38 Given an equivariant path  through an equivariantly nonsplit cube,
the size of the j –span overlap between the vector spaces corresponding to the all-zeros
resolution V˛ and the all-ones resolution Vˇ is

2.ACBC 2C CDCEC 2F �Nb/;

where

� A, B , C , D , E and F are the number of atoms of type A , B , C , D , E and F ,
respectively, in the molecule � corresponding to  ,

� Nb is the total number of bonds (counted with multiplicity) in � .

Proof Let j0 denote the minimal j –grading of a distinguished generator of V˛ . The
number of components of R˛ is equal to the number of input circles of the atoms
separately, minus the number of input circles which are then identified with output
circles of other atoms, which is equal to the number of total bonds, counted with
multiplicity. Let Nb denote the total number of bonds. The source j –span is therefore

Œj0; j0C 2.AC 2BC 2C C 3DC 2EC 4F �Nb/�:
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Traveling through the path  , we ultimately shift the bottom of the j –span by (two
times) the number of merges, which is 2.BC2DCEC2F /. Hence the possible j –span
overlap between V˛ and Vˇ is

Œj0C 2.BC 2DCEC 2F /; j0C 2.AC 2BC 2C C 3DC 2EC 4F �Nb/�;

which is a difference of 2.ACBC 2C CDCEC 2F �Nb/.

Thus the largest j –span overlap using the atoms in � is achieved when � has a minimal
total number of bonds.

Lemma 39 The minimal total number of bonds achievable by a connected molecule �
comprised of a fixed set of atoms is achieved when � is composed to two trees, one
containing all the A , B , D and E atoms, and the other containing all the C and F

atoms, with the two trees connected by a unique double bond.

Proof The structure of a minimally bonded � must be a tree: if � has a cycle, we
can decrease the number of bonds by cutting any side of the cycle.

Furthermore, when attaching atoms of type A , B , D and E , the number of bonds
is minimized by connecting to the molecule via a single rather than a double bond.
When these atoms are arranged as a subtree of � , the number of single bonds is
minimized. The C and F atoms will invariably attach to the tree via a double bond, so
the two-tree molecule described has the same number of double bonds as any minimally
bonded � .

5.5 Higher differentials vanish

The final major step in the proof of Theorem 1 uses the j – and k–gradings to show
that the hvE spectral sequence collapses on hvE3 .

Proposition 40 For all r � 2, we have hvd2r D 0.

Proof By Proposition 33, we may assume that Cube.R˛;Rˇ/ is equivariantly nonsplit.
Pick an equivariant path  through Cube.R˛;Rˇ/, and let � denote the associated
molecule. Let’s first assume that at least one of the atoms of � is not of type C or F .
In the worst case, the total number of bonds is the sum of ACBCDCE � 1 from
the A ;B;D ; E tree, 2C C2F �2 from the C ;F tree, and 2 from connecting the two
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trees. Hence Nb DACBC 2C CDCEC 2F � 1. The size of the overlap is then

2
�
AC 2BC 2C C 3DC 2EC 4F � .ACBC 2C CDCEC 2F � 1/

�
�2.BC 2DCEC 2F /D 2:

Therefore x must have either the maximum or next-to-maximum j –grading of the
distinguished generators of V˛ . Since x is equivariant, any equivariant pair of trivial
circles must have the same marking, so since x can have at most one component
marked with a v� , all trivial circles in x are marked wC . Moreover, from Figures 15
through 20 we see that if any equivariant paths out of V˛ are not of type E , then x is
not in ker.hvd2/. So all equivariant paths out of V˛ must be of type E . This indicates
that x is a marked resolution consisting solely of vC–marked concentric circles. But
this means x is unique in its k–grading in the entire CUBE.V˛;Vˇ/. Therefore there
cannot be a hvd2r component from x to y in CUBE.V˛;Vˇ/.

In the case where all the atoms are of type C or F , the worst case � has 2C C2F �2

bonds, producing a j –span overlap of

2.2C C 4F � .2C C 2F � 2//� 2.2F /D 4:

Therefore x must have at most two circles marked with w� . Again, we see in Figures 19
and 20 that x is not in ker.hvd2/.

