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The nonmultiplicativity of the signature modulo 8

of a fibre bundle is an Arf–Kervaire invariant

CARMEN ROVI

It was proved by Chern, Hirzebruch and Serre that the signature of a fibre bundle
F ! E ! B is multiplicative if the fundamental group �1.B/ acts trivially on
H�.F IR/ , with �.E/D �.F /�.B/ . Hambleton, Korzeniewski and Ranicki proved
that in any case the signature is multiplicative modulo 4 , that is, �.E/D �.F /�.B/
mod 4 . We present two results concerning the multiplicativity modulo 8: firstly we
identify 1

4
.�.E/��.F /�.B// mod 2 with a Z2 –valued Arf–Kervaire invariant of a

Pontryagin squaring operation. Furthermore, we prove that if F is 2m–dimensional
and the action of �1.B/ is trivial on H m.F;Z/=torsion˝Z4 , this Arf–Kervaire
invariant takes value 0 and hence the signature is multiplicative modulo 8 , that is,
�.E/D �.F /�.B/ mod 8 .

55R10, 55R12

A list of symbols can be found on page 1319.

Introduction

The signature of a nondegenerate symmetric bilinear form on a finite-dimensional real
vector space is the number of positive definite summands minus the number of negative
definite summands in a splitting of the form into 1–dimensional nondegenerate bilinear
forms. The signature �.X / 2Z of an oriented 4k –dimensional Poincaré duality space
X with fundamental class ŒX � 2H4k.X / is the signature of the symmetric bilinear
form .a; b/ 7! ha[ b; ŒX �i.

Chern, Hirzebruch and Serre [6] proved that multiplicativity of the signature of a fibre
bundle holds when the action of the fundamental group �1.B/ on the cohomology
ring of the fibre H�.F IR/ is trivial, that is,

�.E/� �.B/�.F /D 0 2 Z:

Later on, Kodaira, Hirzebruch and Atiyah constructed nonmultiplicative fibre bundles,
with the action of �1.B/ action on H�.F IR/ necessarily nontrivial.
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The signature of a fibre bundle is multiplicative modulo 4, whatever the action. This
was proved by Meyer [14] for surface bundles and by Hambleton, Korzeniewski and
Ranicki [8] for high dimensions. The two main results in this paper are the following.
In Theorem 3.1 we identify the obstruction to multiplicativity of the signature modulo 8

of a fibre bundle with a Z2 –valued Arf–Kervaire invariant. Moreover, we shall prove
that if the action of �1.B/ is trivial on H m.F;Z/=torsion˝Z4 , this Arf invariant
takes value 0. That is, we shall prove the following theorem:

Theorem 3.5 Let F2m!E4k ! B2n be an oriented Poincaré duality fibration. If
the action of �1.B/ on H m.F;Z/=torsion˝Z4 is trivial, then

�.E/� �.F /�.B/D 0 2 Z8:

A key feature for our study of the signature of a fibration is obtaining a model for the
chain complex of the total space which gives us enough information to compute its
signature. It has been known since the work of Chern, Hirzebruch and Serre [6] that the
signature of the total space depends only on the action of the fundamental group of the
base �1.B/ on the cohomology of the fibres. Clearly it is not possible to construct the
chain complex of the total space by taking into account only the action of �1.B/. For
example, the base space of the Hopf fibration S1! S3! S2 has trivial fundamental
group �1.S

2/ D f1g, but the chain complex of the total space in this case is not a
product. So, taking into account the information from the chain complexes of the base
and fibre and the action of �1.B/ is not enough to construct the chain complex of the
total space, but it is enough to construct a model that will detect the signature.

The model that we will develop here is inspired by the transfer map in quadratic L–
theory constructed by Lück and Ranicki [12], where the surgery transfer of a fibration
Fm! E ! Bn with fibre of dimension m and base of dimension n is given by a
homomorphism

p!
W Ln.ZŒ�1.B/�/!LnCm.ZŒ�1.E/�/:

Lück and Ranicki also prove in [12] that the surgery transfer map in quadratic L–
theory agrees with the geometrically defined transfer maps. A similar transfer map does
not exist in symmetric L–theory. There are two obstructions to lifting a symmetric
chain complex .C; �/ 2 Ln.ZŒ�1.B/�/ to an .mCn/–dimensional chain complex
p!.C; �/ 2LnCm.ZŒ�1.E/�/, which are described in the appendix of [12]. Basically
the difference with the quadratic L–theory transfer lies in the fact that the symmetric
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L–groups are not 4–periodic in general, so that one cannot assume that surgery below
the middle dimension can be performed to make .C; �/ highly connected.

The chain model that we shall discuss in this paper will provide a well-defined map

Ln.ZŒ�1.B/�/!LnCm.Z/:

The foundations for the construction of this map were laid by Lück and Ranicki [12; 13].
We follow the description of the chain model by Korzeniewski [10, Chapters 3 and 4].
The construction of the model for the total space uses the fact that the chain complex of
the total space is filtered, so the idea for this construction is similar to that of the Serre
spectral sequence. This was the approach taken by Meyer [14], where he describes
the intersection form of the total space of a surface bundle in terms of the intersection
form on the base with coefficients in a local coefficient system.
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1 The algebraic model for the signature of a fibration

The ideas and notation in the diagram in Figure 1 have not yet been introduced. The
purpose of the diagram is to give an overview of the key steps in the construction of a
suitable model for a fibration F !E! B , which we will explain in the first section
of this paper.

1.1 Fibrations and �–fibrations

We will consider Hurewicz fibrations where the base space B will be a path connected
CW–complex and, for any point b0 2 B , the fibre F D p�1.b0/ has the homotopy
type of a finite CW–complex. Furthermore all the fibres have the same homotopy type.
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Theorem 1.2
E is homotopy equivalent

to a filtered CW–complex X

Theorem 1.20
There is an isomorphism

G�C.X /Š C. zB/˝ .C. zF /;U /

�.E/D �.X / 2 Z
�D.Z/.G�C.X //D

�D.Z/.C. zB/˝ .C.F /;U // 2 Z

Proposition 1.21

�.X /D �D.Z/.G�C.X // 2 Z

Theorem 1.2 and Proposition 1.27

�.E/D �D.Z/..C. zB/; �/˝ .C.F /; ˛;U //

D �..C. zB/; �/˝ .H m.F /; x̨;U //

Figure 1: Overview of the construction for the chain complex model of the
total space

In order to consider the most general possible setting for the construction of our chain
complex algebraic model of a fibration, we will need to use the definition of �–fibration
from Lück [11].

Definition 1.1 (Lück [11, Definition 1.1]) Let � be a discrete group. A �–fibration
is a �–equivariant map p0W E0! B0 with E0 a �–space such that � acts trivially on
B0 and p0 has the �–equivariant lifting property for any �–space X :

X
f
//

x 7!.x;0/
��

E0

p0

��

X � I

H 0
;;

F
// B0
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We will consider a fibration pW E! B with fibre F D p�1.b/. The map qW zE!E

will denote the universal cover of E . The composition p ı q D zpW zE ! B is a �–
fibration with � D �1.E/. This fibration has fibre zp�1.b/ D zF, which is the cover
of F induced from the universal cover of E :

zF //

��

zE

q

��

zpDpıq

��

F // E
p
// B

1.2 Filtrations

The argument to construct an algebraic model of the total space appropriate for the
computation of the signature is motivated by the well-known result that the total space
of a fibration is filtered. The following result, Theorem 1.2, was proved by Stasheff [25]
using an inductive argument and by Schoen [23] using a different argument based on
the CW approximation theorem of Whitehead [28]; see also Spanier [24, page 412].
A similar argument to that of Stasheff [25] was used by Lück [11], by Hambleton,
Korzeniewski and Ranicki [8] and by Korzeniewski [10].

Theorem 1.2 (Stasheff and Schoen [25; 23]) Let F ! E ! B be a Hurewicz
fibration, where B and F have the homotopy type of CW–complexes, then the total
space E is weakly homotopy equivalent to a CW–complex X.

1.2.1 Filtered spaces Here we shall define what is meant by filtered spaces. We only
consider compactly generated spaces, such as CW–complexes.

Definition 1.3 A k –filtered topological space X is a topological space which is
equipped with a series of subspaces

X�1 D∅�X0 �X1 � � � � �Xk DX:

Here we will assume that each of the inclusions Xj �XjC1 is a cofibration.

