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Combinatorial spin structures on triangulated manifolds

RYAN BUDNEY

We give a combinatorial description of spin and spinc –structures on triangulated
manifolds of arbitrary dimension. These encodings of spin and spinc –structures are
established primarily for the purpose of aiding in computations. The novelty of the
approach is that we rely heavily on the naturality of binary symmetric groups to avoid
lengthy explicit constructions of smoothings of PL manifolds.

57R15; 55S35, 57R05

1 Introduction

In this paper a framework for combinatorially representing spin and spinc –structures
on triangulated manifolds in a manner suitable for computer implementation is built.
This should be seen as part of a general effort to merge the techniques of algorithmic
3–manifold theory, such as triangulations, normal surface theory and geometrization,
with elements of 4–manifold theory, where gauge-theoretic invariants often require
additional structures.

The governing perspective on spin and spinc –structures in this paper comes from the
obstruction-theoretic approach to spin structures of Milnor [16]. Although Milnor’s
approach is fundamentally combinatorial in nature, there is some nontrivial work
to translate Milnor’s language into a language a modern computer can use. To this
end, we put combinatorial spin structures in a formalism perhaps most comparable to
Forman’s discrete Morse theory [8]. It is assumed the reader is familiar with obstruction
theory on manifolds along the lines of Milnor and Stasheff [17]. Other references
like Whitehead [21] and Gompf and Stipicz [11] are also excellent resources for basic
obstruction theory.

Relatively flexible triangulations are allowed in this article. For example, unordered
delta complexes (see Hatcher [12]) suffice. The ideal triangulations of Thurston [19],
a further weakening of unordered delta complexes, are also perfectly acceptable. Ideal
triangulations are unordered delta complexes, such that if one removes a finite collec-
tion of vertices, one obtains a manifold. In short, a triangulation in this paper is a
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space constructed by gluing simplices together via affine-linear identifications of their
boundary facets, and where we demand that the characteristic maps of every simplex is
an embedding when restricted to the interior of the simplex.

Readers comfortable with the basics of triangulations, spin structures and obstruction
theory can jump to Section 4 for the primary constructions of this paper. In the literature,
there are several available tools for combinatorially representing 3– and 4–manifolds
with additional structure on their tangent bundles. The Kaplan algorithm [14] was per-
haps the first (see [11, Sections 5.6–5.7] for a modern exposition). Kaplan’s algorithm
gives a simple framework to represent spin structures on a 3–manifold given by an
integral surgery presentation, and provides a simple tool to determine when such spin
structures extend over the bounding 4–manifold. Another combinatorial representation
of 3–manifolds comes from spines, popularized by Matveev [15]. Techniques to
represent spin structures on 3–manifold and 4–manifold spines were developed by
Benedetti and Petronio [1; 2; 3; 4]. The techniques in this paper would be described as
being in the language of the “frame along the dual 1–skeleton” in [4]. Spinc –structures
on simplicially triangulated 3–manifolds can be described as the combinatorial Euler
structures of Turaev [20]. Étienne Gallais [9] has recently used this technique to
study combinatorial Euler structures on triangulated 3–manifolds using Forman’s
combinatorial vector fields to represent Euler structures. One of Gallais’s observations
is that with these techniques, not all combinatorial Euler structures are represented on
delta complexes. Simplicial triangulations are required to capture all spinc –structures
using this technique. We wish to avoid simplicial triangulations, as unordered delta
complexes have shown themselves to be rather efficient means for describing interesting
manifold types in both 3–manifold theory (see Burton, Budney and Pettersson [7]
and Thurston [19]) and 4–manifold theory (see Budney and Hillman [6] and Budney,
Burton and Hillman [5]).

2 Notation, obstruction theory

Throughout this paper, N will be a PL n–manifold that will be endowed with a
triangulation or a CW–structure, often both. If the cell structure is unambiguous, the
i –skeleton will be denoted by N i.

Given a fibre bundle  W E! B with fibre F , and a subspace X � B , the restriction
bundle is the map  j �1.X/W  

�1.X/! X which also has fibre F. We abbreviate
 j �1.X/ by  jX .
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A trivialization of a vector bundle  W E! B is an ordered k–tuple of vector fields
that forms a basis for each and every fibre. Trivializations correspond to vector bundle
isomorphisms B � Rk ! E via the map .b; x1; : : : ; xk/ 7!

Pk
iD1 xi Evi .b/, where

.Evi W B!E/i2f1;2;:::;kg is the trivialisation.

A vector bundle  W E!N is orientable if and only if there is a trivialization of  jN 1 .
Given a trivialization of  jN 1 , the homotopy class of its restriction to N 0 is called
an orientation of  . If a vector bundle  W E ! N is orientable, its set of orienta-
tions admits a free transitive action of H 0.N;Z2/— the action is given by flipping
orientations on path components of N.

In the language of classifying maps, a vector bundle  W E!N is orientable if and only
if its classifying map N ! Gr1;k � BOk lifts to the Grassmannian GrC

1;k
� BSOk

of oriented k–subspaces of R1:
BSOk

��

N

99

// BOk

An orientation of N is the homotopy class of this lift. The fact that this is equivalent to
the previous definition is described in [16; 17]. The key ingredient in this interpretation
is that SOk is the path component of the identity in Ok . This implies that the exact
CW–structure on the space N is not relevant to the existence of orientations, which
is one reason to prefer this formalism. If N is a smooth manifold, orientability
and orientations of N refer to orientability and orientations of the tangent bundle
� W TN !N.

