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Combinatorial spin structures on triangulated manifolds

RYAN BUDNEY

We give a combinatorial description of spin and spin®—structures on triangulated
manifolds of arbitrary dimension. These encodings of spin and spin®—structures are
established primarily for the purpose of aiding in computations. The novelty of the
approach is that we rely heavily on the naturality of binary symmetric groups to avoid
lengthy explicit constructions of smoothings of PL. manifolds.

57R15; 55835, 57R05

1 Introduction

In this paper a framework for combinatorially representing spin and spin®—structures
on triangulated manifolds in a manner suitable for computer implementation is built.
This should be seen as part of a general effort to merge the techniques of algorithmic
3—manifold theory, such as triangulations, normal surface theory and geometrization,
with elements of 4—manifold theory, where gauge-theoretic invariants often require
additional structures.

The governing perspective on spin and spin®—structures in this paper comes from the
obstruction-theoretic approach to spin structures of Milnor [16]. Although Milnor’s
approach is fundamentally combinatorial in nature, there is some nontrivial work
to translate Milnor’s language into a language a modern computer can use. To this
end, we put combinatorial spin structures in a formalism perhaps most comparable to
Forman’s discrete Morse theory [8]. It is assumed the reader is familiar with obstruction
theory on manifolds along the lines of Milnor and Stasheff [17]. Other references
like Whitehead [21] and Gompf and Stipicz [11] are also excellent resources for basic
obstruction theory.

Relatively flexible triangulations are allowed in this article. For example, unordered
delta complexes (see Hatcher [12]) suffice. The ideal triangulations of Thurston [19],
a further weakening of unordered delta complexes, are also perfectly acceptable. Ideal
triangulations are unordered delta complexes, such that if one removes a finite collec-
tion of vertices, one obtains a manifold. In short, a triangulation in this paper is a
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space constructed by gluing simplices together via affine-linear identifications of their
boundary facets, and where we demand that the characteristic maps of every simplex is
an embedding when restricted to the interior of the simplex.

Readers comfortable with the basics of triangulations, spin structures and obstruction
theory can jump to Section 4 for the primary constructions of this paper. In the literature,
there are several available tools for combinatorially representing 3— and 4-manifolds
with additional structure on their tangent bundles. The Kaplan algorithm [14] was per-
haps the first (see [11, Sections 5.6-5.7] for a modern exposition). Kaplan’s algorithm
gives a simple framework to represent spin structures on a 3—manifold given by an
integral surgery presentation, and provides a simple tool to determine when such spin
structures extend over the bounding 4-manifold. Another combinatorial representation
of 3-manifolds comes from spines, popularized by Matveev [15]. Techniques to
represent spin structures on 3—manifold and 4—manifold spines were developed by
Benedetti and Petronio [1; 2; 3; 4]. The techniques in this paper would be described as
being in the language of the “frame along the dual 1-skeleton” in [4]. Spin®—structures
on simplicially triangulated 3—manifolds can be described as the combinatorial Euler
structures of Turaev [20]. Etienne Gallais [9] has recently used this technique to
study combinatorial Euler structures on triangulated 3—manifolds using Forman’s
combinatorial vector fields to represent Euler structures. One of Gallais’s observations
is that with these techniques, not all combinatorial Euler structures are represented on
delta complexes. Simplicial triangulations are required to capture all spin®—structures
using this technique. We wish to avoid simplicial triangulations, as unordered delta
complexes have shown themselves to be rather efficient means for describing interesting
manifold types in both 3—manifold theory (see Burton, Budney and Pettersson [7]
and Thurston [19]) and 4—manifold theory (see Budney and Hillman [6] and Budney,
Burton and Hillman [5]).

2 Notation, obstruction theory

Throughout this paper, N will be a PL n—manifold that will be endowed with a
triangulation or a CW-structure, often both. If the cell structure is unambiguous, the
i —skeleton will be denoted by N'.

Given a fibre bundle ¥: E — B with fibre F, and a subspace X C B, the restriction
bundle is the map V¥|y—1(x): ¥~ 1(X) = X which also has fibre F. We abbreviate

Vly-10x) by ¥lx.
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A trivialization of a vector bundle ¥: E — B is an ordered k—tuple of vector fields
that forms a basis for each and every fibre. Trivializations correspond to vector bundle
isomorphisms B x R¥ — E via the map (b, x1,...,xg) > Zf;l x;v; (b), where
(Vi1 B— E)jef1,2,... k} is the trivialisation.

A vector bundle y: E — N is orientable if and only if there is a trivialization of V| 1.
Given a trivialization of |1, the homotopy class of its restriction to N is called
an orientation of . If a vector bundle ¥: E — N is orientable, its set of orienta-
tions admits a free transitive action of H°(N, Z,) — the action is given by flipping
orientations on path components of N.