The condition that Xj �XjC1 is a cofibration implies that the pair .XjC1;Xj / has the
homotopy extension property. (See Hatcher [9, page 14].) In particular, the inclusion of
a CW–subcomplex is a cofibration, and has the homotopy extension property.

Definition 1.4 Let X and Y be two filtered spaces.

(i) A map f W X ! Y is a filtered map if f .Xj /� Yj .
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(ii) A filtered homotopy between the maps f W X!Y and gW X!Y is a homotopy
H W X � I ! Y such that H.Xj � I/� Yj .

(iii) Two filtered spaces X and Y are filtered homotopy equivalent if there exist
filtered maps f W X ! Y and hW Y !X such that hf is filtered homotopic to
IdX and f h is filtered homotopy equivalent to IdY . In such a case, the filtered
map f will be called a filtered homotopy equivalence between X and Y .

In the context established in this section, namely that each of the inclusions Xj �XjC1

(or Yj � YjC1 ) is a cofibration, the following lemma holds:

Lemma 1.5 A filtered map f W X ! Y is a filtered homotopy equivalence if and only
if each fj W Xj ! Yj is a homotopy equivalence of unfiltered spaces.

Proof See Brown [5, 7.4.1].

Definition 1.6 A k –filtered CW–complex X is a CW–complex X together with a
series of subcomplexes

X�1 D∅�X0 �X1 � � � � �Xk DX:

The cellular chain complex C.X / is filtered by

Fj C.X /D C.Xj /:

A k –filtered CW–complex satisfies the conditions of Definition 1.3.

The main application will be a filtered complex in the context of Theorem 1.2, a
fibration E

p
�!B with B a CW–complex. We will consider B with a filtration given

by its skeleta which induces a filtered structure on E by defining Ek WD p�1.Bk/,
where Bk is the k th skeleton of B . Note that here the inclusions Ek�1 � Ek are
cofibrations.

1.2.2 Filtered complexes Here A will denote an additive category.

Definition 1.7 (i) Let M be an object in the additive category A and let M have
a direct sum decomposition

M DM0˚M1˚ � � �˚Mk ;

so that M has a filtration of length k ,

F�1M D 0� F0M � F1M � � � � � FkM DM;
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where

FiM DM0˚M1˚ � � �˚Mi :

A k –filtered object F�M 2A is the object M 2A together with the direct sum
decomposition of M.

(ii) Let F�M and F�N be two k –filtered objects in the additive category A. A
filtered morphism is given by

f D

0BBBBB@
f0 f1 f2 � � � fk

0 f0 f1 � � � fk�1

0 0 f0 � � � fk�2
:::

:::
: : :

:::
:::

0 0 0 � � � f0

1CCCCCA W M D
kM

sD0

Ms!N D

kM
sD0

Ns:

In the context of chain complexes in the additive category A, a k –filtered complex
F�C is defined as follows:

Definition 1.8 Let C W Cn! � � �! Cr ! Cr�1! � � �! C0 be a chain complex, and
let each Cr be k –filtered, that is,

Cr D Cr;0˚Cr;1˚ � � �˚Cr;s˚ � � �˚Cr;k D

kM
sD0

Cr;s:

Then a k –filtered complex F�C in A is a finite chain complex C in A where each of
the chain groups is k –filtered and each of the differentials d W F�Cr ! F�Cr�1 is a
filtered morphism. The matrix components of d are the maps Cr;s

dj
�!Cr�1;s�j .

We have FsCr D
Ps

iD0 Cr;i and FsCr=Fs�1Cr D Cr;s , so Cr;s represents the sth

filtration quotient of Cr .

Tensor products of filtered complexes are carefully described by Hambleton, Korze-
niewski and Ranicki [8, Section 12.2].

Definition 1.9 The tensor product of filtered chain complexes F�C and F�D over
A.R/ and A.S/, where R and S are rings, is itself a filtered complex

Fk.C ˝Z D/D
M

iCjDk

FiC ˝Z Fj D:

Algebraic & Geometric Topology, Volume 18 (2018)
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1.3 The associated complex of a filtered complex

1.3.1 A complex in the derived category D.A/ Given an additive category A we
write D.A/ for the homotopy category of A, which is the additive category of finite
chain complexes in A and chain homotopy classes of chain maps with

HomD.A/.C;D/DH0.HomA.C;D//:

See Lück and Ranicki [12, Definition 1.5].

A k –filtered complex F�C in A has an associated chain complex in the derived
category D.A/. The associated complex of a k –filtered space is denoted by G�.C /

and is k –dimensional:

G�.C /W Gk.C /! � � � !Gr .C /
d�
�!Gr�1.C /! � � � !G0.C /:

The morphisms in G�.C / are given by the (filtered) differentials

d� D .�/
sd1W Gk.C /s D CkCs;r !Gk.C /s�1 D CkCs�1;r�1:

Each of the individual terms Gr .C / is an object in D.A/, hence a chain complex in A,

Gr .C /W � � � !Gr .C /s!Gr .C /s�1!Gr .C /s�2! � � � :

As a chain complex, Gr .C / has differentials

dGr .C / D d0W Gr .C /s D CrCs;r !Gr .C /s�1 D CrCs�1;r

such that

.dGr .C //
2
D d2

0 D 0W Gr .C /s D CrCs;r !Gr .C /s�2 D CrCs�2;r :

Note that the differentials of a filtered complex d W Ck ! Ck�1 are such that d2 D

0W Cr ! Cr�2 . These differentials are upper-triangular matrices. If we write d0 for
the diagonal and d1 for the superdiagonal, we obtain relations

d2
0 D 0W Cr;s! Cr�2;s;

d0d1C d1d0 D 0W Cr;s! Cr�2;s�1;

.d1/
2
C d0d2C d2d0 D 0W Cr;s! Cr�2;s�2;

up to sign. These are the required relations for the objects in the associated complex to
be in D.A/ and for the differentials to be morphisms in D.A/ with square 0.

Example 1.10 For a filtered CW–complex X,

GkC.X /D S�kC.Xk ;Xk�1/:
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1.3.2 Duality for a filtered complex and its associated complex in the derived
category Let A be an additive category with involution. Then Dn.A/ is the additive
category of n–dimensional chain complexes in A and chain homotopy classes of chain
maps, with n–duality involution T W Dn.A/!Dn.A/IC 7! C n�� .

The definition of a filtered dual chain complex in an additive category with involution A

is given by Hambleton, Korzeniewski and Ranicki [8, Section 12.6]. Here we review
the definition of the dual F dual

� C of a k –filtered chain complex F�C .

Definition 1.11 (Hambleton, Korzeniewski and Ranicki [8, Definition 12.21(ii)]) Let
F�C be a k –filtered n–dimensional chain complex in A.

(i) The filtered dual F dual
� C of F�C is the k –filtered complex with modules

.F dual
� C /r;s D C �n�r;k�s;

where 0� r � n and 0� s � k .

(ii) The dual of the differential Cr
d
�! Cr�1 is given by ddualW .F dual

� C /r !

.F dual
� C /r�1 . This dual differential is also k –filtered:

C �n�r;k�s

.�/rCsCj.nCr /d�
j

������������! C �n�.r�1/;k�.s�j/:

We refer the reader to Hambleton, Korzeniewski and Ranicki [8, Section 12.6] for more
details on filtered complexes and their associated graded complexes. The application
in this paper is for the k –filtered chain complex F�C.E/ of the total space of a fibre
bundle F !E! Bk with dim B D k .

Lemma 1.12 (Hambleton, Korzeniewski and Ranicki [8, 12.23]) Let F�C be a
k –filtered .nCk/–dimensional chain complex with associated complex G�.C /. The
associated complex G�.F

dual
� C /D .G�.C //

� is the .n; k/–dual of G�.C /.

Remark 1.13 Hambleton, Korzeniewski and Ranicki use the terminology n–dual
of G�.C / instead of .n; k/–dual. We believe that this latter terminology is more
precise since the construction of the dual of G�.C / uses n–duality in each fixed degree
0; 1; : : : ; k and then reverses the order in f0; 1; : : : ; kg.

1.4 The transfer functor associated to a fibration

Let F !E!B be a fibration where B is based and path-connected. It is possible to
model the fibration by a map of topological monoids �B!Map.F;F /, where �B
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h p�1.x/D F

F F � I T .F
h
�!F / E

pp p

x x
I S1

!
B

Figure 2: Monodromy automorphism

is grouplike. Broadly speaking, the fibration can be recovered in the form

EB ��B F !EB � fptg;

where EB is a contractible space with an action of �B which is free. In particular,
we have EB ��B fptg ' B .