We denote the nth spin group by Spinn . This is defined as is the unique connected Lie
group which admits an onto 2-to-1 Lie group homomorphism Spinn! SOn . Since
�1SOn is cyclic of order 2 or infinite cyclic, this is well defined. A vector bundle
 W E ! N admits a spin structure if the classifying map N ! BOk admits a lift
N ! BSpink . A spin structure is a homotopy class of a map N ! BSpink such that
the composite with BSpink ! BOk is a classifying map for the bundle  . Since
the homomorphism Spink! Ok factors as a composition Spink! SOk! Ok , spin
structures induce orientations:

BSpink

��

N

99

//

&&

BSOk

��

BOk
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Since �1SOk ' Z2 for k � 3, the corresponding description for spin structures in the
obstruction-theoretic setting is that  W E!N admits a spin structure if and only if
there exists a trivialization of  jN 2 . Given such a trivialization, the homotopy class
of its restriction to N 1 is a spin structure. The case k D 2 is special since �1SO2
is infinite cyclic. Typically in the literature people phrase the obstruction-theoretic
formulation as saying  ˚ �1 admits a spin structure, where �1W N �R!N is the
trivial 1–dimensional bundle over N, but one could just as easily describe it in terms
of trivializations of  jN 1 such that the obstructions to extending over N 2 are all even.

The kth complex spin group Spinc
k

is the group .Spink�Spin2/=Z2�Spink�Z2
Spin2 .

This means we are taking the product of the kth spin group with the 2nd spin group, and
modding out by one copy of Z2 acting diagonally on the product via the covering action
on the respective spin groups. Via projection to the right and left factor, respectively,
this group admits two extensions: Spink ! Spinc

k
! SO2 and Spin2 ! Spinc

k
!

SOk � Spink=Z2 . The latter extension is used to define Spinc –structures, and the
former gives the inclusion Spink! Spinc

k
:

BSpink

��

BSpinc
k

��

N

CC

::

//

$$

BSOk

��

BOk

A vector bundle  W E!N admits a spinc –structure if the classifying map N !BOk
admits a lift to BSpinc

k
[10]. A spinc –structure is a homotopy class of a map N !

BSpinc
k

such that the composition with BSpinc
k
! Ok classifies the bundle  . To

interpret a spinc –structure, notice that if one composes with the former extension, one
gets a map N ! BSO2 which classifies an oriented 2–dimensional vector bundle
over N. Alternatively this is a 1–dimensional C–bundle over N. If �W E 0!N is the
1–dimensional C–bundle over N classified by this map, then  ˚ �W E˚E 0!N is
classified by the corresponding map N !BSOk �BSO2�B.SOk �SO2/. Consider
SOk � SO2 as a subgroup of SOkC2 . This group is covered by some subgroup of
SpinkC2 , and by design this group is isomorphic to Spink �Z2

Spin2 . Thus a Spinc –
structure on a bundle  W E ! N consists of two things: a complex line bundle
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�W E 0!N and a spin structure on  ˚ � . Given this, spinc –structures can be readily
transcribed into an obstruction-theoretic formalism. A complex line bundle is classified
by a map N ! BSO2 �K.Z; 2/ and homotopy classes of maps N !K.Z; 2/ are
in bijective correspondence with elements of H 2.N;Z/. Thus a spinc –structure on
N is prescribed by such a cohomology class, together with a homotopy class of a
trivialization of . ˚ �/jN 1 which extends to N 2.

When working with a triangulation T of a manifold N, we will make heavy use of the
dual polyhedral decomposition. This construction originated in the work of Poincaré,
and is available in [18]. Since these ideas are no longer in wide circulation and we
need some fixed notation to refer to this decomposition, a brief sketch is given. Denote
the standard n–simplex by

�n D f.x0; : : : ; xn/ 2RnC1 W xi � 0 for all i and x0C x1C � � �C xn D 1g:

For i 2 f0; 1; : : : ; ng the i th face map of �n is fi W �n�1!�n given by

fi .x0; : : : ; xn�1/D .x0; x1; : : : ; xi�1; 0; xi ; xiC1; : : : ; xn�1/:

Given a permutation � 2†nC1�†.f0; 1; : : : ; ng/, the induced automorphism of �n is
the map ��W �n!�n given by ��.x0; x1; : : : ; xn/D .x��1.0/; x��1.1/; : : : ; x��1.n//.
An unordered delta complex is a CW–complex X such that the domains of the attaching
maps are the boundaries of simplices (rather than discs), �W @�n! X .n�1/, and for
each i , the composite satisfies � ı fi D ˆ ı �� , where ˆW �n�1 ! X .n�1/ is the
characteristic map of some .n�1/–simplex and � 2†n is some permutation. If all the
permutations � were the identity, X would be an ordered delta complex.