Thus there cannot be a hvd2r component from (a �–power translate of) x to (a �–power
translate of) y .

As AKhTate.D. zL// is 1–periodic in the horizontal direction, its homology is 1–periodic
as well, so the total rank along each diagonal corresponding to the induced filtration
gradings on H Tot is the same as the total rank down along a vertical column. Therefore
AKh.L/˝F2

F Œ�; ��1� Š hvE3 D hvE1 Š vhE1 , so the vhE spectral sequence has
vhE1 Š AKh. zL/˝F2

F Œ�; ��1� and vhE1 Š AKh.L/˝F2
F Œ�; ��1�.

Since all the maps in the double complex preserve j – and k–grading, the spectral
sequence splits along j – and k–gradings. This concludes the proof of Theorem 1.

Finally, since each page of a spectral sequence is a subquotient of the previous page,
Corollary 2 follows:

Corollary 2 For any annular tangle closure L, quantum grading j and sl2 weight-
space grading k ,

rkF2
AKhj ;k.L/� rkF2

AKh2j�k;k. zL/:
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6 Example: Hopf link and stabilized unknot

To help convey the construction to the reader, we describe the simplest nontrivial
example, a two-crossing annular Hopf link as the 2–braid closure zL WD y�2

1
. The

quotient link is a positively stabilized unknot LD y�1 .

Annular diagrams for both zL and L are shown in Figure 7. We label the crossings
of D. zL/ in accordance to our convention (Section 4.1); the first crossing is on the
right, and the second crossing is on the left. The cube of resolutions Cube.D. zL// is
shown in Figure 8. In order to simplify the notation in this small example, we give
the distinguished generators unique, concise names in the cube of chains shown in
Figure 22. For example, “aC�” is the generator vC˝v� in V00 , corresponding to the
marked resolution shown in Figure 23.

Putting this all together, the bicomplex AKhTate.D. zL// locally looks like Figure 24.

CUBE

 !
D

aCC

a�CaC�

a��

bC

b�

cC

c�

dCC

d�C
dC�

d��

Figure 22: The cube of chains for the annular Hopf link from Figure 7, with
AKh differentials drawn as solid lines and �# drawn as dotted lines. The
arrow heads have been dropped; gri increases to the right. This is a finer
version of Figure 9.

*

C

�

Figure 23: The marked resolution corresponding to the generator aC�
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Figure 24: A local picture of the AKhTate.D. zL// bicomplex for the Hopf
link example. There are two copies of the cube of chains in this figure, rotated
90ı clockwise from Figure 9. The dotted lines which bend up represent the
“identity” map which increases the t–grading, and the dashed lines which
bend down represent the �# map. This local picture is repeated horizontally
to form AKhTate.D. zL// .

After canceling all the �# arrows, the only remaining interesting page to compute the
homology of is hvE2 , shown in Figure 25. As expected, each line with slope �2 in hvE2

corresponds to the cube of chains for the quotient link L, under the correspondence
described by Propositions 29 and 30.

In this case, the fact that there are no higher differentials is clear from the fact that
CKh.D. zL// is only supported on three adjacent i–gradings. For comparison, the
annular Khovanov homologies for zL and L are listed in Table 1.

.j ; k/ rkF2
.AKhj ;k.L// .2j � k; k/ rkF2

.AKh2j�k;k. zL//

.3; 2/ 1 .4; 2/ 1

.1; 0/ 1 .2; 0/ 1

.�1;�2/ 1 .0;�2/ 1

.3; 0/ 1 .6; 0/ 1

.4; 0/ 2

Table 1: The annular Khovanov homologies for zL and L
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Figure 25: A local picture of the page hvE2 in our Hopf link example

7 Decategorification

Annular Khovanov homology was originally described as a categorification of the
Kauffman bracket skein module in the trivial I–bundle over the annulus. In our case,
we work with F2 coefficients and follow the conventions in [21].

Consider the F2Œq
˙1�–module consisting of all links in A � I modulo the usual

Kauffman bracket skein relations. The set BD fy1s W s D 0; 1; 2; : : : g of all trivial braid
closures forms a canonical basis for the skein module.

