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Euler characteristics and actions of automorphism groups
of free groups

SHENGKUI YE

Let M r be a connected orientable manifold with the Euler characteristic �.M / 6�

0 mod 6 . Denote by SAut.Fn/ the unique subgroup of index two in the automorphism
group of a free group. Then any group action of SAut.Fn/ (and thus the special
linear group SLn.Z/) with n � r C 2 on M r by homeomorphisms is trivial. This
confirms a conjecture related to Zimmer’s program for these manifolds.

57S20; 57S17

1 Introduction

Let SLn.Z/ be the special linear group over integers. There is an action of SLn.Z/ on
the sphere Sn�1 induced by the linear action on the Euclidean space Rn . It is believed
that this action is minimal in the following sense.

Conjecture 1.1 Any action of SLn.Z/ with n�3 on a compact connected r –manifold
by homeomorphisms factors through a finite group action if r < n� 1.

The smooth version of this conjecture was formulated by Farb and Shalen [8], and is
related to the Zimmer program concerning group actions of lattices in Lie groups on
manifolds (see the survey articles Fisher [9] and Zimmer and Morris [17] for more
details). When r D 1, Conjecture 1.1 is already proved by Witte [15]. Weinberger [14]
confirms the conjecture when M D T r is a torus. Bridson and Vogtmann [5] confirm
the conjecture when M D Sr is a sphere. Ye [16] confirms the conjecture for all flat
manifolds. For C 1Cˇ group actions of a finite-index subgroup in SLn.Z/, one of the
results proved by Brown, Rodriguez-Hertz and Wang [7] confirms Conjecture 1.1 for
surfaces. For C 2 group actions of cocompact lattices, Brown, Fisher and Hurtado [6]
confirms Conjecture 1.1. Note that the C 0 actions could be very different from smooth
actions. It seems that very few other cases have been confirmed (for group actions
preserving extra structures, many results have been obtained; see [9; 17]).
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Let SAut.Fn/ denote the unique subgroup of index two in the automorphism group
Aut.Fn/ of the free group Fn . Note that there is a surjection �W SAut.Fn/! SLn.Z/

given by the abelianization of Fn . In this note, we obtain the following general result
on topological actions.

Theorem 1.2 Let M r be a connected (resp. orientable) manifold with the Euler
characteristic �.M / 6� 0 mod 3 (resp. �.M / 6� 0 mod 6). Then any group action of
SAut.Fn/ with n> r C 1 on M r by homeomorphisms is trivial.

Since any group action of SLn.Z/ could be lifted to an action of SAut.Fn/, Theorem 1.2
confirms Conjecture 1.1 for orientable manifolds with nonvanishing Euler characteristic
modulo 6.

Remarks 1.3 (i) The bound of n cannot be improved, since SAut.Fn/ acts through
SLn.Z/ nontrivially on Sn�1 .

(ii) Belolipetsky and Lubotzky [1] prove that for any finite group G and any dimension
r � 2, there exists a hyperbolic manifold M r such that Isom.M / Š G . Therefore,
SLn.Z/ and thus SAut.Fn/ could act nontrivially through a finite quotient group on
such a hyperbolic manifold. This implies that the condition on the Euler characteristic
could not be dropped.

(iii) To satisfy the assumption on the Euler characteristic, the dimension r has to
be even. There are however no further restrictions on r , as the following example
shows. Let fgig be a sequence of nonnegative integers with gi 6� 1 mod 3 and †gi

an
orientable surface of genus gi . For any even number r ,

M r
D†g1

�†g2
� � � � �†gr=2

has nonzero (mod 6) Euler characteristic and thus satisfies the condition of Theorem 1.2.

Our proof of Theorem 1.2 relies on torsion and so will not be applicable to finite-index
subgroups. Actually, Theorem 1.2 does not hold for general finite-index subgroups.
For example, let q < Z be a nontrivial ideal and C a nontrivial cyclic subgroup of
SLn.Z=q/. Let f W SAut.Fn/

�
�! SLn.Z/! SLn.Z=q/ be the group homomorphism

induced by quotient ring homomorphism. The group f �1.C / could act nontrivially
on S2 by rotations through C . By a profound result of Grunewald and Lubotzky [11,
Corollary 1.2], there is a group homomorphism � from a finite-index subgroup G of
SAut.Fn/ with n � 3 to SLn�1.Z/ such that Imf is of finite index. Therefore, the
group G could act through SLn�1.Z/ on Sn�2 , which is an infinite-group action.
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2 Proofs

