Volume 18, issue 2 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Identifying lens spaces in polynomial time

Greg Kuperberg

Algebraic & Geometric Topology 18 (2018) 767–778
Abstract

We show that if a closed, oriented 3–manifold M is promised to be homeomorphic to a lens space L(n,k) with n and k unknown, then we can compute both n and  k in polynomial time in the size of the triangulation of M. The tricky part is the parameter  k. The idea of the algorithm is to calculate Reidemeister torsion using numerical analysis over the complex numbers, rather than working directly in a cyclotomic field.

Keywords
3–manifolds, lens spaces, Reidemeister torsion
Mathematical Subject Classification 2010
Primary: 57M27
Secondary: 65G30, 68Q15, 68W01
References
Publication
Received: 26 April 2016
Revised: 31 December 2017
Accepted: 25 January 2018
Published: 12 March 2018
Authors
Greg Kuperberg
Department of Mathematics
University of California
Davis, CA
United States