We use the variables t , q and x to record the i –, j –, and k–gradings, respectively.
Setting qDA�2 and introducing the k–grading to the skein relation, we have a variant
of the Kauffman bracket skein relations. Choose a particular crossing c and let L0

and L1 denote the links obtained from L by smoothing c by the 0–resolution and
1–resolution, respectively. Then our relations are

hLi D hL0iC tqhL1i;

hL[U i D .qC q�1/hLi;

where U is an annular unknot (a trivial circle).

Normalizing by setting y11 7! qxC q�1x�1 , we obtain a map

�W F2Œt; q
˙1;B�! F2Œt; q

˙1;x˙1�
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by viewing B as a monoid under disjoint union. Finally, we add in the proper grading
shifts to obtain a variant of the Jones polynomial over F2 by setting V .t; q;x/ D

tn�qnC�2n��.L/. (To be clear, one needs to first orient L to obtain n� and nC , and
we are viewing the link L as an element of the skein module.)

Of interest to us is the annular link invariant VL.�1; q;x/ which is the graded Euler
characteristic of AKh.L/. (See Theorem 8.1 in [2] for details.) In other words,

VL.t; q;x/D
X
i;j ;k

t iqj xkrkF2
.AKhi;j ;k.L//;

so the graded Euler characteristic is

VL.�1; q;x/D
X
i;j ;k

.�1/iqj xkrkF2
.AKhi;j ;k.L//:

As in [2] and [21], we view the Kauffman bracket as a set of polynomials by defining
qk;L.t; q/ to be the coefficient of xk in V .t; q;x/, so that

qk;L.�1; q/D
X
i;j

.�1/iqj rkF2
AKhi;j ;k.L/

is the coefficient of xk in the decategorification of AKh.L/.

The decategorification of Theorem 1 is the following:

Corollary 3 For all j and k ,

hq
k; zL
.�1; q/; q2j�k

i � hqk;L.�1; q/; qj
i mod 2;

where hf;gi denotes the coefficient of g in f .

Proof This follows from Theorem 1 and the fact that cancellation reduces rank by a
multiple of 2 at each step (represented by erasing the dots at the head and tail of the
arrow).

In [16], Murasugi proved a relationship between the Alexander polynomials of a
periodic link and that of its quotient; in [17], he proved an analogous formula for the
Jones polynomial. By considering Theorem 1 with respect to the j1 D j � k grading
rather than the j – and k–gradings individually, we obtain an annular analogue to
Murasugi’s formulas:

Corollary 4 V zL.1; q; q
�1/� ŒVL.1; q; q

�1/�2 mod 2.
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If on the other hand one is more interested in the usual Jones polynomial of the 2–
periodic link, we may forget the k–grading information by setting x D 1, obtaining
the following relationship:

Corollary 5 V zL.1; q; 1/� VL.1; q
2; q�1/ mod 2.

It is then natural to ask if there is a categorification of this relationship, coming from
a spectral sequence from the Khovanov homology of zL to the annular Khovanov
homology of L (with some grading information sacrificed). In the next section, we
show that this spectral sequence indeed exists for some families of annular links, and is
likely to exist in general by way of a bicomplex very similar to the AKhTate bicomplex.

8 The Khovanov–Tate bicomplex

We can similarly define the Khovanov–Tate bicomplex KhTate.D. zL// by replacing the
vertical differentials @AKh in AKhTate.D. zL// with the Khovanov differential @Kh .

Conjecture 6 Let zL be a 2–periodic link in S3 with quotient link L. There is a
spectral sequence with

E1
Š Kh. zL/˝F2

F2Œ�; �
�1�� E1 Š AKh.L/˝F2

F2Œ�; �
�1�:

This would in turn imply the following cascade of rank inequalities:

rkF2
AKh. zL/� rkF2

Kh. zL/� rkF2
AKh.L/� rkF2

Kh.L/;

where the first and third inequalities are given by the k–grading filtration on CKh.D. zL//
and CKh.D.L//.