In the language of classifying maps, a vector bundle y: E — N is orientable if and only
if its classifying map N — Gro, x = BOy lifts to the Grassmannian Gr::o = BSOg

of oriented k —subspaces of R°:
BSOy

|

NZ— BO,

An orientation of N is the homotopy class of this lift. The fact that this is equivalent to
the previous definition is described in [16; 17]. The key ingredient in this interpretation
is that SO is the path component of the identity in Og . This implies that the exact
CW-structure on the space N is not relevant to the existence of orientations, which
is one reason to prefer this formalism. If N is a smooth manifold, orientability
and orientations of N refer to orientability and orientations of the tangent bundle
n: TN — N.

We denote the n'* spin group by Spin,,. This is defined as is the unique connected Lie
group which admits an onto 2-to-1 Lie group homomorphism Spin,, — SO, . Since
w150, is cyclic of order 2 or infinite cyclic, this is well defined. A vector bundle
Y: E — N admits a spin structure if the classifying map N — BOj admits a lift
N — BSpin, . A spin structure is a homotopy class of a map N — BSpin; such that
the composite with BSpin, — BOy is a classifying map for the bundle . Since
the homomorphism Spin, — Oy factors as a composition Spin, — SO — O, spin

structures induce orientations:
BSping,

|

N ~—— BSOy

|

BOy
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Since 7SOy >~ Z, for k > 3, the corresponding description for spin structures in the
obstruction-theoretic setting is that ¥: E — N admits a spin structure if and only if
there exists a trivialization of |2 . Given such a trivialization, the homotopy class
of its restriction to N1 is a spin structure. The case k = 2 is special since 71SO;
is infinite cyclic. Typically in the literature people phrase the obstruction-theoretic
formulation as saying v @ ! admits a spin structure, where €': N x R — N is the
trivial 1—dimensional bundle over N, but one could just as easily describe it in terms
of trivializations of 1|1 such that the obstructions to extending over N2 are all even.

The k™ complex spin group Spin, is the group (Sping xSpin,)/Z» = Spiny xz, Spin, .
This means we are taking the product of the k™ spin group with the 2" spin group, and
modding out by one copy of Z, acting diagonally on the product via the covering action
on the respective spin groups. Via projection to the right and left factor, respectively,
this group admits two extensions: Sping — Spinj, — SO, and Spin, — Spinj —
SO = Spiny /Z,. The latter extension is used to define Spin®—structures, and the
former gives the inclusion Spin; — Spiny :

BSpin,,
BSpinj,

N~ BSOy

™~

A vector bundle ¥: E — N admits a spin®—structure if the classifying map N — BOy
admits a lift to BSpinj_ [10]. A spin®—structure is a homotopy class of a map N —
BSpinj, such that the composition with BSpinj — Oy classifies the bundle . To
interpret a spin®—structure, notice that if one composes with the former extension, one

BOy

gets a map N — BSO, which classifies an oriented 2—dimensional vector bundle
over N. Alternatively this is a 1—-dimensional C-bundle over N. If v: E/ — N is the
1-dimensional C-bundle over N classified by this map, then Y ®v: E® E' — N is
classified by the corresponding map N — BSOj x BSO, = B(SOj x SO3). Consider
SOk x SO3 as a subgroup of SOx,,. This group is covered by some subgroup of
Sping , ,, and by design this group is isomorphic to Spin; Xz, Spin, . Thus a Spin°—
structure on a bundle ¥: E — N consists of two things: a complex line bundle
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v: E/ — N and a spin structure on ¥ @ v. Given this, spin®—structures can be readily
transcribed into an obstruction-theoretic formalism. A complex line bundle is classified
by amap N — BSO, = K(Z,?2) and homotopy classes of maps N — K(Z,?2) are
in bijective correspondence with elements of H?(N,Z). Thus a spin®—structure on
N is prescribed by such a cohomology class, together with a homotopy class of a
trivialization of (¥ @ v)|y1 which extends to N2,

When working with a triangulation 7' of a manifold N, we will make heavy use of the
dual polyhedral decomposition. This construction originated in the work of Poincaré,
and is available in [18]. Since these ideas are no longer in wide circulation and we
need some fixed notation to refer to this decomposition, a brief sketch is given. Denote
the standard n—simplex by

A" ={(x0,....,xp) €R" ! x; >0 forall i and xg+x1 +---+x, = L}

Fori €{0,1,...,n} the i" face map of A" is f;: A"~1 — A" given by

fi(wa--,xn—l) - (x()vxl?"'7xi—1’0’xi7xi+15"'axn—l)'
Given a permutation 0 € ¥, 41 = X ({0, 1,...,n}), the induced automorphism of A" is
the map ox: A" — A" given by 0x(x0, X1, ..., Xn) = (Xg=1(0)> Xg=1(1)s - - - s Xg—1(n)) -

An unordered delta complex is a CW—complex X such that the domains of the attaching
maps are the boundaries of simplices (rather than discs), ¢: A" — X #~D, and for
each i, the composite satisfies ¢ o f; = ® o o, where ®: A"~ — X1 jg the
characteristic map of some (n—1)-simplex and o € ¥, is some permutation. If all the
permutations ¢ were the identity, X would be an ordered delta complex.