The cohomology n–manifold mod p (a prime) considered in this article will be
as in Borel [2]. Roughly speaking, a cohomology n–manifold mod p is a locally
compact Hausdorff space which has a local cohomology structure (with coefficient
group Z=p ) resembling that of Euclidean n–space. Let L be Z or Z=p . All homology
groups in this section are Borel–Moore homology groups with compact supports and
coefficients in a sheaf A of modules over L. The homology groups of X are denoted by
H c
�.X IA/ and the Alexander–Spanier cohomology groups (with coefficients in L and

compact supports) are denoted by H�c .X IL/. We define the cohomology dimension
dimL X D minfn W H nC1

c .U IL/ D 0 for all open U � X g. If L D Z=p , we write
dimp X for dimL X. For integer k � 0, let Ok denote the sheaf associated to the
presheaf U 7! H c

k
.X;XnU IL/. An n–dimensional homology manifold over L

(denoted by n–hmL ) is a locally compact Hausdorff space X with dimL X <C1,
and Ok.X IL/D 0 for p¤ n and On.X IL/ is locally constant with stalks isomorphic
to L. The sheaf On is called the orientation sheaf. There is a similar notion of
cohomology manifold over L, denoted by n–cmL (see [4, page 373].

Topological manifolds are (co)homology manifolds over L.

In order to prove Theorem 1.2, we need several lemmas.

Lemma 2.1 (Borel [2, Theorem 4.3, page 182]) Let G be an elementary p–group
operating on a first-countable cohomology n–manifold X mod p . Let x 2 X be a
fixed point of G on X and let n.H / be the cohomology dimension mod p of the
component of x in the fixed-point set of a subgroup H of G . If r D n.G/, we have

n� r D
X
H

.n.H /� r/;

where H runs through the subgroups of G of index p .

Lemma 2.2 (Mann and Su [13, Theorem 2.2]) Let G be an elementary p–group of
rank k operating effectively on a first-countable connected cohomology r –manifold X

mod p . Suppose dimp F.G/D r0 � 0, where F.G/ is the fixed-point set of G on X.
Then k � 1

2
.r � r0/ if p ¤ 2 and k � r � r0 if p D 2.

Let X be an oriented cohomology r –manifold X over Z (in the sense of Bredon [3]).
A homeomorphism f W X !X is orientation-preserving if the orientation is preserved.
In the following lemma, we consider the case of orientation-preserving actions.
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Lemma 2.3 Let G be a nontrivial elementary 2–group of rank k operating effec-
tively on a first-countable connected oriented cohomology r –manifold X over Z by
orientation-preserving homeomorphisms. Suppose dim2 F.G/D r0 � 0, where F.G/

is the fixed-point set of G on X. Then k � r � 1� r0 .

Proof Note that the manifold X is also a cohomology r –manifold over Z=2 and the
fixed-point set Fix.g/ is a cohomology manifold over Z=2 by Smith theory (see [2,
Theorem 2.2 and the bottom of page 78]). If there is a nontrivial element g 2G such
that the dimension of the fixed-point set Fix.g/ is r , the element g acts trivially by
invariance of domain (see Bredon [4, Corollary 16.19, page 383]). This is a contradiction
to the assumption that G acts effectively. Therefore, we could assume that Fix.g/ is
of nontrivial even codimension by Bredon [2, Theorem 2.5, page 79]. (We use the
assumption that X is a cohomology manifold over Z.) Now the lemma becomes
obvious for r D 1. When r D 2, the dimension of Fix.H / is zero for any nontrivial
subgroup H <G . If r D 2 and k D 1, the fixed-point set Fix.G/ is of dimension 0

and the statement holds. If r D 2 and k � 2, this would be impossible by Borel’s
formula in Lemma 2.1.

Choose a nontrivial element g2G such that the fixed-point set Fix.g/ is of the maximal
dimension among all nontrivial elements in G . Fix a connected component M of
Fix.g/ containing a connected component of F.G/ with the largest dimension. Choose
a decomposition G D hgi

L
G0 for some subgroup G0 < G . The action of the

complement G0 leaves M invariant. If some nontrivial element h 2G0 acts trivially
on M, let H Dhg; hiŠ .Z=2/2 . By the assumption that the fixed-point set Fix.g/ is of
maximal dimension, each nontrivial element in H has its fixed-point set of dimension
dim2 Fix.g/. This is impossible by Borel’s formula in Lemma 2.1. Therefore, the
action of G0 on M is effective. Note that Fix.g/ is a cohomology manifold over Z=2

(by Smith theory) of dimension at most r�2. Thus the rank of G0 is at most r�2�r0

by Lemma 2.2. Therefore,

k D rank.G0/C 1� r � 1� r0:

The inequality in Lemma 2.3 is sharp, by considering the linear action of the diagonal
subgroup .Z=2/n�1 < SLn.Z/ on Rn .