Let Œ0; n� D f0; 1; : : : ; ng, and let I denote a subset of Œ0; n�. The dual polyhedral
bit ıI of �n is the convex hull of the barycentres of all faces of �n with vertex set
a superset of I. Thus, ıŒ0;n� is the barycentre of �n and ıŒ0;n�nfig is the convex hull
of the barycentre of �n together with the barycentre of the i th face of �n. One can
define ıI via a system of equations, or

ıI D f.x0; x1; : : : ; xn/ 2�
n
W xi � xj for all i 2 I and j 2 Œ0; n�g:

If T is a triangulation of a manifold N and �W �n!N the characteristic map of a
simplex, �.ıI / is defined to be a dual polyhedral bit of the triangulation T . Given
an i –dimensional simplex � of T , the closed dual .n�i/–cell corresponding to �
is the union of all .n�i/–dimensional dual polyhedral bits corresponding to � in all
the top-dimensional simplices containing � . The collection of all dual cells forms

Algebraic & Geometric Topology, Volume 18 (2018)



1264 Ryan Budney

Figure 1: Dual polyhedral bits inside a tetrahedron �3

a CW–decomposition of N, called the polyhedral decomposition of N dual to T .
We denote this dual polyhedral decomposition by P throughout the paper. Given
a triangulation T or CW–complex P , we denote the set of k–cells by Tk and Pk,
respectively, while the k–skeleton we continue to denote by T k and P k , respectively.
The key feature of the dual decomposition is that for every i –simplex � 2 Ti there is
one and only one dual .n�i/–cell en�i 2 Pn�i with � \ en�i ¤ ∅. The nonempty
intersection is the barycentre of � .

Generally speaking, if N is a triangulated PL manifold, the tangent bundle TN is not
defined; moreover, it is frequently not unique when it is defined [13]. Thankfully, nons-
moothable PL structures and distinct smoothings of PL structures do not appear below
dimension 7. Thus the regular neighbourhoods of the dual 2–skeleton of a triangulated
PL manifold do have unique smoothings as the links of faces of codimension 1 and
2 are 0–spheres and 1–spheres, respectively, which have unique smooth structures;
see [13]. In particular, TN jP 2 can be referred to without ambiguity and we can discuss
spin structures on PL manifolds.

3 Geometry of simplices

This section describes some group-theoretic preliminaries related to the geometry
of simplices. Let Sym.X/ be the full group of isometries of an object X and let
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SymC.X/� Sym.X/ be the orientation-preserving subgroup, provided these concepts
make sense. Let D D f.x0; x1; : : : ; xn/ 2 RnC1 W x0 D x1 D � � � D xng be the “thin”
diagonal and let A D f.x0; x1; : : : ; xn/ 2 RnC1 W x0 C x1 C � � � C xn D 0g be the
antidiagonal.

Symmetries of �n are determined by how they permute the vertices, thus there is an
identification Sym.�n/� †nC1 and SymC.�n/� AnC1 . If we translate �n to the
origin

�n0 D
n
.x0; : : : ; xn/ 2A

ˇ̌
xi �

�1

nC1
for all i

o
;

a linear extension gives an embedding Sym.�n0/!SOnC1 . The set D is an eigenspace
relative to an eigenvalue C1 when the symmetry preserves orientation, and an eigen-
space relative to an eigenvalue �1 when it reverses the orientation of �n0 .

We will now examine the relations between the symmetric group and the group of
motions of an n–simplex. Let Emb.�n;RnC1/ be the space of affine-linear embeddings
of the n–simplex in .nC1/–dimensional Euclidean space. The space Emb.�n;RnC1/
has the homotopy type of a Stiefel manifold — the displacement vectors from one
vertex to the remaining vertices give such a map. This Stiefel manifold in turn has the
homotopy type of SOnC1 by Gram–Schmidt.

The group †nC1 acts freely on the right on Emb.�n;RnC1/ by relabelling the vertices
of the simplex. The group †nC1 also acts on the left on Emb.�n;RnC1/ by relabelling
the coordinate axes of RnC1 but we will not need this action. The motion group of
the n–simplex is defined to be �1.Emb.�n;RnC1/=†nC1/. Since n � 2 is always
assumed, the homotopy long exact sequence of the bundle

†nC1! Emb.�n;RnC1/! Emb.�n;RnC1/=†nC1

gives us the Z2–central extension

0! Z2! �1.Emb.�n;RnC1/=†n/!†nC1! 0:

If G is a group and K an abelian group, it is a standard theorem of group cohomology
that the central extensions of G with kernel K , taken up to extension-preserving isomor-
phism, are in bijective correspondence with H 2.G;K/. It turns out that H 2.An;Z2/

is a group of order two provided n� 4. Thus, there is only one nontrivial Z2–central
extension of An . Schur called it the double cover of An , also called the binary
alternating group and denoted by either 2An or zAn . We use the latter notation. Schur
also went on to show that H 2.†n;Z2/ is isomorphic to Z22 for n� 4; moreover, the
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restriction map H 2.†n;Z2/!H 2.An;Z2/ is onto, thus there are two nonisomorphic
Z2–central extensions of †n which contain zAn . We will give a geometric interpretation
for one of these extensions. A convenient notation for elements in these extensions is
given by Proposition 3.1.

Proposition 3.1 [22] For all n � 2, there exist groups z†Cn and z†�n which are
Z2–central extensions of †n such that:

(1) Given a k–tuple .a1; : : : ; ak/ of distinct elements of f0; 1; : : : ; ng there is an
element Œa1a2 � � � ak� 2 z†˙nC1 called a k–cycle.

(2) The homomorphism z†˙n ! †n sends Œa1a2 � � � ak� to .a1a2 � � � ak/ for all k–
cycles.

(3) Œa1a2 � � � ak�D Œa1a2 � � � ai �ŒaiaiC1 � � � ak� for all k and all 1 < i < k .

(4) If fa1a2 � � � akg and fb1b2 � � � bj g are disjoint then Œa1a2 � � � ak�Œb1b2 � � � bj �D
.�1/.k�1/.j�1/Œb1b2 � � � bj �Œa1a2 � � � ak�.

(5) Œa1a2 � � � ak�
Œb1b2���bj � D .�1/.k�1/.j�1/Œ��1.a1/�

�1.a2/ � � ��
�1.ak/�, where

� 2 †n is the cycle .b1b2 � � � bj /. (We use the notation gh D h�1gh for
conjugation.)