Let [0,n] = {0,1,...,n}, and let I denote a subset of [0,n]. The dual polyhedral
bit §; of A" is the convex hull of the barycentres of all faces of A" with vertex set
a superset of /. Thus, 8|, is the barycentre of A" and §[p ,]\(;} is the convex hull
of the barycentre of A" together with the barycentre of the i face of A”. One can
define §; via a system of equations, or

81 ={(x0,X1,....xp) € A" :x; > x;j forall i €I and j €[0,n]}.

If T is a triangulation of a manifold N and y: A" — N the characteristic map of a
simplex, y(87) is defined to be a dual polyhedral bit of the triangulation T . Given
an [ —dimensional simplex o of 7, the closed dual (n—i)—cell corresponding to o
is the union of all (n—i)—dimensional dual polyhedral bits corresponding to ¢ in all
the top-dimensional simplices containing o. The collection of all dual cells forms
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Figure 1: Dual polyhedral bits inside a tetrahedron A3

a CW-decomposition of N, called the polyhedral decomposition of N dual to T.
We denote this dual polyhedral decomposition by P throughout the paper. Given
a triangulation 7 or CW—complex P, we denote the set of k—cells by Tj and Py,
respectively, while the k —skeleton we continue to denote by Tk and P¥, respectively.
The key feature of the dual decomposition is that for every i —simplex o € T; there is
one and only one dual (n—i)—cell "~ € P,_; with o Ne”*~" # @. The nonempty
intersection is the barycentre of o.

Generally speaking, if N is a triangulated PL manifold, the tangent bundle TN is not
defined; moreover, it is frequently not unique when it is defined [13]. Thankfully, nons-
moothable PL structures and distinct smoothings of PL structures do not appear below
dimension 7. Thus the regular neighbourhoods of the dual 2—skeleton of a triangulated
PL manifold do have unique smoothings as the links of faces of codimension 1 and
2 are O—spheres and 1—spheres, respectively, which have unique smooth structures;
see [13]. In particular, TN |p2 can be referred to without ambiguity and we can discuss
spin structures on PL manifolds.

3 Geometry of simplices

This section describes some group-theoretic preliminaries related to the geometry
of simplices. Let Sym(X) be the full group of isometries of an object X and let
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Sym™ (X) C Sym(X) be the orientation-preserving subgroup, provided these concepts
make sense. Let D = {(xo,X1,...,Xxn) € R"T1:xg =x; =--- = x,} be the “thin”
diagonal and let A = {(x0,X1,...,X,) € R*T1 : xg +x; 4+ --- 4+ x, = 0} be the
antidiagonal.

Symmetries of A" are determined by how they permute the vertices, thus there is an
identification Sym(A") = %,41 and Sym™ (A?) = A, 4. If we translate A" to the
origin

A%:{(xo"“’xn)eA‘xiZn+1

a linear extension gives an embedding Sym(A)) — SO, +1. The set D is an eigenspace

for all i},

relative to an eigenvalue +1 when the symmetry preserves orientation, and an eigen-
space relative to an eigenvalue —1 when it reverses the orientation of Af.

We will now examine the relations between the symmetric group and the group of
motions of an n—simplex. Let Emb(A", R”+1) be the space of affine-linear embeddings
of the n—simplex in (n+41)—dimensional Euclidean space. The space Emb(A”, R?*1)
has the homotopy type of a Stiefel manifold — the displacement vectors from one
vertex to the remaining vertices give such a map. This Stiefel manifold in turn has the
homotopy type of SO, 1 by Gram—Schmidt.

The group X, 41 acts freely on the right on Emb(A”, R"*1) by relabelling the vertices
of the simplex. The group %, also acts on the left on Emb(A”, R”*1) by relabelling
the coordinate axes of R”*! but we will not need this action. The motion group of
the n—simplex is defined to be 71 (Emb(A*,R"T1)/ ¥, ). Since n > 2 is always
assumed, the homotopy long exact sequence of the bundle

Yn41 — Emb(A", R"1) — Emb(A", R"TH) /2,41
gives us the Z,—central extension
0 — Zy — w1 (Emb(A", R"t1)/%,) - =,41 — 0.

If G is a group and K an abelian group, it is a standard theorem of group cohomology
that the central extensions of G with kernel K, taken up to extension-preserving isomor-
phism, are in bijective correspondence with H?(G, K). It turns out that H?(A,, Z)
is a group of order two provided n > 4. Thus, there is only one nontrivial Z;—central
extension of A,. Schur called it the double cover of A,, also called the binary
alternating group and denoted by either 24, or A, . We use the latter notation. Schur
also went on to show that H2(X,,, Z») is isomorphic to Z% for n > 4; moreover, the
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restriction map H 2(Zp.Z2) — H?*(A,, Z») is onto, thus there are two nonisomorphic
7Z»—central extensions of ,, which contain A, . We will give a geometric interpretation
for one of these extensions. A convenient notation for elements in these extensions is
given by Proposition 3.1.

