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Corrigendum to the article
The simplicial boundary of a CAT(0) cube complex

MARK F HAGEN

We correct Theorem 3.10 of [Algebr. Geom. Topol. 13 (2013) 1299–1367] in the
infinite-dimensional case. No correction is needed in the finite-dimensional case.

20F65

In this note, we correct Theorem 3.10 of [4] and record consequent adjustments to later
statements. In [4], we worked in a CAT(0) cube complex X with the property that there
is no infinite collection of pairwise-crossing hyperplanes. Such a complex may still
contain cubes of arbitrarily large dimension. It is in this situation that Theorem 3.10
requires correction; under the stronger hypothesis that dim X <1, the theorem and its
consequences hold as written in [4]. The extant results that use the simplicial boundary
(see Behrstock and Hagen [1], Chatterji, Fernós and Iozzi [2], Durham, Hagen and
Sisto [3], Hagen [5] and Hagen and Susse [6]) all concern finite-dimensional CAT(0)
cube complexes and are thus unaffected.

Acknowledgement I thank Elia Fioravanti for drawing my attention to the infinite-
dimensional case and for reading a draft of this note.

Corrected statement and proof of Theorem 3.10

Throughout, X denotes a CAT(0) cube complex which, according to standing hypothe-
ses in [4], has countably many cubes and hyperplanes. The following replaces [4,
Theorem 3.10]:

Theorem A Suppose that every collection of pairwise crossing hyperplanes in X is
finite. Let v be an almost-equivalence class of UBSs. Then v has a representative of
the form V D

F
i2I Ui , where I is a finite or countably infinite set, each Ui is minimal,

and for all distinct i; j 2 I , if H 2 Uj , then H crosses all but finitely many elements
of Ui , or the same holds with the roles of i and j reversed. Moreover, if dim X <1,
then the following hold:
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� k D jI j � dim X ;

� for all 1� i < j � k , if H 2 Uj , then H crosses all but finitely many elements
of Ui ;

� if V 0D
F

i2I 0 U 0i is almost-equivalent to V , and each U 0i is minimal, then jI 0jDk

and, up to reordering, Ui and U 0i are almost equivalent for all i .

Remark 1 Under the additional hypothesis that X is finite-dimensional, Theorem A
can be applied in [4] everywhere that Theorem 3.10 is used; see Remark 3.

Remark 2 Consider the following wallspace. The underlying set is R2 , and for each
integer n� 0, we have a set fH n

i gi�0 of walls such that:

� H n
i is the image of an embedding R!R2 for all i; n;

� each fH n
i gi�0 has H n

i separating H n
iC1

from H n
i�1

for all i � 1;

� whenever n<m, we have that H m
i crosses H n

j for j >m and does not cross H n
j

for j �m.

Let X be the dual cube complex, whose hyperplanes we identify with the corresponding
walls. Then each fH n

i gi�0 is a minimal UBS, and V D
F

n�0fH
n
i gi�0 is a UBS

satisfying the first conclusion. However, V D
�F

n�0fH
n
i gi>0

�
t V 0 , where V 0 D

fH n
1
gn�0 is a minimal UBS. So, the finite dimension hypothesis is needed to obtain

the “uniqueness” clause.

Proof of Theorem A Let V be a UBS representing v . We first establish some general
facts.

Chains A chain in V is a set fUig
1
iD0
� V of hyperplanes with the property that Ui

separates UiC1 from Ui�1 for all i � 1. The chain fUig
1
iD0

is inextensible in V if
there does not exist V 2V one of whose associated halfspaces contains Ui for all i � 0.
Since X contains no infinite set of pairwise crossing hyperplanes, and V contains no
facing triple, any infinite subset of V contains a chain. Since V is unidirectional, any
infinite W � V contains a chain which is inextensible in W .

Almost-crossing Let A;B�V be UBSs. We write A�B if B crosses all but finitely
many A 2A, for all B 2 B . Note that we can have A� B and B �A simultaneously
(for instance, consider the hyperplanes in the standard cubulation of E2 ); in this case
we say A;B are tied. We have:
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(i) By definition, if A�B and C is another UBS with B� C , then A� C . Similarly,
if A� B and C � B , then C �A.

(ii) Suppose that A;B; C are minimal UBSs contained in the UBS V . Suppose that
A� B and B � C . Then one of the following holds:
� A� C ;
� A and B are tied and C �A.

Indeed, this follows by considering A, B , C as the inseparable closures of chains
(see below) and using that A[B[C�V is unidirectional and contains no facing
triple.

Existence of the decomposition The UBS V contains a minimal UBS U1 . Indeed,
V contains a chain, being infinite, and contains the inseparable closure of the chain,
being inseparable. The proof of [4, Lemma 3.7] shows that this inseparable closure
contains a minimal UBS.

Being infinite and unidirectional, U1 contains a chain C1 D fU
1
i g
1
iD0

which is inexten-
sible in U1 . By adding finitely many hyperplanes of V to U1 , we can assume that C1 is
inextensible in V . Moreover, the inseparable closure C1 of C1 in V contains a UBS (as
above) and is contained in U1 , whence, by minimality of U1 , we have U1DF1[C1 for
some finite F1 . We can remove F1 from U1 without affecting inseparability. Hence
assume that U1 D C1 .