Let X be a locally compact Hausdorff space and a finite group G D .Z=p/n acting
on X by homeomorphisms. In the remaining part of this article, we suppose that
the Euler characteristic

P
i.�1/i dim H i.X IZ=p/ DW �.X IZ=p/ is defined. The
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following results are well known from Smith theory (see [2, Theorem 3.2 on page 40
and Theorem 4.4 on pages 42–43]).

Lemma 2.4 We have the following.

(i) Suppose that the cyclic group GDZ=p operates freely on X, with dimZ X <1

and H�.X IZ=p/ finite-dimensional. Then H�.X=GIZ=p/ is finite-dimen-
sional and

�.X IZ=p/D p�.X=GIZ=p/:

(ii) Suppose that the cyclic group Z=p operates on X, with dimZ=p X < 1

and H�.X IZ=p/ finite-dimensional. Let F be the fixed-point set. Then
H�.F IZ=p/ and H�.X �F IZ=p/ are finite-dimensional and

�.X IZ=p/D �.X �F IZ=p/C�.F IZ=p/:

Denote by Gx the stabilizer of x 2 X. Suppose that X D
Sn

iD0 Xi is the union of
subspaces Xi D fx 2X W order.Gx/D pig. It is clear that each Xi is G –invariant and
Xn D Fix.G/.

Theorem 2.5 Suppose that G is a (not necessarily abelian) p–group of order pn

acting on X. Then

�.X IZ=p/D
nX

iD0

�.Xi IZ=p/D
nX

iD0

pn�iai

for some integers ai . Actually, we have �.Xi IZ=p/D pn�iai .

Proof We prove the theorem by induction on n. When nD 0, the statement is trivial
by the assumption that the Euler characteristic �.X IZ=p/ is defined. When nD 1,
this is Lemma 2.4 by noting that F DX1 and X0DX �F. Choose a to be an order-p
element in the center of G . Let F D Fix.a/ and X0 D X �F. The quotient group
G=hai acts on the quotient space X0=hai and F. Let

Yi D
˚
x 2 .X �F /=hai W j.G=hai/xj D pi

	
;

Zi D
˚
x 2 F W j.G=hai/xj D pi

	
:

We will denote �.X IZp/ by �.X / for short. By the induction step, we have that

�..X �F /=hai/D

n�1X
iD0

�.Yi/D

n�1X
iD0

pn�1�ia0i ;
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and

�.F /D

n�1X
iD0

�.Zi/D

n�1X
iD0

pn�1�ibi :

The first equality in the statement of the theorem is proved by noting that Xi D

q�1.Yi/[Zi�1 with the convention that Z�1D∅; where qW .X �F /! .X �F /=hai

is the projection. Therefore, we have

�.X /D �.X �F /C�.F /

D p�..X �F /=hai/C�.F /

D pna00C

n�1X
iD1

pn�i.a0i C bi�1/C bn�1:

The proof is finished by choosing a0 D a0
0

, ai D a0i C bi�1 for 1 � i � n� 1 and
an D bn�1 . The last statement — that �.Xi IZ=p/ D pn�iai — could be proved by
noting Xi D q�1.Yi/[Zi�1 and a similar induction argument.

For a group G and a prime p , let the p–rank be rkp.G/D supfk W .Z=p/k ,!Gg. It
is possible that rkp.G/DC1.

Theorem 2.6 Let M r be a first-countable connected cohomology r –manifold over
Z=p and Homeo.M / the group of self-homeomorphisms. (We adopt the convention
that pn D 1 when n< 0.) Then the p–rank satisfies

prkp.Homeo.M //�Œr=2�
j�.M IZ=p/

when p is odd and
2rk2.Homeo.M //�r

j�.M IZ=2/

when pD 2. If M r with r � 1 is an oriented connected cohomology r –manifold over
Z and HomeoC.M / is the group of orientation-preserving self-homeomorphisms, we
have

2rk2.Homeo.M //�rC1
j�.M IZ=2/:

Proof Suppose that an elementary p–group G D .Z=p/np acts effectively on M for
npD rkp.Homeo.M //. If the group action is free, we have pnp j�.M / by Theorem 2.5
and the statements are obvious. In the following, we suppose that the group action is not
free. We let X DM and Xi as in Theorem 2.5 for the sake of sticking to the notation of
Theorem 2.5. Denote by Gx the stabilizer of x 2Xi for nonempty Xi . By Lemma 2.2
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we have i WD rank.Gx/�
r
2

if p¤ 2 and rank.Gx/� r if pD 2. Therefore, we have
pnp�i � pnp�r=2 when p ¤ 2 (or pnp�i � pnp�r when p D 2). This implies that
pnp�Œr=2� j�.M IZ=p/ (or 2n2�r j�.M IZ=2/ when p D 2) considering Theorem 2.5.
A similar argument proves the orientation-preserving case using Lemma 2.3, by noting
that the subgroup Gx acts on M orientation-preservingly if G does.