In Section 8.1 we give abbreviated proofs of the Kh analogues of the results from the
AKh case which support Conjecture 6. But first, we discuss holistic reasons why we
would expect this conjecture to hold.

Remark 41 Aside from the proofs of theorems given in Section 8.1, this conjecture
would not be hard to believe. H�.Tot.KhTate// is supposed to capture information about
both the periodic link and the involution witnessing the symmetry, so the presence of
the braid axis in S3 is inherently captured in the data of the KhTate bicomplex. Hence
H�.Tot.KhTate// should take on the form of an annular version of Khovanov homology.
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x�

xC

xC˝xC

xC˝x� x�˝xC

x�˝x�

Merge map m

x�

xCxC˝xC

xC˝x� x�˝xC

x�˝x�

Split map �

Figure 26: The Khovanov differentials. These do not depend on the base-
point � , so x can stand for v or w .

Furthermore, Seidel and Smith proved the rank inequality for symplectic Khovanov
homology [23], which is known to be equivalent to Khovanov homology over ground
rings of characteristic 0 [1]:

rkF2
Khsymp. zL/� rkF2

Khsymp.L/:

They conjecture that symplectic Khovanov homology is also isomorphic to Khovanov
homology in characteristic 2 [22], so some of the rank inequalities implied by this
conjecture agree with their result.

8.1 Analogous statements in the KhTate case

Khovanov homology can be viewed as a deformation of annular Khovanov homology,
defined for knots in S3 . This is why we have been denoting the underlying vector
space for the annular Khovanov complex of a link diagram by CKh; this is the same
underlying vector space as in the Khovanov complex. Since there is no basepoint in
the link diagram, the Khovanov distinguished generators are only doubly graded, by
the homological i–grading and the quantum j –grading. There are only two types of
edge maps: merge and split. Their definitions are shown in Figure 26 using the dot and
arrow notation we used to describe the AKh differentials in back in Section 3.3.

Let hvE and vhE denote the spectral sequences induced by the rowwise and columnwise
filtrations, respectively, of the bicomplex KhTate.D. zL//DCKh.D. zL//˝F2

F2Œ�; �
�1�,

where @v D @Kh and @h D 1C �# .

Lemma 42 The maps @Kh and �# commute.
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Proof We need to check that the two types of edge maps (merge and split) commute
with �# . This is easily checked, and clear from thinking about the involution acting on
the saddle cobordism representing the merge or split map, just as in the AKh cases.

Lemma 43 vhE1 Š Kh. zL/˝F2
F2Œ�; �

�1�.

Proof This follows from the same argument as in the proof of Lemma 23.

Lemma 44 hvE1 is generated by the equivariant generators of KhTate.D. zL//. Hence
if r is odd, hvdr D 0.

Proof Since the rows of the KhTate.D. zL// bicomplex are identical to those of the
AKhTate.D. zL// complex, this is equivalent to Lemma 24. The second statement follows
from the first just as in the proof of Lemma 26.

Lemma 45 Every component of hvd2 is induced by the cancellation of a �# arrow at
a row corresponding to an odd Hamming weight.

Proof The proof of Lemma 27 also holds in this case.

Proposition 46 There is a one-to-one correspondence

fgenerators of hvE2
g  ! fgenerators of CKh.L/˝F2

F2Œ�; �
�1�g; zv ! v

induced by � .

Proof By Lemma 44, we have already identified the generators of hvE2 with the
equivariant marked resolutions, which the proof of Proposition 29 shows to be in
bijection with the generators of CKh.D.L//˝F2

F2Œ�; �
�1� (since this is the underlying

vector space in both the KhTate.D.L// and AKhTate.D.L// bicomplexes).

Proposition 47 Under the correspondence above, each line with �2 slope in the
bicomplex .hvE2; hvd2/ is isomorphic to the complex .CKh.D.L//; @AKh/.

Proof Again, we just need to compute the induced length-2 differentials. Since there
are six types of AKh differentials, we can verify them case-by-case. The computations
are shown in Figures 27 through 32.