Let V1 D V �U1 . If V1 is finite, then V is almost-equivalent to U1 , and we are done,
with k D 1. Hence suppose that V1 is infinite. Note that V1 is unidirectional and has
no facing triple.

Let V1 D VC
1
tV�

1
, where VC

1
is the set of V 2 V1 such that V crosses all but finitely

many elements of U1 . If V 2 V�
1

, then V crosses U0 , for otherwise V would form a
facing triple with Uj ; Uj 0 for some j ; j 0 . Moreover, V crosses only finitely many Uj .
Indeed, otherwise, V crosses all but finitely many Uj , and hence crosses all but finitely
many hyperplanes in C1 D U1 , and we would have V 2 VC

1
.

If V; V 0 2 V�
1

, and W separates V; V 0 , then W crosses only finitely many elements
of U1 , and hence either W 2 V�

1
or W 2 U1 . Moreover, W crosses U0 . Now, since

U1 D C1 , no element of U1 crosses U0 , so W 2 V�
1

. Hence V�
1

is inseparable.

On the other hand, suppose V; V 0 2 VC
1

and W separates V; V 0 . Then W must cross
all but finitely many elements of U1 , so W 2 VC

1
(the possibility that W 2 U1 is ruled

out since U1 is the inseparable closure of C1 ). Hence VC
1

is inseparable.
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Thus each of VC
1

or V�
1

is either finite or a UBS. By definition, U1�VC
1

. We now check
that, if V�

1
is infinite, then V�

1
� U1 . Define a map f W V�

1
!N by declaring f .V /

to be the largest j for which V crosses Uj . If f �1.j / is infinite for some j , then
f �1.j / contains a chain D , all of whose hyperplanes are separated by Uj from Uj 0

whenever j 0 > j C 1, contradicting unidirectionality of V . Hence f �1.j / is finite for
all j . Together with the facts that each V 2 V�

1
crosses U0 and U1 D C1 , this implies

that V�
1
� U1 . In summary, one of the following holds:

(1) V D U1 t VC
1
t V�

1
, where U1;VC

1
are UBSs and jV�

1
j < 1. In this case,

U1[V�
1

is inseparable, so, by enlarging U1 , we can write V D U1 tVC1 where
U1 � VC

1
.

(2) V D U1tVC1 tV
�
1

, where U1;V�
1

are UBSs and jVC
1
j<1. As above, we can,

by enlarging U1 leaving V unchanged, write V D U1 tV�1 , with V�
1
� U1 .

(3) V D U1 tVC1 tV
�
1

, and V�
1
� U1 � VC

1
.

We now apply the above construction of minimal sub-UBSs to VC
1

(in case (1)), to V�
1

(in case (3)), or to both (in case (2)). Continuing in this way, using the above facts
about �, we find a countable set I and a subset

F
i2I Ui � V such that each Ui is

a minimal UBS, and Ui � Uj or Uj � Ui for all i; j 2 I , and every chain in V is
contained in

F
i2I Ui . Hence V �Ui consists of those hyperplanes of V which do not

lie in any chain. Since any infinite set of hyperplanes in V contains a chain, there are
finitely many such hyperplanes, so V is almost-equivalent to

F
i2I Ui .

Uniqueness and dimension bound when dim X < 1 Observe that for any finite
subset of I , X contains a set of pairwise crossing hyperplanes of the same cardinality,
so jI j D k � dimX <1. The uniqueness statement follows exactly as in the proof
of [4, Theorem 3.10]; finite dimension is needed precisely because that argument uses
that k <1.

Ordering I when dim X < 1 To complete the proof, it suffices to consider the
UBS

Fk
iD1 Ui , where each Ui is a minimal UBS and, for all i; j , either Ui � Uj or

Uj � Ui . Let � be the graph with a vertex for each Ui , with a directed edge from
Ui to Uj if Ui � Uj but Uj 6� Ui . By induction and the properties of � established
above, � cannot contain a directed cycle, ie � is a finite directed acyclic graph, whose
vertices thus admit a linear order respecting the direction of edges. Hence we can order
(and relabel) the Ui so that Ui � Uj when i < j .

Remark 3 The correction of Theorem 3.10 affects the rest of [4] as follows:
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� Since UBSs are not used in Sections 1 or 2, none of the statements there is
affected.

� In Section 3, Theorem 3.10 should be adjusted as above. Following Theorem 3.10,
one should then add the standing hypothesis that X is finite-dimensional. The
same standing hypothesis should be added in Section 4.

� In Section 5, all of the statements involving the simplicial boundary already
hypothesize finite dimension, so no statement in that section is affected.

� In Sections 6.1 and 6.2, the hypothesis that X is strongly locally finite must be
replaced everywhere by the hypothesis that X is locally finite and finite dimen-
sional, because of the dependence on Theorem 3.14.

Remark 4 (the infinite-dimensional case) In the infinite-dimensional, strongly locally
finite case, many results in [4] are still available with sufficient care. For example, one
can still define the simplicial boundary as the simplicial complex associated to the
almost-containment partial ordering on the set of almost-equivalence classes of UBSs,
but Remark 2 shows that in this case, simplices of @

4
X may contain more 0–simplices

than expected. Many statements, when rephrased in terms of UBSs rather than boundary
simplices, still hold in this generality. For example, the proof of Theorem 3.19 still
shows that any UBS whose equivalence class is maximal in the above partial ordering
determines a geodesic ray, and Theorems 3.23 and 3.30 hold as written.
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