Proposition 3.1 [22] For all n > 2, there exist groups % and ¥ which are
Z.» —central extensions of X, such that:

(1) Given a k—tuple (ay,...,ay) of distinct elements of {0, 1,...,n} there is an
element [ayas---ai] € f],jf_,_l called a k —cycle.

(2) The homomorphism i,jf — ¥, sends [aiaz---ag] to (ajaz ---ay) for all k—
cycles.

(3) [araz---ax] =la1az---aillaiai+1---ax] forall k andall 1 <i <k.

(4) If {ayaz---ay} and {b1by---b;} are disjoint then [aray ---ag][b1bz ---bj] =
(—1)(k_1)(j_1)[b1b2---bj][alaz---ak].

) laraz---ag)lr?221) = (—)*DU=D (g~ @1)¢ ™" (@2) -+ ¢~ (ax)]. where
¢ € Xy is the cycle (b1ba---b;). (We use the notation g" = h~lgh for
conjugation.)

(6) [araz---ag]* = ¢ forall k > 2 provided [ayas ---ay] € DI

We call an element of f],f odd or even if its projection to 3, is odd or even, respectively.
Given that Sym(A") = Sym(A7}) C SOp41, there is a canonical lift of Sym(A™)
along the 2-to-1 covering map Spin, ,; — SOp+1. We denote this 2-to-1 cover
by Sym(A") — Sym(A"). Itis a Z,—central extension, since the kernel of the map
Spin,, | = SOy 41 is central.

Proposition 3.2 %(A”) is canonically isomorphic to the motion group of A" in
R*T1 7 (Emb(A*, R"T1)/ X, 1). It is also the Z, central extension of ¥,11,
denoted by i; 11 - Under this isomorphism, Sym™ (A") corresponds to /Tn+1.

Proof The isomorphism between the motion group 1 (Emb(A”, R”*1)/ %, 1) and
the spin cover Sym(A™") follows from the path-lifting property of the covering maps

Y41 — Emb(A", R*T1) - Emb(A", R*T1)/ =, 41.

Given an element of 71 (Emb(A", R"*1)/ %, 1), lift a representative to a path in
Emb(A”, R**1) such that the endpoints differ by the action of ¥, . For such a lift,
the initial embedding starts at the standard embedding of the simplex A" in R”*1. Such
a path extends to a path of affine linear automorphisms of R”*1, starting at Idgn+1.
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Using that O, 41 is a deformation retract of GL(R”*!) we can homotope this path (rel
endpoints) to a path in SO, 41, which therefore lifts to a path in Spin,, | |, starting at the
identity element. This describes the endpoint of the path as an element of Sym (A”").

To verify that %(A”) is isomorphic to i; 11> we will use the model Af for the
n-simplex. This has the advantage that the symmetries of A, are linear. In this
model, notice that either lift of the transposition (a b) to Spin, ; has order 4. This
is because in SOy 41 the transposition (a b) has a 2—dimensional (—1)-eigenspace
whose orthogonal complement is fixed pointwise. The (—1)—eigenspace is spanned
by the vectors e, —ep and Y ¢_e;. Thus if we denote any lift of (a b) by [a b]
then [a b]> = —1. This is a proof by reduction to a universal example, as it is a direct
computation to identify the spin cover Spin, — SO, with the map of the unit circle in
the complex plane S' — S given by z > z2. Relation (6) of Proposition 3.1 holds
for k = 2, and therefore for all k > 2. O

Consider the subgroup of A, 1 which preserves the set {n —1,n}, ie its elements either
fix n — 1 and n pointwise or transpose them. Since an element of 4,41 is determined
by its value on n —1 points, this subgroup is isomorphic to 3, _;. Thus, corresponding
to a codimension-2 face of A" there is an associated inclusion X, _1 — Ay41. The lift
of this X,_1 to zzan is isomorphic to f);_l. Using the notation of Proposition 3.1
one can verify that an embedding i;_l — ;f,,+1 is given by

A if A is even,

A . .
Aln—1n] if A is odd.

There are precisely two embeddings i;_l — anH which cover the standard inclusion
Yp—1—>Ap+1,since {0,1,2,...,n—2} C{0,1,2,...,n}. These two inclusions are
essentially the same, as they differ by a precomposition with an automorphism of in__l
that fixes A,_; pointwise. The automorphism is given by

X, i;_l, o (—1)|0|0,

where |o| is the parity of o. This is the unique nontrivial automorphism of i;_l that
fixes A,—1 pointwise.

4 Representing spin structures on triangulated manifolds

As in Section 2, let P be the dual polyhedral decomposition to 7, a triangulation of an
n—manifold N. We remind that the k—skeleton of P is denoted by P k while the set
of k—cells is denoted by Py.
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This section gives a combinatorial technique to encode homotopy classes of sections
of the Stiefel manifold of (n—1)—frames of N over the dual 1-skeleton Pl. It also
gives a combinatorial technique to determine which of these sections extend over the
2—skeleton P2 Once N is oriented, this is our formalism for encoding spin structures
as an (n—1)—frame extends to an oriented n—frame uniquely up to homotopy.