For any loop !W S1! B , the pullback F ! !�E! S1 is the mapping torus

!�E D T .hW F ! F /D F � I=f.y; 0/� .h.y/; 1/ j y 2 Fg

of the monodromy automorphism hD U.!/W F ! F. (See Figure 2.)

We are considering the action of �B on the fibre F

�B!Map.F;F /; ! 7! h:

If ! is a loop in �B , the homotopy class of its corresponding map h! W F ! F only
depends on the homotopy class of ! 2 �1.B/. So there is an action of the fundamental
group �1.B/ on the fibre F given by the fibre transport

uW �1.B/! ŒF;F �op:

This determines
uW �1.B/! ŒC.F /;C.F /�op;

which extends to a ring morphism

(1) U W H0.�B/D ZŒ�1.B/�!H0

�
HomZ.C.F /;C.F //

�op

from ZŒ�1.B/� to the opposite of the ring of chain homotopy classes of Z–module
chain maps hW C.F / ! C.F /. If F is a Poincaré space then U is a morphism
of rings with involution. Let ˛ be the symmetric structure on C.F /. Then the
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involution on H0

�
HomZ.C.F /;C.F //

op
�

is defined by T .h/ D ˛�1
0

h�˛0 , where
˛0W C.F /

n��! C.F / is the zeroth part of the symmetric structure ˛ .

It is also possible to give a �1.E/–equivariant version of the fibre transport by consid-
ering the �1.E/–fibration zE! B , with fibres zF the pullback to F of the universal
cover zE of E . In this case the ring morphism is given by

(2) U W H0.�B/D ZŒ�1.B/�!H0

�
HomZŒ�1.E/�.C.

zF /;C. zF //
�op
:

The ring morphisms from (1) and (2) induce transfer functors as we now explain.

The idea of the transfer functor associated to a fibration F !E
p
�!B was developed

by Lück and Ranicki [12].

Definition 1.14 (Lück and Ranicki [12, Definition 1.1]) A representation .A;U / of
a ring R in an additive category A is an object A in A together with a morphism of
rings U W R! HomA.A;A/

op .

Following the notation used by Lück and Ranicki [12], we will denote by B.R/ the
additive category of based finitely generated free R–modules, where R is an associative
ring with unity. As above, D.A/ denotes the derived homotopy category of the additive
category A. From Lück and Ranicki [12, Definition 1.5], we know that

HomD.A/.C;D/DH0.HomA.C;D//:

Definition 1.15 (Lück and Ranicki [12]) A representation .A;U / determines a
transfer functor �˝ .A;U /D F W B.R/!D.A/ as follows:

F.Rn/DAn;

F..aij W R
n
!Rm//D .U.aij //W A

n
!Am:

The ring morphism induced by the fibre transport

U W ZŒ�1.B/�!H0

�
HomZŒ�1.E/�.C.

zF /;C. zF //
�op

determines the representation .C. zF /;U / of the ring ZŒ�1.B/� into the derived category
D.B.ZŒ�1.E/�// and hence the functor

�˝ .C. zF /;U /W B.ZŒ�1.B/�/!D
�
B.ZŒ�1.E/�/

�
:

Now let A denote an additive category with involution as in Lück and Ranicki [12].

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 1.16 (Lück and Ranicki [12]) A symmetric representation .A; ˛;U / of
a ring with involution R in an additive category with involution A is a nonsingular
symmetric form .A; ˛/ in A together with a morphism of rings with involution U W R!

HomA.A;A/
op .

For a fibration F2m ! E ! B2n with F Poincaré, there is defined a symmetric
representation .C. zB/; ˛;U / in the derived category D2m

�
B.ZŒ�1.E/�/

�
, where U is

a ring morphism of rings with involution,

U W ZŒ�1.B/�!H0

�
HomZŒ�1.E/�.C.

zF /;C. zF //
�op
:

The symmetric representation .C. zB/; ˛;U / determines the functor

�˝ .C. zF /; ˛;U /W B.ZŒ�1.B/�/!D2m

�
B.ZŒ�1.E/�/

�
:

This functor induces maps in the L–groups. It is defined and used by Lück and
Ranicki [12] to construct a transfer map in the quadratic L–groups associated to a
fibration F2m!E2nC2m! B2n :

L2n.ZŒ�1. zB/�/
�˝.C. zF /;˛;U /
����������!L2n

�
D2m

�
B.ZŒ�1.E/�/

�� �
�!L2nC2m.ZŒ�1.E/�/;

where � is the Morita map also defined by Lück and Ranicki [12].

Note that D2m

�
B.ZŒ�1.E/�/

�
is an additive category with involution. The symmetric

L–groups of such categories are defined by Ranicki in detail in [20, Chapter 1]. In
symmetric L–theory the transfer functor still induces a map

L2n.ZŒ�1. zB/�/
�˝.C. zF /;˛;U /
����������!L2n

�
D2m

�
B.ZŒ�1.E/�/

��
;

but there is no Morita map, unlike the situation in quadratic L–theory.

In our context, since we are only interested in obtaining information about the ordinary
signature of E , so we can forget about �1.E/. That is, we only need to work with the
map, which we will make precise in Section 1.6,

L2n.ZŒ�1.B/�/
�˝.C.F /;˛;U /
����������!L2n.D2mZ/

�D2mZ

�����! Z:

1.5 Symmetric structures

Let W be the standard free ZŒZ2� resolution of Z,

W W � � � ! ZŒZ2�
1�T
��!ZŒZ2�

1CT
��!ZŒZ2�

1�T
��!ZŒZ2�! 0:
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Let C be a finite, finitely generated left R–module chain complex, where R is a ring
with involution. Then its transpose R–module is the right R–module denoted by C t

with the same additive group.

A symmetric structure of degree k on C is a chain map W !C t˝R C raising degrees
by k which is equivariant for the actions of Z2 .

1.5.1 Tensor products of chain complexes in the derived category For the def-
inition of the tensor product in a derived category Dn.A/ we refer to Ranicki [20,
page 27]. This reference discusses the tensor product of objects in an additive category
with chain duality. We shall only need the special case when the additive category is
the derived category Dn.A/ with the n–duality involution C 7! C n�� .

Definition 1.17 For any objects M and N in the additive category with involution
Dn.A/, define the abelian group

M ˝Dn.A/N D HomDn.A/.M
�;N /;

where M � is the dual of M.

In the application in this paper we will consider a fibration F2m!E! B2n with F

and B Poincaré. We will construct chain complex models for the signature of the total
space, which are symmetric chain complexes in L2n.Dm.Z//.

A typical representative of an element of L2n.D2m.Z// is a chain complex C made
up of objects in D2m.Z/, ie it is a diagram in the category D2m.Z/ of the shape

� � � � � �  � �;

where the composition of any two consecutive arrow is zero, together with a 2n–cycle

� 2 HomZŒZ2�.W;C ˝D2m.Z/ C /;

where
C ˝D2m.Z/ C WD HomD2m.Z/.C

��;C /:

1.5.2 Symmetric structure induced by the representation associated to a fibra-
tion In this section we will see that the symmetric representation functor associated
to a fibration F2m!E! B2n induces a symmetric structure in the derived additive
category with involution D2m.Z/. The details of this construction can be found in [10,
Theorems 3.11 and 4.5].
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The symmetric representation

(3) U W ZŒ�1.B/�!H0

�
HomZ.C.F /;C.F //

op�
induces a natural morphism

HomZŒ�1.B/�.C.
zB/�;C. zB//

U
�!HomD2m.Z/

�
.C. zB/˝ .C.F /;U //�;C. zB/˝ .C.F /;U /

�
:

Let W be the standard free ZŒZ2� resolution of Z. The action of T 2 Z2 on
HomZŒ�1.B/�.C.

zB/�;C. zB// is preserved under the natural transformation U, so the
induction map preserves the duality,

(4) HomZŒZ2�

�
W;HomZŒ�1.B/�.C.

zB/�;C. zB//
�

U
�!

HomZŒZ2�

�
W;HomD2m.Z/

�
.C. zB/˝.C.F /;U //�;C. zB/˝.C.F /;U /

��
:

This induces a map in homology.