(6) Œa1a2 � � � ak�
k D " for all k � 2 provided Œa1a2 � � � ak� 2†"nC1 .

We call an element of z†˙n odd or even if its projection to †n is odd or even, respectively.

Given that Sym.�n/ � Sym.�n0/ � SOnC1 , there is a canonical lift of Sym.�n/
along the 2-to-1 covering map SpinnC1 ! SOnC1 . We denote this 2-to-1 cover
by eSym.�n/! Sym.�n/. It is a Z2–central extension, since the kernel of the map
SpinnC1! SOnC1 is central.

Proposition 3.2 eSym.�n/ is canonically isomorphic to the motion group of �n in
RnC1, �1.Emb.�n;RnC1/=†nC1/. It is also the Z2 central extension of †nC1 ,
denoted by z†�nC1 . Under this isomorphism, eSymC.�n/ corresponds to zAnC1 .

Proof The isomorphism between the motion group �1.Emb.�n;RnC1/=†nC1/ and
the spin cover eSym.�n/ follows from the path-lifting property of the covering maps

†nC1! Emb.�n;RnC1/! Emb.�n;RnC1/=†nC1:

Given an element of �1.Emb.�n;RnC1/=†nC1/, lift a representative to a path in
Emb.�n;RnC1/ such that the endpoints differ by the action of †nC1 . For such a lift,
the initial embedding starts at the standard embedding of the simplex �n in RnC1. Such
a path extends to a path of affine linear automorphisms of RnC1, starting at IdRnC1 .
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Using that OnC1 is a deformation retract of GL.RnC1/ we can homotope this path (rel
endpoints) to a path in SOnC1 , which therefore lifts to a path in SpinnC1 , starting at the
identity element. This describes the endpoint of the path as an element of eSym.�n/.

To verify that eSym.�n/ is isomorphic to z†�nC1 , we will use the model �n0 for the
n–simplex. This has the advantage that the symmetries of �n0 are linear. In this
model, notice that either lift of the transposition .a b/ to SpinnC1 has order 4. This
is because in SOnC1 the transposition .a b/ has a 2–dimensional .�1/–eigenspace
whose orthogonal complement is fixed pointwise. The .�1/–eigenspace is spanned
by the vectors ea � eb and

Pn
iD0 ei . Thus if we denote any lift of .a b/ by Œa b�

then Œa b�2 D�1. This is a proof by reduction to a universal example, as it is a direct
computation to identify the spin cover Spin2! SO2 with the map of the unit circle in
the complex plane S1! S1 given by z 7! z2. Relation (6) of Proposition 3.1 holds
for k D 2, and therefore for all k � 2.

Consider the subgroup of AnC1 which preserves the set fn�1; ng, ie its elements either
fix n� 1 and n pointwise or transpose them. Since an element of AnC1 is determined
by its value on n�1 points, this subgroup is isomorphic to †n�1 . Thus, corresponding
to a codimension-2 face of �n there is an associated inclusion †n�1!AnC1 . The lift
of this †n�1 to zAnC1 is isomorphic to z†�n�1 . Using the notation of Proposition 3.1
one can verify that an embedding z†�n�1! zAnC1 is given by

A 7!

�
A if A is even;
AŒn� 1 n� if A is odd:

There are precisely two embeddings z†�n�1! zAnC1 which cover the standard inclusion
†n�1! AnC1 , since f0; 1; 2; : : : ; n� 2g � f0; 1; 2; : : : ; ng. These two inclusions are
essentially the same, as they differ by a precomposition with an automorphism of z†�n�1
that fixes zAn�1 pointwise. The automorphism is given by

z†�n�1!
z†�n�1; � 7! .�1/j� j�;

where j� j is the parity of � . This is the unique nontrivial automorphism of z†�n�1 that
fixes zAn�1 pointwise.

4 Representing spin structures on triangulated manifolds

As in Section 2, let P be the dual polyhedral decomposition to T , a triangulation of an
n–manifold N. We remind that the k–skeleton of P is denoted by P k while the set
of k–cells is denoted by Pk .
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This section gives a combinatorial technique to encode homotopy classes of sections
of the Stiefel manifold of .n�1/–frames of N over the dual 1–skeleton P 1. It also
gives a combinatorial technique to determine which of these sections extend over the
2–skeleton P 2. Once N is oriented, this is our formalism for encoding spin structures
as an .n�1/–frame extends to an oriented n–frame uniquely up to homotopy.

To encode sections of the Stiefel bundle over P 1, we make the sections as close to
simplicial as possible. That is:

(1) Evaluated at a point of p 2 P0 , the vectors of each section should point towards
some of the vertices of the top-dimensional simplex containing p .

(2) We demand that the vectors of each section, evaluated at the barycentre of each
dual edge e 2 P1 , point to some of the vertices of the codimension-1 facet
F 2 Tn�1 dual to e .