To encode sections of the Stiefel bundle over P!, we make the sections as close to
simplicial as possible. That is:

(1) Evaluated at a point of p € Py, the vectors of each section should point towards
some of the vertices of the top-dimensional simplex containing p.

(2) We demand that the vectors of each section, evaluated at the barycentre of each
dual edge e € P;, point to some of the vertices of the codimension-1 facet
F eT,_1 dualto e.

The total space of the Stiefel manifold of linearly independent (n—1)—frames over P!
will be denoted by V,,—1 TN |p1. The set of sections of the bundle V,,_1TN|p1 — Plis
written Iy V' N, and the subspace satisfying (1) and (2) above is abbreviated by FIS VN.

Every section in I'; VN is homotopic to one satisfying conditions (1) and (2). Given
any section, perform the homotopy along the finite set P° U (7"~1 N P1), and extend
to P! via the homotopy extension property. To do this we use only that the Stiefel
space V,—1R" is connected, and that the “vertex-pointing” subset of V,_1R" is a
nonempty set. Thus the inclusion g FIS VN — noI'1 VN is onto.

We explain below how the set mg FIS VN can be thought of as a subset of the product

1_[ An41 X l_[ Aptr:

SeT, Fel |,Th—

e The A, corresponding to S € T, factor encodes the section at the barycen-
tre of a top-dimensional simplex S. The injections {0,1,2,...,n — 2} —
{0,1,2,...,n} have unique extensions to alternating bijections, so can be con-
sidered as elements of A,41.

. |_|2 T, —1 denotes two copies of T;—1, one for each side of a dual edge e € P
split at its barycentre. Our conditions (1) and (2) above fix the behaviour of
the section at the endpoints of half of a dual edge e. Thus, corresponding to
every dual edge there are two elements of /TnH that determine the element of
o l"lS V N. We use the characteristic map of e € P; to determine which half of e
is the “first half” and which is the “second half”.
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Figure 2: A section of V,_1(T'N)|p1 satistying (1)—(2) with the dual 1—
skeleton P! in green, n =3

The condition that sections are “face-pointing” at the barycentre of a dual edge e gives
a constraint—ie 1o FIS VN is a proper subset of the above product. We call this first
constraint the face constraint. The continuity of our sections (at the barycentre of each
edge e € Pp) forces one further constraint, which we call the continuity constraint:

7ol FVN G [[ Ansix [ Ants.
SeT, Fel |,Th—1

We call the set FIS VN the simplicial sections of the bundle V,—1(TN)|p1. We express
the face and continuity constraints as formulas involving the characteristic maps of the
triangulation, below.

Given a codimension-1 face F incident to a top-dimensional simplex S, let
yr: A"V > N and ys: A" > N

be the characteristic maps, respectively, and let ¢ € X, 11 be the characteristic inclusion
of Fin S,ie yp = ysot. If e is the edge dual to F in S, let S € anH be the
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motion corresponding to the half-edge e N S. The face constraint can be expressed as

B(a({0.1,....,n=2})) C1({0,1,...,n—1}),

where « € A, 41 represents the section at the barycentre of S. This is the formula that
says directly that the vertices pointed to by the vectors fields at e N F' are the vertices
of F. Equivalently, we could say the vector field does not point to the vertex opposite
to the face, ie t(n) ¢ B(a({0. 1,...,n—2})).

Given a codimension- 1 face F incident to two top-dimensional simplices S; and 5>, let
t1,12 € Xp+1 be the respective characteristic inclusions of F in S; and S, respectively.
The continuity constraint can be expressed as (L2_1/32L2)_1t1_1,31L1 €([n—1,n]), where
([n—1, n]) is the subgroup generated by [n—1, n] in An+1. This statement is equivalent
to the statement that the two functions lel Brtx , as bijections of the set {0, 1,2,...,n},
agree when restricted to the subset {0, 1,2,...,n—2}. The group X, acts naturally
by conjugation on the group i‘; 41 and the symbol LI:I Brtr indicates the right action
of 1 on Bg.

To encode the homotopy relation, we proceed by induction on the skeleton of P!,
ie first we perform the homotopy on the O—skeleton PY, and then we extend to P!
using the homotopy extension property. Finally we perform the homotopy on the edges
of P, leaving the endpoints fixed. The advantage of this perspective is that it allows us
to see that the homotopy relation as the orbit space of a group action on the simplicial
sections g F1S VN.

The motions of an n—simplex A" are given by Avn+1 (see Section 3). We represent a
simplicial section as an element (IMs s T1r BF) €l1ser, An+1 X[1Frel o1, An+1-
Let A € A,4+1 correspond to a motion of the n—simplex S'; then the result of applying
the motion A to the simplicial sections at the barycentre of S, and extending to the
entire simplicial section gives

A-(H“S”H,BF) = (Afxs X 1_[ s, 1_[ BrA~! x l_[ ﬂF),
s/ F S'4S  F|S Fts

where F | S means “F is a boundary facet of S” or, equivalently, “S is incident
to F'”. This is a group action of /Tn+1 on 7 FIS V' N. Moreover, observe that if S7 and
S are distinct top-dimensional simplices of the triangulation 7', then the two actions
commute.