Definition 1.18 The 2n–dimensional derived symmetric structure on the associated
chain complex in D2m.Z/ of the filtered complex C. zB/˝ .C.F /; ˛;U / induced by
the symmetric representation .C.F /; ˛;U / is the cycle in

H2n

�
HomZŒZ2�

�
W;HomD2m.Z/

�
.C. zB/˝ .C.F /;U //�;C. zB/˝ .C.F /;U /

���
obtained by evaluating the chain map in (4) on the preferred cycle there, namely the
symmetric structure on C. zB/.

Definition 1.19 The 2n–dimensional Q–group Q2n.C. zB/ ˝ .C.F /;U // is the
abelian group of equivalence classes of derived 2n–dimensional symmetric structures
on C. zB/˝ .C.F /; ˛;U /,

Q2n.C. zB/˝ .C.F /; ˛;U //D

H2n

�
HomZŒZ2�

�
W;HomD2m.Z/

�
.C. zB/˝ .C.F /;U //�;C. zB/˝ .C.F /;U /

���
:

The symmetric representation .C.F /; ˛;U / induces morphisms of abelian groups
which preserve the duality. Therefore it induces a morphism of the Q–groups,

Q2n.C. zB//!Q2n.C. zB/˝ .C.F /; ˛;U //:

Hence, there is a map in L–theory

�˝ .C.F /; ˛;U /W L2n.ZŒ�1.B/�/!L2n.D2mZ/;
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and we can construct a symmetric chain complex .C. zB/; �/˝ .C.F /; ˛;U / over
D2m.Z/, ie a chain complex made up of objects in D2m.Z/.

1.5.3 Symmetric structure on the graded complex associated to the filtered com-
plex X In this paper we are considering a fibration F2m!E

p
�!B2n with F and B

Poincaré. Since E
p
�!B is a fibration, E�E

p�p
��!B�B is also a fibration. There is

a commutative diagram of the diagonal maps �E W E!E�E and �BW B!B�B ,

E
�E
//

p

��

E �E

p�p

��

B
�B
// B �B

From Theorem 1.2 we know that the total space of a fibration is weakly homotopy
equivalent to a filtered CW–complex X with the filtration X0 � X1 � � � � � X2n D X

induced from the cellular structure of the base space. Up to homotopy, we can define
the composition of maps

X

�X

((
h
// E

�E
// E �E

h�1�h�1
// X �X:

The chain approximation C.X /
�C.X/
���!C.X /˝Z C.X / can be chosen to be natural;

see Bredon [3, Chapter VI.16]. Naturality means that for every inclusion Xj ,!XjC1

there is a commutative square

Fj C.X /r D C.Xj /r
�i

//

��

.C.Xj /˝Z C.Xj //rCi

��

C.XjC1/r
�i

// .C.XjC1/˝Z C.XjC1//rCi

Thus, by the naturality of the diagonal chain approximation, we can assume that �C.X /

preserves the filtration.

Since X is a filtered complex over Z, it has (as explained in Section 1.3.1) an associated
complex G�C.X /DF�C.X /=F��1C.X / in D2m.Z/, where D2m.Z/ is the derived
category D.Z/ with the 2m–duality involution C 7! C 2m�� . So there is a chain
approximation on the graded chain complex,

G�C.X /
G�C.�X /
�������!G�.C.X /˝Z C.X //:
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Theorem 1.20 (Korzeniewski [10, Theorem 4.5]) Given a fibration

F2m
!E2mC2n

! B2n

with F and B having the homotopy type of CW–complexes, let X be a filtered space
homotopy equivalent to E , with the filtration induced by the cellular structure of the
base. Then there is:

(i) A chain isomorphism of chain complexes in the derived category D2m.Z/,

�W G�C.X /Š C. zB/˝ZŒ�1.B/� .C.F /;U /:

(ii) A derived symmetric structure on G�C.X / obtained from the symmetric struc-
ture defined on C. zB/˝ZŒ�1.B/� .C.F /;U / and the chain isomorphism from
part (i) of this theorem.

Proof (i) Denoting the k –cells in B by an ordered set Ik and the k th skeleton of
B by Bk , we first observe that there is a commutative diagram, where the horizontal
arrows are isomorphisms in D2m.Z/,L

j2Ik
C.F / //

��

GkC.X /

G�d

��L
j2Ik�1

C.F / // Gk�1C.X /

We can now construct the diagram

L
j2Ik

C.F /

Id

**

//

��

GkC.X /

G�d

��

�k
// Ck. zB/˝ .C.F /;U /

d
C. zB/˝.C.F /;U /

��L
j2Ik�1

C.F /

Id

55

// Gk�1C.X /
�k�1

// C. zB/k�1˝ .C.F /;U /

Here the square on the leftL
j2Ik

C.F / //

��

GkC.X /

G�d

��L
j2Ik�1

C.F / // Gk�1C.X /
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commutes. The outer square also commutes:L
j2Ik

C.F / //

��

Ck. zB/˝ .C.F /;U /

d
C. zB/˝.C.F /;U /

��L
j2Ik�1

C.F / // C. zB/k�1˝ .C.F /;U /

Since the left and the outer squares commute, we deduce that the right square

GkC.X /

G�d

��

�k
// Ck. zB/˝ .C.F /;U /

d
C. zB/˝.C.F /;U /
��

Gk�1C.X /
�k�1

// C. zB/k�1˝ .C.F /;U /

also commutes. Hence, �W GkC.X /! C. zB/k ˝ .C.F /;U / is a chain map.

Using the same argument, we can construct a chain map

�W C. zB/˝ .C.F /;U /!GkC.X /

which is inverse to � if we view both � and � as chain maps between chain complexes
in D2m.Z/.

(ii) We have already proved that there is a chain equivalence

�W G�C.X /! C. zB/˝ .C.F /;U /

and we also already described the chain approximation G�C.�
X /W G�C.X / !

G�.C.X /˝Z C.X //. The commutativity of the following diagram was proved in [10,
Theorems 3.11 and 4.5]:

G�C.X /
�

//

G�C.�X /

��

C. zB/˝.C.F /;U /

�
zB˝�F

��

G�.C.X /˝ZC.X //

�X;X

��

.C. zB/˝ZŒ�1.B/�
C. zB//˝.C.F /˝ZC.F /;U˝U /

�
zB;F

��

HomD2m.Z/

�
.G�C.X //

�;G�C.X /
� �˝�

// .C. zB/˝.C.F /;U //˝Z.C. zB/˝.C.F /;U //

The filtration-preserving symmetric structure on G�C.X /, which we will denote later
on in Section 1.6 by G�� , is obtained from the symmetric structure �C. zB/˝.C.F /;U;˛/
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on C. zB/˝ .C.F /;U / described in Definition 1.18 and the commutativity of the
diagram above as

� ıG�� ı�
�
D �C. zB/˝.C.F /;U;˛/:

The details for this can be found in [10, page 42].

1.6 The signature in the derived category

In Theorem 1.20 we have seen that there is an equivalence of the associated graded
complex of the filtered chain complex of the total space and the tensor product
C. zB/ ˝ .C.F /; ˛;U /. The filtration-preserving symmetric structure on G�C.X /

was also described there in terms of the symmetric structure on the tensor product given
in Definition 1.18.

Korzeniewski [10, Lemmas 4.10 and 4.12] describes a signature map for 2n–dimen-
sional symmetric chain equivalences .G�C;G��/ in D2m.Z/. Here 2mC 2n � 0

.mod 4/. This signature map extends to a well-defined map

�D2m.Z/W L
2n.D2m.Z//! Z:

In this section we review the proofs by Korzeniewski relevant for this result, which we
summarize in Proposition 1.21.

Proposition 1.21 (Korzeniewski [10, Lemmas 4.10 and 4.12])

(i) There is a well-defined homomorphism �D2m.R/ from L2n.D2m.R// to Z.

(ii) For any 2n–filtered chain complex C over the reals with a filtration-preserving
nondegenerate symmetric structure � of degree 2m C 2n, the signature of
.C; �/ is equal to the derived signature of the associated graded chain complex
.G�C;G��/,

�.C; �/D �D2m.Z/.G�C;G��/:

Proof (i) An element in L2n.D2m.R// is represented by .C; �/, where C D

.C0 C1 � � �  C2n/ is a chain complex in D2m.R/, so that each Cr is an object
of D2m.R/, and � is a nondegenerate symmetric structure. Without loss of generality,
each Cr has the form of a chain complex of real vector spaces with zero differential,
that is, Cr ŠH�Cr . Then from a symmetric chain complex .C; �/ 2L2n.D2m.R//

we can form a new symmetric chain complex .C 0; �0/, with each C 0r defined as

C 0r DHr C D
Ker.d W Cr ! Cr�1/

Im.d W CrC1! Cr /
:
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This has trivial differentials,

� � �
0
�!C 0r

0
�!C 0r�1

0
�!� � � :

The map in the middle dimension,

�0W .C 0n/
�
! C 0n;

is a symmetric form over R.