Since the proof that higher differentials vanish relies on the k–grading, we cannot
use the same methods to determine whether higher differentials vanish in the KhTate

case. However, the k–grading is only needed when considering atoms of type E (see
Section 5.4), so one can still consider special cases where this obstruction is not needed
for the conjecture to hold.
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� �

v�

vC vCw�

v�w�

vCwC

v�wC vCw�w�

vCwCw�

v�w�w�

v�wCw�

vCw�wC

vCwCwC

v�w�wC

v�wCwC

Figure 27: Type A : zv! zv zw for Khovanov differentials

� �

v�

vC

vCw�

v�w�

vCwC

v�wC

vCw�w�

vCwCw�

v�w�w�

v�wCw�

vCw�wC

vCwCwC

v�w�wC

v�wCwC

Figure 28: Type D : zv zw! zv for Khovanov differentials

��

w�w�

wCw� w�wC

wCwC

w�

wC vCv�

v�v�

vCvC

v�vC

Figure 29: Type B : zw! zvzv for Khovanov differentials
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��

w�w�

wCw� w�wC

wCwC

w�

wC

vCv�

v�v�

vCvC

v�vC

Figure 30: Type E : zvzv! zw for Khovanov differentials
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wCwC

wCw�w�

wCwCw�

w�w�w�

w�wCw�

wCw�wC

wCwCwC

w�w�wC

w�wCwC wCwCw�w�

w�w�w�w�

wCwCwCwC
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Figure 31: Type C : zw! zw zw for Khovanov differentials
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wCw�

w�w�

w�wC

wCwC

wCw�w�

wCwCw�

w�w�w�

w�wCw�

wCw�wC

wCwCwC

w�w�wC

w�wCwC

wCwCw�w�

w�w�w�w�

wCwCwCwC

w�w�wCwC

Figure 32: Type F: zw zw! zw for Khovanov differentials

8.2 Positive and negative braid closures

Recall that the k–grading is used in the proof of Theorem 1 only when the j –grading
was insufficient, namely in the situation where all the first equivariant steps through
the subcube are E atoms. From this we deduce that Conjecture 6 holds for “mostly
negative” links.

Theorem 7 If the annular braid closure LD y̌ has a diagram with at most 1 positive
crossing, then the spectral sequence in Conjecture 6 exists and the cascade of rank
inequalities holds.

Proof The proof of Theorem 1 relies mostly on the j –grading to prove that the hvE

spectral sequence collapses on page hvE3 , except for the case of the generator vCvC
in the starting resolution of type E atoms. In the KhTate case, again the j –grading
is sufficient for all cases except for type E , so for cases where at most one atom of
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type E appears, longer differentials cannot exist. This corresponds to the case where
Cube.D.L// has at most one edge corresponding to a change of resolution from two
nontrivial circles to two trivial circles. This means that the all-zeros resolution of D.L/
corresponds to at most one braid-like resolution; that is, the braid ˇ has at most one
positive crossing.

On the other hand, we cannot use the same method to prove the existence of the spectral
sequence for “mostly positive” braid closures. However, we can use duality in Khovanov
and annular Khovanov homology to show that the cascade of rank inequalities still
holds in this case.

Corollary 8 If the annular braid closure LD y̌ has a diagram with at most 1 negative
crossing, then the cascade of rank inequalities holds.

Proof Let L be a link in S3 and D a diagram of L. Let L! denote the mirror of L,
and D! the dual diagram to D (switch the signs of all crossings). Observe that the
complex .CKh.D/; @Kh/ is dual to .CKh.D!/; @Kh/. The cohomology of CKh.D/ is
isomorphic to the homology of CKh.D!/, which in turn is isomorphic to the cohomology
of CKh.D!/, as we are working over field coefficients. (It is now important to note that
what we have been calling “Khovanov homology” is actually a cohomology theory.)
Therefore rkF2

Kh.D/ D rkF2
Kh.D!/. For an annular link L � A � I , the above

paragraph holds analogously for annular Khovanov (co)homology. Therefore it follows
from Theorem 7 that the cascade of rank inequalities also holds for mostly positive
braid closures.

Aside from proving the conjecture, many related questions remain.