To complete the description of the homotopy relation on simplicial sections, we de-
scribe the result of a homotopy of the section on the interior of an edge (fixed on
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the complement of the edge’s interior). In principle, the justification for the formula
below is the same as above, ie the standard algebra of obstruction theory, but the
formula is made more complicated due to a change-of-coordinates issue. We have
chosen to store all our motion data in the coordinates of the ambient top-dimensional
simplex where the motion occurs. But the edges of the dual cell complex P; cross
from one top-dimensional simplex to another, across a face F' € T,,_;. The group of
motions of F (fixing its barycentre) in the ambient triangulation is i;, SO we must
provide the formalism for converting from the motions of F to motions in the adjacent
top-dimensional simplices. Given A € i; representing a motion of F in the ambient
triangulation (fixing the barycentre), the result of performing that homotopy on an
element of g F1§ VN at the barycentre of the edge, fixing the section outside the edge,

is given by
A-(l—[as,l_[ﬂzw) (1_[065 tarx ] ,BF’)
s F/ F'#F
where 1 . .
fap = {LAL BF if A iseven,
AE 7V A0 AT BE i A s odd.

In the above formula, ¢ is the characteristic inclusion of F in S and k is the index of
the vertex in F that is missed by the vector fields, ie {n,k} ="' Bpas({n—1,n}).

There are a variety of ways to justify this formula; perhaps the most pragmatic is
to consider the two n—dimensional simplices S; and S, incident to F as two faces
of some abstract (n+1)—dimensional simplex S that is not part of the triangula-
tion T, ie S; C dS for i = 1,2. If {0,1,2,...,n — 1} is the vertex set for F, let
{0,1,2,...,n} be the vertex set for Sy, {0,1,2,...,n—1,n+ 1} the vertex set for S,
and {0, 1, 2,...,n,n+ 1} the vertex set for S. In Section 3 we defined the inclusion
Z‘; — An+2 via the formula A — [n + 1 n]A provided A is an odd permutation.
Notice that [n + 1 n]A maps k — A(k) and maps n + 1 — n. So if we postcompose
[n+1 n]A with the 3—cycle [n n+1 A(k)] (which is the minimal motion in S returning
S; to its initial position or, stated another way, this motion applied to F' projects into N
as an embedding), we get

[nn+1 AG)][n + 1 n]A = [AKk) nl[n n + 1124 = [n A(k)]A.

We can replace [n A(k)] with —[n A(k)] = [A(k) n] in the above formula, as it simply
corresponds to the opposite embedding E — A,,H, which is just a convention for
how lower-dimensional motions convert to hlgher—dimensional motions.
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Proposition 4.1 The maps defined above,

Ap1 X WIS VN — TS VN
for every S € T;, and
S xmlSVN — meI'SVN

for every F € T,—1, are group actions; moreover, the actions commute. This gives us a
group action

(1‘[ Aot xl‘[i,;) X 7o TSVN — moTSVN
S F

whose stabilizers are isomorphic to 7', where m is the number of path components
of N. The orbits of this action correspond to mol'{ VN via the map TL’()FISVN —
mol'1 VN ; thus, if N is oriented, the orbits correspond canonically to spin structures.

Proof The maps for the top-dimensional simplices /’IV,,H X Ff VN are group actions
as they are essentially the canonical left and right actions of /Tn+1 on A,41 and Avn+1 ,
respectively.

The maps involving i; corresponding to the codimension-1 faces F' require a more
subtle argument. In the special case of even permutations, this is again the standard
action of A, on A, 41, after conjugation by ¢.

Let us consider the case where A € zzlvn+1 can be an odd permutation. There are two
nontrivial cases, A1.45.8, where both Ay and A, are odd, and the case A; odd and
A, even.

(1) Let us first face the case where both A; and A, are odd. If we let k, satisfy
{n,ky} =1"1Ba{n—1,n} then we have

A1.(A2.8) = A1.(tn Azkz] A2 B),
then {n,k1} = " U[n Azks]Ar™ ' Baf{n — 1 n} = {n Ask,}, giving
A1.42.8 = ([n Alkl]Alt_lt[l’l Azkz]AzL_I,B
= —1A1[n Azks][n Azkz]A !B = 1414207 B = (A1 42).B.
(2) Now consider the case where A; is odd and A, is even. The argument is simpler:
A1.(A2.8) = A1.(tA2 1 B) = 1[n A1 Axk]A1 VAL
=[n A1A2k]A1A2B = (A142).B.
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We now establish that the kernel is Z’; . If an element is stabilized under the action, the
underlying section at P® and motions along P! are fixed. This forces the components
of the [ [ ;fnﬂ factor to be £1. Similarly the components of the product [ [ - f?; are
all 1. Thus we can think of the elements of the stabilizers as 0—dimensional mod-2
cocycles. Such objects correspond to H (N, Z,), which is isomorphic to VALH O

We turn our attention to spin structures — the issue of determining which elements of
Fig VN admit extensions to P2. Let W € Ty,—, be a codimension-2 simplex of 7. Let
So0,S1,...,Sm—1 be the circuit of n—simplices about W. Let Fy, F1,..., F;—1 be
the corresponding circuit of codimension-1 simplices. We choose these coherently —
the normal sphere to W in T is a triangulated circle and we index the S; and the F;
in accord with that cyclic order.