The chain complex C in D2m.R/ is chain equivalent to C 0 in D2m.R/, so .C; �/ is
equivalent to .C 0; �0/. The signature �D2m.R/.C; �/ is defined to be the signature of
the symmetric form �0W .C 0n/

�! C 0n .

The map �D2m.R/ is clearly additive, that is, if .C; �C / and .B; �B/ are two chain
complexes in L2n.D2m.R//, then

�D2m.R/.C ˚B; �C
˚�B/D �D2m.R/.C; �

C /C �D2m.R/.B; �
B/:

The proof that �D2m.R/.C; �/D 0 for elements representing zero in L2n.D2m.R// is
given in [10, page 52].

(ii) This result is proved by Korzeniewski in [10, page 54].

Using Proposition 1.21(i), we see that for a fibration F2m!E
p
�!B2n the composite

p!
W L2n.ZŒ�1.B/�/

�˝.C.F /;˛;U /
����������!L2n.D2m.Z//

�D2m.Z/

������!L2mC2n.Z/D Z

is a transfer map in symmetric L–theory.

If B is a 2n–dimensional geometric Poincaré complex, then E is a .2mC2n/–
dimensional geometric Poincaré complex with the transfer of the symmetric signature
��.B/2L2n.ZŒ�1.B/�/ the ordinary signature �.E/Dp!.��.B//2L2mC2n.Z/DZ.

Example 1.22 With this example we shall illustrate Proposition 1.21 in two special
cases, when the base is a point and when the fibre is a point.

� Case 1 Let F2m! E! fptg be a fibration with base a point, that is, we take
nD 0. Then F !E is a homotopy equivalence, and there is a symmetric L–theory
transfer

p!
W L0.Z/!L0.D2m.Z//!L2m.Z/D Z:

In general, the ring morphism ZŒ�1.B/� ! H0

�
HomZ.C.F /;C.F //

op
�

induces a
map in L–theory, L0.ZŒ�1.B/�/ ! L0

�
H0.HomZ.C.F /;C.F //

op/
�
. Composing
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this with the canonical map L0
�
H0

�
HomZ.C.F /;C.F //

op
��
! L0.D2m.Z//, we

obtain the first functor in the transfer map. If B D fptg, the ring morphism is

Z!H0

�
HomZ.C.F /;C.F //

op�
I 1 7! 1;

and the canonical map sends 1 to C.F / in the 0th filtration. Therefore the transfer
map is

p!
W L0.Z/D Z!L2m.Z/I 1 7! �.E/D �.F /;

and
p!.��.B//D �.F /D �.E/:

� Case 2 Let fptg ! E ! B2n be a fibration with fibre a point, that is, we take
mD 0. Then pW E! B is a homotopy equivalence and

p!
W L2n.ZŒ�1.B/�/!L2n.Z/D Z

is the forgetful map induced by the augmentation ZŒ�1.B/�! Z, and

p!.��.B//D �.B/D �.E/:

At this point we know that for a fibration F2m!E!B2n with 2mC2n�0 .mod 4/,

�.E/D �.X /D �D2m.Z/.G�C.X // 2 Z;

where X is a filtered complex homotopy equivalent to E . And we have also described
a well-defined functor

L2n.ZŒ�1.B/�/
�˝.C.F /;˛;U /
����������!L2n.D2m.Z//

�D2m.Z/

������! Z:

To show that this functor describes the signature of the total space, we just need to
observe that �D2m.Z/.G�C.X //D �D2m.Z/.C.

zB/˝ .C.F /; ˛;U //.

Using the results of Theorem 1.2, Proposition 1.21 and Theorem 1.20, we see that

�.E/D �.X /D �D2m.Z/.G�C.X //D �D2m.Z/..C.
zB/; �/˝ .C.F /; ˛;U // 2 Z:

1.7 Two equivalent functors for the signature of a fibration

The definition of a symmetric representation was given in Definition 1.16.

Let .C.F /; ˛;U / be the symmetric representation of the group ring ZŒ�1.B/� in
D2m.Z/ associated to the fibration F2m!E! B2n .
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Definition 1.23 The symmetric representation .C.F /; ˛;U / gives rise to the functor
of additive categories with involution

�˝ .C.F /; ˛;U /W B.ZŒ�1.B/�/!D2m.Z/:

From the chain symmetric representation .C.F /; ˛;U / we can construct a homology
symmetric representation .A; ˛;U / associated to the same fibration, which is given by

ADHm.C.F //=torsion;

˛W ADHm.C.F //=torsion!A� DH m.C.F //=torsion;

U W ZŒ�1.B/�!H0.HomZ.A;A//
op:

Remark 1.24 Since .A; ˛/ 2L0.Z; .�1/m/, the tensor product

.C. zB/; �/˝Z .A; ˛;U /

does not immediately give us a chain complex of the dimension of the total space. To
obtain the correct dimension we just need to use skew suspension of .A; ˛/,

Sm
W L0.Z; .�1/m/!L2m.Z; .�1/2m/; .A; ˛/ 7! Sm.A; ˛/:

Definition 1.25 The homology symmetric representation Sm.A; ˛;U / associated
to the fibration F2m ! E ! B2n is the .�1/m –symmetric form .A; ˛/ together
with a representation U of the group ring ZŒ�1.B/� in the additive category with
involution D2m.Z/.

Definition 1.26 The homology symmetric representation Sm.A; ˛;U / gives rise to
the functor of additive categories with involution

�˝Sm.A; ˛;U /W B.ZŒ�1.B/�/!D2m.Z/:

The two functors from Definitions 1.23 and 1.26 induce maps in symmetric L–theory,

�˝ .C.F /; ˛;U /W L2n.ZŒ�1.B/�/!L2n.D2m.Z//

and
�˝Sm.A; ˛;U /W L2n.ZŒ�1.B/�/!L2n.D2m.Z//:

Proposition 1.27 Using the functors for a fibration F2m! E! B2n described in
Definitions 1.23 and 1.26, the following diagram commutes:
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L2n.ZŒ�1.B/�/

D

��

�˝.C.F /;˛;U /
// L2n.D2m.Z//

�D2m.Z/

((�˝R
// L2n.D2m.R//

�D2m.R/
// Z

��

L2n.ZŒ�1.B/�/
�˝Sm.A;˛;U /

// L2n.D2m.Z//
�D2m.Z/

66
�˝R

// L2n.D2m.R//
�D2m.R/

// Z

Proof We have

�D2m.Z/.�˝ .C; ˛;U //

D �D2m.R/

�
�˝Sm.H�.C ˝R/; ˛˝R;U ˝R/

�
D �D2m.R/

�
�˝Sm.H0.C ˝R/˚H2m.C ˝R/; ˛˝R;U ˝R/

�
C �D2m.R/

�
�˝Sm.H1.C ˝R/˚H2m�1.C ˝R/; ˛˝R;U ˝R/

�
C � � �C �D2m.R/

�
�˝S2m.Hm.C ˝R/; ˛˝R;U ˝R/

�
:

The signature only depends on the middle homology, so the only nonzero term is
�D2m.R/

�
�˝Sm.Hm.C ˝R/; ˛˝R;U ˝R/

�
; the other terms are just hyperbolic

modules which are 0 2L2mC2n.Z/. Hence,

�D2m.Z/.�˝ .C; ˛;U //D �D2m.R/

�
�˝Sm.Hm.C ˝R/; ˛˝R;U ˝R/

�
D �D2m.R/.�˝Sm.A˝R; ˛˝R;U ˝R//

D �D2m.Z/.�˝Sm.A; ˛;U //;

and the result follows.