Remark 2.7 When M is a surface, Theorem 2.6 was already known to Kulkarni [12].

Fixing a basis fa1; : : : ; ang for the free group Fn , we define several elements in
Aut.Fn/ as the following. The inversions are defined as

ei W

�
ai 7! a�1

i ;

aj 7! aj if j ¤ i;

while the permutations are

.ij /W

8<:
ai 7! aj ;

aj 7! ai ;

ak 7! ak if k ¤ i; j:

The subgroup N < Aut.Fn/ generated by all ei for i D 1; : : : ; n is isomorphic to
.Z=2/n . The subgroup Wn<Aut.Fn/ is generated by N and all .ij / for 1� i¤j �n.
Denote SWnDWn\SAut.Fn/ and SN DN\SAut.Fn/. The element �De1e2 � � � en

is central in Wn and lies in SAut.Fn/ precisely when n is even.

The following result is Proposition 3.1 of [5].

Lemma 2.8 Suppose n � 3 and let f be a homomorphism from SAut.Fn/ to a
group G . If f jSWn

has nontrivial kernel K , then one of the following holds:

(1) n is even, K D h�i and f factors through PSL.n;Z/,

(2) K D SN and the image of f is isomorphic to SL.n;Z=2/, or

(3) f is the trivial map.

When n D 2m is even, for each 1 � i � m define Ri W Fn! Fn by a2i�1 7! a�1
2i

,
a2i 7! a�1

2i
a2i�1 and aj 7! aj for j ¤ 2i; 2i �1. Let T < SAut.Fn/ be the subgroup

generated by all Ri for i D 1; : : : ;m. By Lemma 3.2 of Bridson and Vogtmann [5],
T is isomorphic to .Z=3/m . The following result is Proposition 3.4 of [5].

Lemma 2.9 For m�2 and any group G , let �W SAut.F2m/!G be a homomorphism.
If �jT is not injective, then � is trivial.

Algebraic & Geometric Topology, Volume 18 (2018)



1202 Shengkui Ye

Proof of Theorem 1.2 Let f W SAut.Fn/! Homeo.M / be a group homomorphism.
Since the Euler characteristics satisfy �.M IZ=2/D �.M IZ=3/ (see [3, Theorem 5.2
and Corollary 5.7]), they will be simply denoted by �.M /. Since any action of
SAut.Fn/ on a nonorientable manifold M can be uniquely lifted to be an action on the
orientable double covering M (see [4, Corollary 9.4, page 67]), we may assume that
M is oriented and the group action is orientation-preserving by noting that SAut.Fn/

is perfect (see [10]). When M is nonorientable and �.M / 6� 0 mod 3, we would still
have �.M / 6� 0 mod 3.

When n D 3, the manifold M is of dimension 1. This case is already proved by
Bridson and Vogtmann [5]. Suppose that n � 4. Choose mD

�
n
2

�
(the integer part)

and T Š .Z=3/m . Let SAut.F2m/ be the subgroup of SAut.Fn/ fixing an if n is odd.
Note that SAut.Fn/ is normally generated by a Nielsen automorphism in SAut.F2m/

(see [10]). If f is not trivial, the restriction f jSAut.F2m/ is not trivial and thus the map
f jT is injective by Lemma 2.9. Theorem 2.6 implies that 3j�.M /, by noting that
n� r � 2. This is a contradiction in the nonorientable case. If Imf contains a copy
of .Z=2/n�2 , Theorem 2.6 would imply that 2j�.M /. This would be a contradiction
to the assumption that �.M / 6� 0 mod 6 for the orientable manifold M. Therefore,
the restriction f jSN is not injective and case (1) in Lemma 2.8 cannot happen, since
SN Š .Z=2/n�1 . If case (2) happens, the image satisfies Imf D SL.n;Z=2/. Let
x1i.1/ denote the matrix with ones along the diagonal, 1 in the .1; i/th position and
zeros elsewhere. Since the subgroup hx12.1/;x13.1/; : : : ;x1n.1/i Š .Z=2/

n�1 , we
still have 2j�.M /. This is a contradiction, which implies that f has to be trivial.

From the above proof, we see that Theorem 1.2 also holds for cohomology manifolds
over Z.

Remark 2.10 For a specific n, the conditions of Theorem 1.2 may be improved. For
example, when n is odd, Case (1) in Lemma 2.8 cannot happen. A similar proof as that
of Theorem 1.2 shows that any action of SAut.F2kC1/ with k � 1 on an orientable
manifold M r with �.M / 6� 0 mod 12 (resp. �.M / 6� 0 mod 2) by homeomorphisms
is trivial when 2k > r (resp. 2k � r ).
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