The total space of the Stiefel manifold of linearly independent .n�1/–frames over P 1

will be denoted by Vn�1TN jP 1 . The set of sections of the bundle Vn�1TN jP 1!P 1 is
written �1VN, and the subspace satisfying (1) and (2) above is abbreviated by �S

1 VN.

Every section in �1VN is homotopic to one satisfying conditions (1) and (2). Given
any section, perform the homotopy along the finite set P 0[ .T n�1\P 1/, and extend
to P 1 via the homotopy extension property. To do this we use only that the Stiefel
space Vn�1Rn is connected, and that the “vertex-pointing” subset of Vn�1Rn is a
nonempty set. Thus the inclusion �0�S

1 VN ! �0�1VN is onto.

We explain below how the set �0�S
1 VN can be thought of as a subset of the productY

S2Tn

AnC1 �
Y

F 2
F

2Tn�1

zAnC1 W

� The AnC1 corresponding to S 2 Tn factor encodes the section at the barycen-
tre of a top-dimensional simplex S . The injections f0; 1; 2; : : : ; n � 2g !
f0; 1; 2; : : : ; ng have unique extensions to alternating bijections, so can be con-
sidered as elements of AnC1 .

�
F
2 Tn�1 denotes two copies of Tn�1 , one for each side of a dual edge e 2 P1

split at its barycentre. Our conditions (1) and (2) above fix the behaviour of
the section at the endpoints of half of a dual edge e . Thus, corresponding to
every dual edge there are two elements of zAnC1 that determine the element of
�0�

S
1 VN. We use the characteristic map of e 2P1 to determine which half of e

is the “first half” and which is the “second half”.
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Figure 2: A section of Vn�1.TN /jP1 satisfying (1)–(2) with the dual 1–
skeleton P 1 in green, nD 3

The condition that sections are “face-pointing” at the barycentre of a dual edge e gives
a constraint — ie �0�S

1 VN is a proper subset of the above product. We call this first
constraint the face constraint. The continuity of our sections (at the barycentre of each
edge e 2 P1 ) forces one further constraint, which we call the continuity constraint:

�0�
S
1 VN ¨

Y
S2Tn

AnC1 �
Y

F 2
F

2Tn�1

zAnC1:

We call the set �S
1 VN the simplicial sections of the bundle Vn�1.TN /jP 1 . We express

the face and continuity constraints as formulas involving the characteristic maps of the
triangulation, below.

Given a codimension-1 face F incident to a top-dimensional simplex S , let

�F W �
n�1
!N and �S W �

n
!N

be the characteristic maps, respectively, and let �2†nC1 be the characteristic inclusion
of F in S , ie �F D �S ı �. If e is the edge dual to F in S , let ˇ 2 zAnC1 be the
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motion corresponding to the half-edge e\S . The face constraint can be expressed as

ˇ
�
˛.f0; 1; : : : ; n� 2g/

�
� �.f0; 1; : : : ; n� 1g/;

where ˛ 2AnC1 represents the section at the barycentre of S . This is the formula that
says directly that the vertices pointed to by the vectors fields at e\F are the vertices
of F . Equivalently, we could say the vector field does not point to the vertex opposite
to the face, ie �.n/ … ˇ

�
˛.f0; 1; : : : ; n� 2g/

�
.

Given a codimension-1 face F incident to two top-dimensional simplices S1 and S2 , let
�1; �22†nC1 be the respective characteristic inclusions of F in S1 and S2 , respectively.
The continuity constraint can be expressed as .��12 ˇ2�2/

�1��11 ˇ1�1 2 hŒn�1; n�i, where
hŒn�1; n�i is the subgroup generated by Œn�1; n� in zAnC1 . This statement is equivalent
to the statement that the two functions ��1

k
ˇk�k , as bijections of the set f0; 1; 2; : : : ; ng,

agree when restricted to the subset f0; 1; 2; : : : ; n�2g. The group †nC1 acts naturally
by conjugation on the group z†�nC1 , and the symbol ��1

k
ˇk�k indicates the right action

of �k on ˇk .

To encode the homotopy relation, we proceed by induction on the skeleton of P 1,
ie first we perform the homotopy on the 0–skeleton P 0, and then we extend to P 1

using the homotopy extension property. Finally we perform the homotopy on the edges
of P 1, leaving the endpoints fixed. The advantage of this perspective is that it allows us
to see that the homotopy relation as the orbit space of a group action on the simplicial
sections �0�S

1 VN.

The motions of an n–simplex �n are given by zAnC1 (see Section 3). We represent a
simplicial section as an element

�Q
S ˛S ;

Q
F ˇF

�
2
Q
S2Tn

AnC1�
Q
F 2

F
2Tn�1

zAnC1 .
Let A 2 zAnC1 correspond to a motion of the n–simplex S ; then the result of applying
the motion A to the simplicial sections at the barycentre of S , and extending to the
entire simplicial section gives

A:

�Y
S 0

˛S 0 ;
Y
F

ˇF

�
D

�
A˛S �

Y
S 0¤S

˛S 0 ;
Y
F jS

ˇFA
�1
�

Y
F −S

ˇF

�
;

where F jS means “F is a boundary facet of S ” or, equivalently, “S is incident
to F ”. This is a group action of zAnC1 on �0�S

1 VN. Moreover, observe that if S1 and
S2 are distinct top-dimensional simplices of the triangulation T , then the two actions
commute.