Given an element of g FIS VN, we will set up a formula representing the obstruction
to extending it over the 2—cell dual to W. Let B1; and B,; € /Tnﬂ be the motions
of the simplex S; as one travels from the barycentre of S; to the barycentres of the
faces F;_; and F;, respectively (the index i taken mod m ). Our perspective will be to
cut the normal circle to W in T and align the simplices So, S1, ..., Snm—1 as if they
were parallel. We compute the motion of the vector fields as one traverses the circuit of
simplices, in these parallelized coordinates. Let w;: A?~2 — A" be the characteristic
inclusion corresponding to W < §;, extending uniquely to be an element w; € A, +1
via the condition that w; (n — 1) and w; (n) represent the vertices of an edge of the
normal circle to W, with its cyclic orientation. The parallelized total motion in the
simplex S; (about W) will be denoted by S, and is defined as

SW = > (B! if [0,n—2]\w;!Brio; =,
! [a n n—1]B57 (B~ if [0.n —2]\ w; ! Bric; = {a}.

Proposition 4.2 An element of g FIS VN extends over the 2—cell dual to W € Ty,—»
if and only if the product of the parallelized total motions is the nontrivial central
element of XHH , namely

Sy Sy SESY = 1.
The explanation for this formula is in a similar spirit to Proposition 4.1. Imagine two
consecutive simplices S; and S; 4+ stuck together along their common face F;, and

imagine the simplices pulled apart so that they are parallel. The motion ,BIZUI’ B ;‘;f )~ is
what one applies to the vector fields in S; as one travels along P! from the face Fj_;
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to F; in the simplex ;. Consider what additional motion we need to apply to these
vector fields as we rotate S; 1 to be parallel to S; . If our vector fields at F; are pointing
into W, we would be done because the motion that makes the simplex S;4 parallel
to S; has no effect on the vector fields. This is the case when [0, n—2]\ wl._1 Briai =9.
If the vector fields hit the vertex of F; not in W, ie they miss a vertex of W, then
[0,n—2]\w; ! B1;e; = {a} and our motion to rotate S; 11 to be parallel with S; affects
the vector fields. The motion can be expressed as [a@ n n — 1] in the coordinates of Fj,
hence the formulas for . Our formulas for S} with i =0,1,2,...,m —1 are now
in a common “parallel” coordinate system and can be concatenated. We demand the
product be —1, since the act of “closing” the parallel simplices contributes an extra
27 rotation into the product.

Thus, a combinatorial spin structure on a triangulated, oriented n—manifold N is an
orbit of [[g An+1 x[[F X, acting on g Fls VN whose elements extend over all dual
2—cells W e Ps.

Example 4.3 In Figure 3, the red arrows indicate the vector field over the O—skeleton,
given by «;, as well as the vector field when pushed into the faces F;. The blue arrows
indicate our convention that our motions are specified as motions as one travels from
the barycentres of top-dimensional simplices fo the barycentres of the codimension- 1
simplices F;. We have chosen to embed the triangles in the plane so that (0 1 2)

represents a counterclockwise ZT” rotation.
Fy
S2 Sl
o,
W
0/7 <
S3 //\\T So
F; Fy
Sa

Figure 3: S¥ = +1, S¥ = +[210], S¥ = +1, S¥ = +[012], S¥ = +1
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In Example 4.3, we choose the “short” motions consistent with the figure, ie all
nontrivial turns are either clockwise or counterclockwise by 2?71 We complete the
computation with

So =1, SP=[021], Sy=1, S§¥=-[012], Sf=1,
giving
SPYSYSYSPSy =—[012][021]=-1.

By Proposition 4.2 (or by visual inspection), the vector field extends over the 2—cell
dual to W.

Although the parameter space for g FIS VN has order
| Ap+1 ||Tn||2n||Tn—l‘4|Tn—l|’

one could implement this formalism by assuming the vector fields over P° are induced
by the characteristic maps, and similarly for the vector fields on the barycentres of the
dual edges e € P;. One can assume that on one half of each edge the vector fields
chosen are given by some canonical path. In this setup, mg FIS VN is a subset of a set
parametrized by | F'| bits. This is analogous to orientations: orientation can be thought
of as a plus or minus sign (%) associated to every top-dimensional simplex, satisfying
a coherence condition. Spin structures are similarly parametrized by a £ sign on every
dual edge e € Py and satisfy an analogous coherence condition.

The first Stiefel-Whitney class w; € H 1 (N, Z») of a manifold N is the obstruction to
orientability. From the perspective of triangulations, the 1—cocycle representing w;
is given by comparing the orientations of top-dimensional simplices adjacent across
a face F. If they are oriented compatibly, meaning the transition function ¢ satisfies
¢ €Xyt1\An+1, then wi(F) = 1; otherwise, wq(F) = —1.