Remark 1.28 We had already noted that

�.E/D �D2m.Z/.C.
zB/; �/˝ .C.F /; ˛;U /:

Combining this result with Proposition 1.27, we have that

�.E/D �
�
.C. zB/; �/˝Sm.A; ˛;U /

�
:

2 The signature and the Arf and Brown–Kervaire invariants

2.1 Pontryagin squares

2.1.1 Cup-i products To define Pontryagin squares it is first necessary to introduce
cup-i products. The construction of the cup-i products is defined in detail by Mosher
and Tangora [17].
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Definition 2.1 (Mosher and Tangora [17]) For each integer i � 0, define a cup-i
product

[i W C
p.X /˝C q.X /! C pCq�i.X /; .u; v/ 7! u[i v;

by the formula

.u[i v/.c/D .u˝ v/�.di ˝ c/;

where c 2 CpCq�i.X / and di is the standard generator of Wi D ZŒZ2� and

�W W ˝C.X /! C.X /˝C.X /

is an equivariant Eilenberg–Zilber diagonal map.

More details about the equivariant chain map � and the chain complex W are given
in Mosher and Tangora [17, Chapter 2].

2.1.2 Classical Pontryagin squares Pontryagin first defined the cohomology oper-
ation known as Pontryagin square in [18]. Pontryagin squares were also carefully
studied by Whitehead [27; 28]. With X a space, the Pontryagin square is an unstable
cohomology operation

P2W H
n.X IZ2/!H 2n.X IZ4/:

Although the Pontryagin square is defined on modulo-2 cohomology classes, it cannot
be constructed solely from the modulo-2 cup product structure.

Let d�W C n.X IZ/! C nC1.X IZ/ be the singular cohomology coboundary operator.
We shall represent an element x 2H n.X IZ2/ as a cycle

x D .y; z/ 2 Ker
��

d� 2

0 d�

�
W C n.X /˚C nC1.X /! C nC1.X /˚C nC2.X /

�
;

that is, d�.z/D 0 and d�.y/C 2z D 0. Using this notation we define the Pontryagin
square as follows.

Definition 2.2 The Pontryagin square is defined on the cochain level by

P2.x/D P2.y; z/D y [0 yCy [1 d�y D y [0 yC 2y [1 z;

where y [1 z is the cup-1 product.
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The coboundary formula for the cup-i product, with u 2 C p.X / and v 2 C q.X / is
given by

d.u[i v/D .�1/idu[i vC.�1/iCpu[i dvC.�1/iC1u[i�1vC.�1/pqC1v[i�1 u:

This formula can be applied to check that y[0 yCy[1 d�y mod 4 is a cocycle mod 4

and that its cohomology class only depends on that of x D .y; z/ 2H n.X IZ2/ (see
Mosher and Tangora [17]).

Definition 2.3 The Pontryagin square is defined on cohomology by

P2W H
n.X IZ2/!H 2n.X IZ4/; x D .y; z/ 7! y [0 yCy [1 d�y;

where .y; z/ are as defined above.

The maps in the exact sequence 0!Z2
i
�!Z4

r
�!Z2!0 induce maps in cohomology,

� � � !H 2n.X IZ2/
i�
�!H 2n.X IZ4/

r�
�!H 2n.X IZ2/

ı
�!� � � ;

so
r�P2.x/D x[x 2H 2n.X IZ2/;

where r�W H
n.X IZ4/!H n.X IZ2/ is the map induced by the nontrivial map

Z4! Z2 .

Remark 2.4 The Steenrod square Sqn is a mod-2 reduction of the Pontryagin square:

H 2n.X IZ4/

r�
��

H n.X IZ2/
Sqn

//

P2

77

H 2n.X IZ2/

Proposition 2.5 (Mosher and Tangora [17]) (i) Let x and x0 be cocycles in
H n.X IZ2/, where X is a Poincaré space. The Pontryagin square evaluated on
a sum is given by

P2.xCx0/D P2.x/CP2.x
0/C .x[x0/C .�1/n.x[x0/ 2H 2n.X IZ4/:

So, in particular, for n even,

P2.xCx0/D P2.x/CP2.x
0/C i.x[x0/ 2 Z4;

where i is the nontrivial homomorphism i W Z2! Z4 .
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(ii) The Pontryagin square is a quadratic function with respect to cup product, that is,

P2.xCx0/D P2.x/CP2.x
0/C i.x[x0/ 2H 2n.X IZ4/

for any x;x0 2H n.X IZ2/, where i W Z2!Z4 is the nontrivial homomorphism.

2.1.3 Algebraic Pontryagin squares An algebraic analogue of the Pontryagin square
can be constructed as follows. The algebraic Pontryagin square lies in the 4k –dimen-
sional symmetric Q–group of a finitely generated free Z–module chain complex,
concentrated in degrees 2kC 1 and 2k ,

B.2k; 2/W � � � ! 0! S2kC1Z
dD2
��!S2kZ! 0! � � � :

Banagl and Ranicki [2] give formulas for the computations of Q–groups and Ranicki
and Taylor [21] show explicitly that Q4k.B.2k; 2// is given by the isomorphism

Q4k.B.2k; 2//! Z4; � 7! �0C d�1:

Definition 2.6 (Ranicki and Taylor [21]) The Z2 –coefficient Pontryagin square of a
4k –dimensional symmetric complex .C; �/ over Z is the function

P2.�/WH
2k.C IZ2/DH0

�
HomZ.C;B.2k; 2//

�
!Q4k.B.2k; 2//DZ4;

.u; v/ 7!.u; v/%.�/D�0.u; v/C2�1.v;u/:

In Definition 2.6, C is a 4k –dimensional chain complex with a 4k –dimensional
symmetric structure, B.2k; 2/ is a finitely generated free Z–module chain complex
concentrated in degrees 2kC1 and 2k and g is a chain map gD .u; v/W C!B.2k; d/.

Remark 2.7 If C D C.X / is the chain complex of a space X and � D �X ŒX � 2

Q4k.C / is the image of a homology class ŒX �2H4k.X / under the symmetric construc-
tion �X , then the evaluation of the Pontryagin square P2W H

2k.X IZ2/!H 4k.X IZ4/

on the mod-4 reduction ŒX �4 2H4k.X IZ4/ is the algebraic Pontryagin square

P2.�/W H
2k.C IZ2/DH 2k.X IZ2/! Z4; x 7! hP2.x/; ŒX �4i:

There is a commutative diagram

H 2k.C.X /IZ2/
P2.�/

// Q4k.B.2k; 2//D Z4

H 2k.X IZ2/

D

OO

P2
// H 4k.X IZ4/DH 4k

�
X IQ4k.B.2k; 2//

�hŒX �4;�i

OO
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We are mainly interested in the case when X is a 4k –dimensional geometric Poincaré
space and ŒX � is the fundamental class.

2.2 The signature modulo 4 and modulo 8

2.2.1 The signature modulo 4 A result from Morita [16] that will be relevant for
us gives the relation between the signature modulo 4 and the Pontryagin square. The
formulation by Morita in [16] is for an oriented Poincaré space, and we will use an
algebraic analogue.

Proposition 2.8 (Morita [16, Proposition 2.3]) Let X 4k be an oriented Poincaré
space and P2W H

2k.X IZ2/!H 4k.X IZ4/ be the Pontryagin square; then

�.X /D hP2.v2k/; ŒX �i 2 Z4;

where v2k 2H 2k.X IZ2/ is the 2k th Wu class of X.

The algebraic analogue of Proposition 2.8 is stated as follows:

Proposition 2.9 Let .C;�/ be a 4k –dimensional symmetric Poincaré complex over Z;
then

�.C; �/D P2.v2k/ 2 Z4;

where v2k 2H 2k.C IZ2/ is the 2k th algebraic Wu class of .C; �/.

2.2.2 The signature modulo 8 Morita [16, Theorem 1.1] relates the Brown–Kervaire
invariant and the signature modulo 8.

Let V be a Z2 vector space, �W V ˝V !Z2 a nonsingular symmetric pairing and let
qW V ! Z4 be a quadratic enhancement of the symmetric form such that

q.xCy/D q.x/C q.y/C i�.x;y/ 2 Z4;

where i D 2W Z2! Z4 and x;y 2 V .

Definition 2.10 (Brown [4]) The Brown–Kervaire BK.V; �; q/ invariant is defined
using a Gauss sum X

x2V

iq.x/
D
p

2
dim V

e2�iBK.V;�;q/=8;

with i2 D�1 and x 2 V .
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Two nonsingular Z4 –valued quadratic forms on a Z2 –vector space V of finite dimen-
sion are Witt equivalent if and only if they have the same Brown–Kervaire invariant.

The theorem by Morita is formulated geometrically and it relates the signature of a
4k –dimensional Poincaré space and the Brown–Kervaire invariant of the Pontryagin
square, which is a quadratic enhancement of the cup product structure on the Z2 –vector
space H 2k.X IZ2/.