To complete the description of the homotopy relation on simplicial sections, we de-
scribe the result of a homotopy of the section on the interior of an edge (fixed on
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the complement of the edge’s interior). In principle, the justification for the formula
below is the same as above, ie the standard algebra of obstruction theory, but the
formula is made more complicated due to a change-of-coordinates issue. We have
chosen to store all our motion data in the coordinates of the ambient top-dimensional
simplex where the motion occurs. But the edges of the dual cell complex P1 cross
from one top-dimensional simplex to another, across a face F 2 Tn�1 . The group of
motions of F (fixing its barycentre) in the ambient triangulation is z†�n , so we must
provide the formalism for converting from the motions of F to motions in the adjacent
top-dimensional simplices. Given A 2 z†�n representing a motion of F in the ambient
triangulation (fixing the barycentre), the result of performing that homotopy on an
element of �0�S

1 VN at the barycentre of the edge, fixing the section outside the edge,
is given by

A:

�Y
S

˛S ;
Y
F 0

ˇF 0

�
D

�Y
S

˛S ; �A;F �
Y
F 0¤F

ˇF 0

�
;

where
�A;F D

�
�A��1ˇF if A is even;
�Œn A.k/�A��1ˇF if A is odd:

In the above formula, � is the characteristic inclusion of F in S and k is the index of
the vertex in F that is missed by the vector fields, ie fn; kg D ��1ˇF 0˛S .fn� 1; ng/.

There are a variety of ways to justify this formula; perhaps the most pragmatic is
to consider the two n–dimensional simplices S1 and S2 incident to F as two faces
of some abstract .nC1/–dimensional simplex S that is not part of the triangula-
tion T , ie Si � @S for i D 1; 2. If f0; 1; 2; : : : ; n � 1g is the vertex set for F, let
f0; 1; 2; : : : ; ng be the vertex set for S1 , f0; 1; 2; : : : ; n�1; nC1g the vertex set for S2
and f0; 1; 2; : : : ; n; nC 1g the vertex set for S . In Section 3 we defined the inclusion
z†�n !

zAnC2 via the formula A 7! ŒnC 1 n�A provided A is an odd permutation.
Notice that ŒnC 1 n�A maps k 7! A.k/ and maps nC 1 7! n. So if we postcompose
ŒnC1 n�A with the 3–cycle Œn nC1 A.k/� (which is the minimal motion in S returning
Si to its initial position or, stated another way, this motion applied to F projects into N
as an embedding), we get

Œn nC 1 A.k/�ŒnC 1 n�AD ŒA.k/ n�Œn nC 1�2AD Œn A.k/�A:

We can replace Œn A.k/� with �Œn A.k/�D ŒA.k/ n� in the above formula, as it simply
corresponds to the opposite embedding z†�n�1! zAnC1 , which is just a convention for
how lower-dimensional motions convert to higher-dimensional motions.
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Proposition 4.1 The maps defined above,

zAnC1 ��0�
S
1 VN ! �0�

S
1 VN

for every S 2 Tn and
z†�n ��0�

S
1 VN ! �0�

S
1 VN

for every F 2 Tn�1 , are group actions; moreover, the actions commute. This gives us a
group action �Y

S

zAnC1 �
Y
F

z†�n

�
��0�

S
1 VN ! �0�

S
1 VN

whose stabilizers are isomorphic to Zm2 , where m is the number of path components
of N. The orbits of this action correspond to �0�1VN via the map �0�S

1 VN !

�0�1VN ; thus, if N is oriented, the orbits correspond canonically to spin structures.

Proof The maps for the top-dimensional simplices zAnC1 ��S1 VN are group actions
as they are essentially the canonical left and right actions of zAnC1 on AnC1 and zAnC1 ,
respectively.

The maps involving z†�n corresponding to the codimension-1 faces F require a more
subtle argument. In the special case of even permutations, this is again the standard
action of zAn on zAnC1 , after conjugation by �.

Let us consider the case where A 2 zAnC1 can be an odd permutation. There are two
nontrivial cases, A1:A2:ˇ , where both A1 and A2 are odd, and the case A1 odd and
A2 even.

(1) Let us first face the case where both A1 and A2 are odd. If we let k2 satisfy
fn; k2g D �

�1ˇ˛fn� 1; ng then we have

A1:.A2:ˇ/D A1:.�Œn A2k2�A2�
�1ˇ/;

then fn; k1g D ��1�Œn A2k2�A2��1ˇ˛fn� 1 ng D fn A2k2g, giving

A1:A2:ˇ D �Œn A1k1�A1�
�1�Œn A2k2�A2�

�1ˇ

D��A1Œn A2k2�Œn A2k2�A2�
�1ˇ D �A1A2�

�1ˇ D .A1A2/:ˇ:

(2) Now consider the case where A1 is odd and A2 is even. The argument is simpler:

A1:.A2:ˇ/D A1:.�A2�
�1ˇ/D �Œn A1A2k�A1�

�1�A2�
�1ˇ

D �Œn A1A2k�A1A2ˇ D .A1A2/:ˇ:
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We now establish that the kernel is Zm2 . If an element is stabilized under the action, the
underlying section at P 0 and motions along P 1 are fixed. This forces the components
of the

Q
S
zAnC1 factor to be ˙1. Similarly the components of the product

Q
F
z†�n are

all ˙1. Thus we can think of the elements of the stabilizers as 0–dimensional mod-2
cocycles. Such objects correspond to H 0.N;Z2/, which is isomorphic to Zm2 .

We turn our attention to spin structures — the issue of determining which elements of
�S1 VN admit extensions to P 2. Let W 2 Tn�2 be a codimension-2 simplex of T . Let
S0; S1; : : : ; Sm�1 be the circuit of n–simplices about W . Let F0; F1; : : : ; Fm�1 be
the corresponding circuit of codimension-1 simplices. We choose these coherently —
the normal sphere to W in T is a triangulated circle and we index the Si and the Fi
in accord with that cyclic order.

