Volume 18, issue 2 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Taut branched surfaces from veering triangulations

Michael Landry

Algebraic & Geometric Topology 18 (2018) 1089–1114
Abstract

Let M be a closed hyperbolic 3–manifold with a fibered face σ of the unit ball of the Thurston norm on H2(M). If M satisfies a certain condition related to Agol’s veering triangulations, we construct a taut branched surface in M spanning σ. This partially answers a 1986 question of Oertel, and extends an earlier partial answer due to Mosher.

Keywords
branched surface, Thurston norm, veering triangulation
Mathematical Subject Classification 2010
Primary: 57M99
References
Publication
Received: 2 May 2017
Revised: 21 September 2017
Accepted: 30 September 2017
Published: 12 March 2018
Authors
Michael Landry
Mathematics Department
Yale University
New Haven, CT
United States