Question 48 Are there other families of links for which the conjecture holds? Do
certain steps in the proof for the AKhTate spectral sequence point to other obstructions
to longer differentials for the KhTate spectral sequence? What are some other algebraic
conditions on a braid closure which guarantee that the conjecture holds?

Question 49 While Khovanov-thin links have been studied for some time, at present
I am unaware of any explorations of “annular Khovanov-thin links”. One could define
an annular link L to be AKh–thin if for each pair .j ; k/ of quantum and sl2 weight-
space gradings, AKhj ;k is supported on two adjacent i–gradings. Then AKh–thinness
of the quotient link L suffices for the spectral sequence in Conjecture 6, since all
differentials after page hvE3 are too long in i–degree to be nontrivial. Which classes
of knots or links are AKh–thin?
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8.3 Obstructing 2–periodicity

One motivation for pursuing Conjecture 6 arises from the study of obstructions to
periodicity in links. The present method may overcome the following difficulties
encountered by prior work.

First, obstructing p–periodicity for small p is particularly difficult. In particular,
Murasugi’s Jones and Alexander polynomial congruences [16; 17] are weaker for pD 2

as mod 2 congruences only detect parity differences in coefficients. Comparing ranks in
categorified invariants can potentially detect more differences. Borodzik and Politarczyk
choose to work with the Khovanov polynomial rather than a graded Euler characteristic
for this reason (see page 2 of [6]); however, their obstruction is only valid for p > 3.

Second, sometimes obstructions to knot periodicity do not extend to links with multiple
components. For example, Hendricks’ rank inequality for bHFK pertains only to knots
(see Section 3.2 in [12]). The present methods do not depend on the number of link
components.

In this section, we formulate some frameworks for obstructing 2–periodicity as conse-
quences of Theorem 1 and of various portions of Conjecture 6, including the special
cases of Theorem 7 and Corollary 8.

Notation 50 Throughout this section, we fix the following notation. The symbols L

and zL indicate annular links (in A�I ), with ŒL� and Œ zL� denoting their isotopy classes
as links in S3 . Since our frameworks consider a potentially periodic link zLD yT or Œ zL�
and compare it with a potential quotient link L or ŒL�, a priori we do not know whether
zLD yT 2 .

Corollary 2 can be framed as an obstruction as follows.

Corollary 51 Let L D yT and zL be annular links. Suppose there is some .j ; k/
bigrading for which rkF2

AKh2j�k;k. zL/� rkF2
AKhj ;k.L/. Then zL¤ yT 2 .

Now suppose a weaker version of Conjecture 6 were true; that is, suppose that the rank
inequality holds for Khovanov homology. (Recall that Seidel and Smith proved this
rank inequality holds for symplectic Khovanov homology over F2 [23], which is to
date still only conjectured to be equivalent to Khovanov homology over F2 .)

Conjecture 52 Let ŒL� and Œ zL� be two links in S3 . If rkF2
Kh.Œ zL�/� rkF2

Kh.ŒL�/,
then Œ zL� is not 2–periodic with quotient link ŒL�. In other words, there are no represen-
tatives zL 2 Œ zL� and L 2 ŒL� such that LD yT and zLD yT 2 .
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Remark 53 By comparing Propositions 29 and 46, it is clear that the present method
will not yield a rank inequality for Khovanov homology splitting along any gradings,
because the correspondence between equivariant generators of CKh.D. zL// and the
generators of CKh.D.L// indicates a dependence on the position of the basepoint via
the k–grading. So, whenever we use rank inequalities involving Khovanov homology,
we must use the rank of the entire homology.

For example, we deduce the following obstruction from Theorem 7 (and Corollary 8):

Corollary 54 Let L D y̌ be an annular link which admits a braided annular dia-
gram D. y̌/ with at most one negative (or at most one positive) crossing.

� If rkF2
Kh.Œ zL�/� rkF2

Kh.ŒL�/, then Œ zL� is not 2–periodic with quotient link ŒL�.

� If rkF2
Kh.Œ zL�/� rkF2

AKh.L/, then Œ zL�¤ Œ y̌2�.
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