Given an element of �0�S
1 VN , we will set up a formula representing the obstruction

to extending it over the 2–cell dual to W . Let ˇ1i and ˇ2i 2 zAnC1 be the motions
of the simplex Si as one travels from the barycentre of Si to the barycentres of the
faces Fi�1 and Fi , respectively (the index i taken mod m). Our perspective will be to
cut the normal circle to W in T and align the simplices S0; S1; : : : ; Sm�1 as if they
were parallel. We compute the motion of the vector fields as one traverses the circuit of
simplices, in these parallelized coordinates. Let wi W �n�2!�n be the characteristic
inclusion corresponding to W ,! Si , extending uniquely to be an element wi 2 AnC1
via the condition that wi .n� 1/ and wi .n/ represent the vertices of an edge of the
normal circle to W , with its cyclic orientation. The parallelized total motion in the
simplex Si (about W ) will be denoted by Swi , and is defined as

Swi D

�
ˇ
wi

2i .ˇ
wi

1i /
�1 if Œ0; n� 2� nw�1i ˇ1i˛i D∅;

Œa n n�1�ˇ
wi

2i .ˇ
wi

1i /
�1 if Œ0; n� 2� nw�1i ˇ1i˛i D fag:

Proposition 4.2 An element of �0�S
1 VN extends over the 2–cell dual to W 2 Tn�2

if and only if the product of the parallelized total motions is the nontrivial central
element of zAnC1 , namely

Swm�1S
w
m�2 � � �S

w
1 S

w
0 D�1:

The explanation for this formula is in a similar spirit to Proposition 4.1. Imagine two
consecutive simplices Si and SiC1 stuck together along their common face Fi , and
imagine the simplices pulled apart so that they are parallel. The motion ˇwi

2i .ˇ
wi

1i /
�1 is

what one applies to the vector fields in Si as one travels along P 1 from the face Fi�1
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to Fi in the simplex Si . Consider what additional motion we need to apply to these
vector fields as we rotate SiC1 to be parallel to Si . If our vector fields at Fi are pointing
into W , we would be done because the motion that makes the simplex SiC1 parallel
to Si has no effect on the vector fields. This is the case when Œ0; n�2�nw�1i ˇ1i˛i D∅.
If the vector fields hit the vertex of Fi not in W , ie they miss a vertex of W , then
Œ0; n�2�nw�1i ˇ1i˛i Dfag and our motion to rotate SiC1 to be parallel with Si affects
the vector fields. The motion can be expressed as Œa n n� 1� in the coordinates of Fi ,
hence the formulas for Swi . Our formulas for Swi with i D 0; 1; 2; : : : ; m� 1 are now
in a common “parallel” coordinate system and can be concatenated. We demand the
product be �1, since the act of “closing” the parallel simplices contributes an extra
2� rotation into the product.

Thus, a combinatorial spin structure on a triangulated, oriented n–manifold N is an
orbit of

Q
S
zAnC1�

Q
F
z†�n acting on �0�S

1 VN whose elements extend over all dual
2–cells W 2 P2 .

Example 4.3 In Figure 3, the red arrows indicate the vector field over the 0–skeleton,
given by ˛i , as well as the vector field when pushed into the faces Fi . The blue arrows
indicate our convention that our motions are specified as motions as one travels from
the barycentres of top-dimensional simplices to the barycentres of the codimension-1
simplices Fi . We have chosen to embed the triangles in the plane so that .0 1 2/
represents a counterclockwise 2�

3
rotation.

S0

S1S2

S3

S4

F0

F1

F2

F3 F4

W

Figure 3: Sw0 D˙1 , Sw1 D˙Œ2 1 0� , S
w
2 D˙1 , Sw3 D˙Œ0 1 2� , S

w
4 D˙1
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In Example 4.3, we choose the “short” motions consistent with the figure, ie all
nontrivial turns are either clockwise or counterclockwise by 2�

3
. We complete the

computation with

Sw0 D 1; Sw1 D Œ0 2 1�; Sw2 D 1; Sw3 D�Œ0 1 2�; Sw4 D 1;

giving
Sw4 S

w
3 S

w
2 S

w
1 S

w
0 D�Œ0 1 2�Œ0 2 1�D�1:

By Proposition 4.2 (or by visual inspection), the vector field extends over the 2–cell
dual to W .

Although the parameter space for �0�S
1 VN has order

jAnC1j
jTnjj†nj

jTn�1j4jTn�1j;

one could implement this formalism by assuming the vector fields over P 0 are induced
by the characteristic maps, and similarly for the vector fields on the barycentres of the
dual edges e 2 P1 . One can assume that on one half of each edge the vector fields
chosen are given by some canonical path. In this setup, �0�S

1 VN is a subset of a set
parametrized by jF j bits. This is analogous to orientations: orientation can be thought
of as a plus or minus sign (˙) associated to every top-dimensional simplex, satisfying
a coherence condition. Spin structures are similarly parametrized by a ˙ sign on every
dual edge e 2 P1 and satisfy an analogous coherence condition.

The first Stiefel–Whitney class !1 2H 1.N;Z2/ of a manifold N is the obstruction to
orientability. From the perspective of triangulations, the 1–cocycle representing !1
is given by comparing the orientations of top-dimensional simplices adjacent across
a face F . If they are oriented compatibly, meaning the transition function � satisfies
� 2†nC1 nAnC1 , then !1.F /D 1; otherwise, !1.F /D�1.

There is a similar computation of !2 , the second Stiefel–Whitney class. As a 2–
cocycle, w2 is computed by constructing n � 1 everywhere-linearly independent
sections on P 1. Its value on a 2–cell dual to W 2 Tn�2 is precisely our extension
obstruction �Swm�1S

w
m�2 � � �S

w
1 S

w
0 .