There is a similar computation of w,, the second Stiefel-Whitney class. As a 2—

cocycle, w, is computed by constructing n — 1 everywhere-linearly independent

sections on P1L. Tts value on a 2—cell dual to W € T,,_5 is precisely our extension
4 w w w QW

obstruction =S,/ ;S -+ S1°Sy .

S Combinatorial complex spin structures

As described in Section 2, a spin®—structure on an n-manifold N consists of a
homotopy class of a lift of the tangent bundle classifying map N — BO, to the
Spin°® classifying space BSpin,,. We take the perspective of Section 2 and consider
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a spin®—structure on N as a 1-dimensional complex bundle over N —call it v —
together with a spin structure on the sum of the two bundles TN & v. One-dimensional
complex bundles over N are classified by maps N — BSO,, which correspond
precisely (via obstruction theory) to elements of H?(N,Z).

Let B be a cochain representing an element of H?(N,Z) and v the complex line
bundle associated to 8, and consider the problem of finding a spin structure on TN @v.
Since 71503 — 71505 is an isomorphism, we can demand that our trivialization of
TN @ v over P! is the direct sum of a trivialization of TN over P! with a fixed
trivialization of v over P1. Since SO, is connected, v is trivial when restricted to Pl.

Checking whether or not such a trivialization of TN @ v over P! extends to a
trivialization over P2, we get the condition

R R A
where B(W) is the value of 8 on the 2—cell dual to W, and the remainder of the
formula is as in Section 4.

Thus, by design, N has a combinatorial spin®—structure if and only if w5 is the mod-2
reduction of a class in H2(N, Z). More specifically, there exists a spin structure on
TN & v if and only if w; is the mod-2 reduction of 8.

Appendix

This section collects a few lesser-known facts related to the paper. These results are
useful to anyone interested in implementing these techniques in software, and they are
available in the software package Regina [7].

When n is odd, Sym(A") has an alternative interpretation. There is a canonical
isomorphism Sym(A7) ~ Sym™ (A U —AT), where —AY is the antipodal simplex.
The isomorphism is given by

Sym(A%) — Sym™ (AL U—AY), A (—1)Hl4,

Given a subgroup G of SO, let GC Spin,, be the preimage of G under the covering
map Spin,, — SO, . By design, G is a Z,—central extension of the group G:

0 7 Spin,, SO, 0
0 Z G G 0
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Figure 4: Ay U —A}

We give some concrete descriptions of the low-dimensional groups As and 534_, re-
spectively. Although not required for the main results of the paper, we compile this
information here for easy reference.

Proposition A.1 The group Spins has a natural identification with the unit sphere in
the quaternions, S3, which acts on the quaternions by conjugation. This action is an
orthogonal linear map and it fixes the real line pointwise. If we call the orthogonal
complement of R in the quaternions the purely imaginary quaternions, we can identify
the purely imaginary quaternions with R3. Thus our action can be interpreted as a Lie
group homomorphism S3 — SO3.

Consider A3 to be the convex hull of the four points

%(—_1 1 L) (L -1 L) (L 1 —_1) (—_1 -1 i)}cRs
V3TV \VBTVEVE) V3TV '
Then f]; is isomorphic to the subgroup of S3 which preserves A3 U —A3. It consists
of the elements

1 1
NG NG

The group Spin, has a natural identification with S x S3, the homomorphism

% +1, +a, - (+£1+a), - (+a+bh), %(iliaibic) ‘ (a,b,c)=1i, j,k}} cs3,

S3 x §3 — SOy given by left and right multiplication by unit quaternions.
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Consider A* to be the convex hull of the points

{(1,0,0,0), (=1, —v/5,v/5,3/5), 1(=1,+/5,—-+/5,3/5),
L1, V5,35, =5), (=1, —v/5,—/5,-V5)}.

The 120 elements of As C S3 x §3 are given by £(1, 1), having orders 1 and 2,
respectively, (o, o), where o = %(j:l +i4j+k), having orders 3 and 6, respectively,
together with £ (% +aa+bpB, 3 +aa+bp), where a=£1(V/5-1), b=£1(V/5+1),
{a, B, y} ={i, j,k} and af = y, where a indicates the image of a under the auto-
morphism of Q[+/5] given by /5 + —+/5. These elements have order 3 and 6,
respectively. There are also the elements :I:(a :i:Eoz:l:%, E:l:aa:l:%), where {a, B,y} =
{i,j,k}. If af =y, thena = %(1 —/5); otherwise, a = %(1 + +/5). These elements
have order 5 and 10. There are the elements +(«, ), where o € {i, j, k}. These
elements have order 4. Finally there are the elements (ac + b + cy, @+ bp +¢y),
where {a, 8, v} ={i, j,k}, af=y, a= :I:%(l—i—«/g), b= :I:%(l—«/g) and ¢ = :I:%.
These elements have order 4.
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