Morita’s theorem is given in [16] as follows:

Theorem 2.11 (Morita [16, Theorem 1.1]) Let X be a 4k –dimensional Poincaré
space; then

�.X /D BK.H 2k.X IZ2/; �;P2/ 2 Z8:

In the proofs of the main results of this paper we will require a reformulation of Morita’s
theorem in terms of symmetric Poincaré complexes .C; �/. The Pontryagin square,
which geometrically depends on the cup and cup-1 products, depends algebraically on
the symmetric structure � , as was explained in the previous section. This is denoted
by P2.�/, although for simplicity we will write P2 when it is clear from the context.

Theorem 2.12 Let .C; �/ be a 4k –dimensional symmetric Poincaré complex over Z;
then

�.C; �/D BK.H 2k.C IZ2/; �;P2/ 2 Z8:

When the signature modulo 8 is divisible by 4, it can be expressed as an Arf invariant
of a certain quadratic form.

Theorem 2.13 A 4k –dimensional symmetric Poincaré complex .C; �/ has signa-
ture 0 mod 4 if and only if L D hv2k.C /i � H 2k.C IZ2/ is a sublagrangian of
.H 2k.C IZ2/; �;P2/. If such is the case, there is defined a sublagrangian quotient
nonsingular symmetric form over Z2 with a Z2 –valued enhancement

.W; �; h/D
�
L?=L; Œ��; hD 1

2
ŒP2�

�
and the signature mod 8 is given by

�.C; �/D 4 Arf.W; �; h/ 2 4Z2 � Z8:
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Proof By Morita [16, Theorem 1.1] we know that

�.C; �/D BK.H 2k.C IZ2/; �;P2/� Z8:

We need to prove that if BK.H 2k.C IZ2/; �;P2/� 0 .mod 4/ then

BK.H 2k.C IZ2/; �;P2/D 4 Arf.W; �; h/ 2 4Z2 � Z8:

.H 2k.C IZ2/; �;P2/ is a nonsingular symmetric form over Z2 with a Z4 –valued
quadratic enhancement given by the Pontryagin square. Denote its dimension by
nD dim.H 2k.C IZ2//. The Wu class v D v2k.C / 2H 2k.C IZ2/ is such that

�.x;x/D �.x; v/ 2 Z2 with x 2H 2k.C IZ2/:

The following function is linear:

f W H 2k.C IZ2/! Z2; x 7! �.x;x/D jP2.x/D �.x; v/;

where jP2.x/ 2 Z2 is the mod-2 reduction of P2.x/ 2 Z4 .

The following identity, relating the Pontryagin square and the mod-4 reduction of
the Brown–Kervaire invariant, is a consequence of Morita [16, Theorem 1.1 and
Proposition 2.3]:

(5) ŒBK.H 2k.C IZ2/; �;P2/�D P2.v/ 2 Z4:

So BK.H 2k.C IZ2/; �;P2/ 2 Z8 is divisible by 4 if and only if P2.v/ D 0 2 Z4 .
If P2.v/ D 0 2 Z4 then �.v; v/ D 0 2 Z2 and the Wu sublagrangian L D hvi �

.H 2k.C IZ2/; �;P2/ is defined, with L�L?Dfx 2H 2k.C IZ2/ j�.x;x/D02Z2g.
The maximal isotropic subquotient .L?=L; Œ��/ has a canonical Z2 –valued quadratic
enhancement Œh�W x 7! 1

2
ŒP2.x/� and

BK.H 2k.C IZ2/; �;P2/D 4 Arf.L?=L; Œ��; Œh�/� 4Z2 � Z8:

For the dimension of L?=L there are two cases, according to whether vD 0 or v¤ 0:

(i) If the Wu class is vD 0 then .H 2k.C IZ2/; �/ is already isotropic, so L?=LD

H 2k.C IZ2/, and dim.L?=L/D n.

(ii) If the Wu class is v¤ 0 then .H 2k.C IZ2/; �/ is anisotropic and dim.L?=L/D
n� 2.
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3 The signature of a fibration modulo 8

3.1 Obstructions to multiplicativity modulo 8 of a fibration

By the results of Meyer [14] and of Hambleton, Korzeniewski and Ranicki [8], the
signature of a fibration F2m ! E4k ! B2n of geometric Poincaré complexes is
multiplicative mod 4, that is,

�.E/� �.B/�.F /D 0 2 Z4:

If we set M DEt�.B�F /, where � reverses the orientation, then M has signature

�.M /D �.E/� �.B/�.F / 2 Z;

so that �.M /D 0 2 Z4 and Theorem 2.13 can be applied to M.

From Theorem 2.13 we know that when the signature is divisible by 4, it is detected
modulo 8 by the Arf invariant. This can be applied in the situation of the signature of
a fibration.

Theorem 3.1 Let F2m!E4k!B2n be a Poincaré duality fibration. With .V; �/D
.H 2k.E;Z2/; �/ and .V 0; �0/D .H 2k..B�F /;Z2/; �

0/, the signatures mod 8 of the
fibre, base and total space are related by

�.E/� �.B �F /D 4 Arf
�
L?=L; Œ�˚��0�; 1

2
ŒP2˚�P 02�

�
2 4Z2 � Z8;

where L? D f.x;x0/ 2 V ˚ V 0 j �.x;x/ D �0.x0;x0/ 2 Z2g and L D hv2ki � L? ,
with v2k D .v2k.E/; v2k.B �F // 2 V ˚V 0 the Wu class of E t�.B �F / and P2

and P 0
2

the Pontryagin squares of E and B �F, respectively.

Proof We first rewrite the signatures �.E/ and �.F�B/ in terms of Brown–Kervaire
invariants, and use the additivity properties of the Brown–Kervaire invariant described
by Morita [16, Proposition 2.1(i)] as follows:

�.E/� �.B �F /D BK.H 2k.EIZ2/; �;P2/�BK.H 2k.B �F IZ2/; �
0;P 02/ 2 Z8

D BK.V ˚V 0; �˚��0;P2˚�P 02/ 2 Z8:

We know by Meyer [14] and by Hambleton, Korzeniewski and Ranicki [8, Theorem A]
that

�.E/� �.B �F /D 0 2 Z4:
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Applying Theorem 2.13, BK.V ˚V 0; �˚��0;P2˚�P 02/ 2 4Z2 �Z8 can be written
as an Arf invariant,

4 Arf
�
L?=L; Œ�˚��0�; 1

2
ŒP2˚�P 02�

�
2 Z8;

with L? D f.x;x0/ 2 V ˚V 0 j �.x;x/D �0.x0;x0/ 2 Z2g and the Wu sublagrangian
LD h.v2k.E/; v2k.B �F //i �L? , with .v2k.E/; v2k.B �F // the Wu class given
by .v2k.E/; v2k.B �F // 2H 2k.EIZ2/˚H 2k.B �F IZ2/D V ˚V 0:

In the following theorem we state the chain complex version of Theorem 3.1.

Theorem 3.2 Let .C; �/ be the 2n–dimensional .�1/n –symmetric Poincaré complex,
and let .A; ˛;U / be a .Z;m/–symmetric representation. We shall write .D; �/ D
.C; �/˝Sm.A; ˛;U / and .D0; � 0/D .C; �/˝Sm.A; ˛; �/. Here .D; �/ and .D0; � 0/
are .2nC2m/–dimensional symmetric complexes and 2nC2m is divisible by 4. Then

�.D; �/� �.D0; � 0/D 4 Arf
�
L?=L; Œ�0˚��

0
0�;

1
2
ŒP2˚�P 02�

�
2 4Z2 � Z8;

where L? D f.x;x0/ 2 H 2k.DIZ2/˚H 2k.D0IZ2/ j �0.x;x/ D �
0
0
.x0;x0/ 2 Z2g

and the Wu sublagrangian LD h.v2k ; v
0
2k
/i �L? , with .v2k ; v

0
2k
/ the algebraic Wu

class .v2k ; v
0
2k
/ 2H 2k.DIZ2/˚H 2k.D0IZ2/.

Note that if both m and n are odd in the fibration F2m ! E4k ! B2n then, by
Meyer [14] and by Hambleton, Korzeniewski and Ranicki [8] we have that

�.E/D 0 2 Z4:

So the general formula for the signature mod 8 of a fibration given geometrically
in Theorem 3.1 and algebraically in Theorem 3.2 simplifies in the case of a fibra-
tion F4iC2! E4k ! B4jC2 to the expression in Proposition 3.3 geometrically or
Proposition 3.4 algebraically.