5 Combinatorial complex spin structures

As described in Section 2, a spinc –structure on an n–manifold N consists of a
homotopy class of a lift of the tangent bundle classifying map N ! BOn to the
Spinc classifying space BSpinc

n . We take the perspective of Section 2 and consider
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a spinc –structure on N as a 1–dimensional complex bundle over N — call it � —
together with a spin structure on the sum of the two bundles TN ˚� . One-dimensional
complex bundles over N are classified by maps N ! BSO2 , which correspond
precisely (via obstruction theory) to elements of H 2.N;Z/.

Let ˇ be a cochain representing an element of H 2.N;Z/ and � the complex line
bundle associated to ˇ , and consider the problem of finding a spin structure on TN˚� .
Since �1SO3! �1SO5 is an isomorphism, we can demand that our trivialization of
TN ˚ � over P 1 is the direct sum of a trivialization of TN over P 1 with a fixed
trivialization of � over P 1. Since SO2 is connected, � is trivial when restricted to P 1.

Checking whether or not such a trivialization of TN ˚ � over P 1 extends to a
trivialization over P 2, we get the condition

Swm�1S
w
m�2 � � �S

w
1 S

w
0 D .�1/

1Cˇ.W /;

where ˇ.W / is the value of ˇ on the 2–cell dual to W , and the remainder of the
formula is as in Section 4.

Thus, by design, N has a combinatorial spinc –structure if and only if !2 is the mod-2
reduction of a class in H 2.N;Z/. More specifically, there exists a spin structure on
TN ˚ � if and only if !2 is the mod-2 reduction of ˇ .

Appendix

This section collects a few lesser-known facts related to the paper. These results are
useful to anyone interested in implementing these techniques in software, and they are
available in the software package Regina [7].

When n is odd, Sym.�n/ has an alternative interpretation. There is a canonical
isomorphism Sym.�n0/' SymC.�n0 [��

n
0/, where ��n0 is the antipodal simplex.

The isomorphism is given by

Sym.�n0/! SymC.�n0[��
n
0/; A 7! .�1/jAjA:

Given a subgroup G of SOn , let zG � Spinn be the preimage of G under the covering
map Spinn! SOn . By design, zG is a Z2–central extension of the group G :

0 // Z2 // Spinn // SOn // 0

0 // Z2 //

'

OO

zG //

OO

G

OO

// 0
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Figure 4: �30[��
3
0

We give some concrete descriptions of the low-dimensional groups zA5 and z†�4 , re-
spectively. Although not required for the main results of the paper, we compile this
information here for easy reference.

Proposition A.1 The group Spin3 has a natural identification with the unit sphere in
the quaternions, S3, which acts on the quaternions by conjugation. This action is an
orthogonal linear map and it fixes the real line pointwise. If we call the orthogonal
complement of R in the quaternions the purely imaginary quaternions, we can identify
the purely imaginary quaternions with R3. Thus our action can be interpreted as a Lie
group homomorphism S3! SO3 .

Consider �3 to be the convex hull of the four points��
�1
p
3
;
1
p
3
;
1
p
3

�
;

�
1
p
3
;
�1
p
3
;
1
p
3

�
;

�
1
p
3
;
1
p
3
;
�1
p
3

�
;

�
�1
p
3
;
�1
p
3
;
�1
p
3

��
�R3:

Then z†�4 is isomorphic to the subgroup of S3 which preserves �3[��3. It consists
of the elements�
˙1;˙a;

1
p
2
.˙1˙a/;

1
p
2
.˙a˙b/;

1

2
.˙1˙a˙b˙c/

ˇ̌̌
fa; b; cgDfi; j; kg

�
�S3:

The group Spin4 has a natural identification with S3 � S3 , the homomorphism
S3 �S3! SO4 given by left and right multiplication by unit quaternions.
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Consider �4 to be the convex hull of the points˚
.1; 0; 0; 0/; 1

4
.�1;�

p
5;
p
5;
p
5/; 1

4
.�1;
p
5;�
p
5;
p
5/;

1
4
.�1;
p
5;
p
5;�
p
5/; 1

4
.�1;�

p
5;�
p
5;�
p
5/
	
:

The 120 elements of zA5 � S3 � S3 are given by ˙.1; 1/, having orders 1 and 2,
respectively, .˛; ˛/, where ˛D 1

2
.˙1˙i˙j˙k/, having orders 3 and 6, respectively,

together with ˙
�
1
2
Ca˛Cbˇ; 1

2
Cxa˛Cxbˇ

�
, where aD˙1

4
.
p
5�1/, bD˙1

4
.
p
5C1/,

f˛; ˇ; g D fi; j; kg and ˛ˇ D  , where xa indicates the image of a under the auto-
morphism of QŒ

p
5� given by

p
5 7! �

p
5. These elements have order 3 and 6,

respectively. There are also the elements ˙
�
a˙xa˛˙ˇ

2
; xa˙a˛˙ˇ

2

�
, where f˛; ˇ; gD

fi; j; kg. If ˛ˇD  , then aD 1
4
.1�
p
5/; otherwise, aD 1

4
.1C
p
5/. These elements

have order 5 and 10. There are the elements ˙.˛; ˛/, where ˛ 2 fi; j; kg. These
elements have order 4. Finally there are the elements .a˛C bˇC c; xa˛C xbˇCxc/,
where f˛; ˇ; gDfi; j; kg, ˛ˇD , aD˙1

4
.1C
p
5/, bD˙1

4
.1�
p
5/ and cD˙1

2
.

These elements have order 4.
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