Proposition 3.3 Let F4iC2!E4k ! B4jC2 be an oriented Poincaré duality fibra-
tion; then

�.E/D BK.H 2k.EIZ2/; �;P2/D 4 Arf
�
L?=L; Œ��; 1

2
ŒP2�

�
2 Z8;

where L?Dfx 2H 2k.EIZ2/ j�.x;x/D 02Z2g and LDhv2ki�L? , with v2k.E/

the Wu class v2k.E/ 2H 2k.EIZ2/.
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Proof Here, for dimension reasons, �.F / and �.B/ are both 0. Thus, by Theorem A
of [8], we know that the signature of E is divisible by 4. So we can write

�.E/� �.B �F /D �.E/D BK.H 2k.EIZ2/; �;P2/ 2 Z8;

and, since �.E/D BK.H 2k.EIZ2/; �;P2/D 0 2 Z4 , the result follows as an appli-
cation of Theorem 2.13.

Algebraically, Proposition 3.3 is restated as follows:

Proposition 3.4 Let .C; �/ be a .4iC2/–dimensional .�1/–symmetric Poincaré
complex, and let .A; ˛;U / be a .Z; 2jC1/–symmetric representation. We shall write
.D; �/ D .C; �/˝ S2jC1.A; ˛;U / and .D0; � 0/ D .C; �/˝ S2jC1.A; ˛; �/; then
�.D0; � 0/D 0 2 Z, �.D; �/D 0 2 Z4 and

�.D; �/D 4 Arf
�
L?=L; Œ�0�;

1
2
ŒP2�

�
2 4Z2 � Z8;

where L? D fx 2H 2k.DIZ2/ j �0.x;x/D 0 2Z2g and LD hv2ki �L? , with v2k

the algebraic Wu class v2k 2H 2k.DIZ2/.

3.1.1 Relation to other expressions in the literature for the signature of a fibre
bundle

The Arf invariant and the second Stiefel–Whitney class Meyer [14] studied the
signature of a surface bundle F2!E4! B2 , where both F and B are orientable
surfaces of genus h and g , respectively. Meyer expressed the signature of the total
space in terms of the first Chern class of the complex vector bundle ˇW B! BU.h/

associated to the local coefficient system zB ��1.B/R2h , determined by H1.�IR/ of
the fibres,

�.E/D 4c1.ˇ/ 2 Z;

so that
1
4
�.E/D c1.ˇ/ 2 Z:

From [15, Problem 14-B] the Chern classes of an h–dimensional complex vector bundle
ˇW B ! BU.h/ are integral lifts of the Stiefel–Whitney classes of the underlying
oriented 2h–dimensional real vector bundle ˇRW B! BSO.2h/. That is, the mod-2
reduction of the first Chern class is the second Stiefel–Whitney class. Hence the second
Stiefel–Whitney class of the real vector bundle ˇRW B! BSO.2h/ associated to the
local coefficient system zB ��1.B/R2h can be expressed as

(6) 1
4
�.E/D w2.ˇ

R/ 2 Z2:
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In Proposition 3.3 we have shown that for a fibration F4iC2! E4k ! B4jC2 , the
signature mod 8 can be expressed in terms of the Arf invariant. In particular, for a
surface bundle,

(7) �.E/D 4 Arf
�
L?=L; Œ��; 1

2
ŒP2�

�
2 Z8:

Combining both expressions in (6) and (7),

Arf
�
L?=L; Œ��; 1

2
ŒP2�

�
D w2.ˇ

R/ 2 Z2;

with L? D fx 2H 2k.EIZ2/ j �.x;x/D 0 2 Z2g and LD hv2ki �L? .

The Arf invariant and the Todd genus Atiyah [1] considers a 4–manifold E which
arises as a complex algebraic surface with a holomorphic projection � W E! B for
some complex structure on B . The fibres Fb D �

�1.b/ are algebraic curves but the
complex structure varies with b . Atiyah establishes that the Todd genera of E , B

and F are related to the signature of E by the equation

1
4
�.E/D T .E/�T .B/T .F / 2 Z:

Following this equation, the signature modulo 8 of the total space is detected by the
reduction mod 2 of difference T .E/�T .B/T .F /, since

�.E/D 4.T .E/�T .B/T .F // 2 Z8

is equivalent to 1
4
�.E/DT .E/�T .B/T .F /2Z2 . Comparing this with Proposition 3.3

we have that

Arf
�
L?=L; Œ��; 1

2
ŒP2�

�
D T .E/�T .B/T .F / 2 Z2;

with L? D fx 2H 2k.EIZ2/ j �.x;x/D 0 2 Z2g and LD hv2ki �L? .

3.2 Multiplicativity mod 8 in the Z4–trivial case

In the previous section we have shown that in general there is an obstruction to
multiplicativity modulo 8 of a fibration F2m!E4k!B2n given by the Arf invariant.

We shall now prove that by imposing the condition that �1.B/ acts trivially on
H m.F;Z/=torsion˝Z4 , the obstruction disappears and the fibration has signature
multiplicative modulo 8. Geometrically the theorem is stated as follows:
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Theorem 3.5 Let F2m!E! B2n be an oriented Poincaré duality fibration. If the
action of �1.B/ on H m.F;Z/=torsion˝Z4 is trivial, then

�.E/� �.F /�.B/D 0 2 Z8:

Remark 3.6 Clearly, by the definition of the signature, when m and n are odd,

�.F /�.B/D 0 2 Z:

So, in this case, the theorem establishes that

�.E/� 0 2 Z8:

3.2.1 Tools for proving Theorem 3.5 We shall prove Theorem 3.5 by proving its
algebraic analogue, which we state as Theorem 3.16. In this section we prove some
results that will be needed in the proof of the algebraic statement of the theorem (as in
Theorem 3.16).

The algebraic analogue of the condition that �1.B/ acts trivially on

H m.F;Z/=torsion˝Z4

is defined as follows:

Definition 3.7 A .Z;m/–symmetric representation .A; ˛;U / of a group ring ZŒ��

is Z4 –trivial if
U.r/˝ 1D �.r/˝ 1W A˝Z4!A˝Z4

for all r 2 ZŒ��, where � denotes the trivial action homomorphism

�W ZŒ�1.B/�!H0.HomZ.A;A//
op:

A weaker condition is that of Z2 –triviality:

Definition 3.8 (Korzeniewski [10, Chapter 8]) A .Z;m/–symmetric representation
.A; ˛;U / of a group ring ZŒ�� is Z2 –trivial if

U.r/˝ 1D �.r/˝ 1W A˝Z2!A˝Z2

for all r 2 ZŒ��, where � denotes the trivial action homomorphism as in the previous
definition.

Remark 3.9 In particular, any statement which holds under assumption of a Z2 –trivial
action is also true for an assumption of Z4 –triviality. The converse may not be true.
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In the statement of the algebraic analogue of Theorem 3.5 we shall let .C; �/ be a
2n–dimensional .�1/n –symmetric Poincaré complex over ZŒ�� and .A; ˛;U / be a
.Z;m/–symmetric representation with Z4 –trivial U W ZŒ��! H0.HomZ.A;A//

op .
When a result is true with a Z2 –trivial action we shall indicate this accordingly.

With 4kD2mC2n, we shall write .D; �/ for the 4k –dimensional symmetric Poincaré
complex over Z given by

.D; �/D .C; �/˝ZŒ�� S
m.A; ˛;U /;

and .D0; � 0/ for the 4k –dimensional symmetric Poincaré complex over Z given by

.D0; � 0/D .C; �/˝ZŒ�� S
m.A; ˛; �/;

where .A; ˛; �/ is the trivial representation.

Lemma 3.10 If the representation .A; ˛;U / is Z2 –trivial then

Z2˝Z .D; �/Š Z2˝Z .D
0; � 0/:

That is:

(i) H 2k.D;Z2/ŠH 2k.D0;Z2/.

(ii) The symmetric structure reduced mod 2 is the same for both symmetric com-
plexes .D; �/ and .D0; � 0/.

Proof If .A; ˛;U / is a Z2 –trivial representation then

Z2˝Z .D; �/D Z2˝ .C; �/˝ZŒ�� S
m.A; ˛;U /

Š .C; �/˝ZŒ�� S
m.A; ˛;U /˝Z2

Š .C; �/˝ZŒ�� S
m.A; ˛; �/˝Z2

Š Z2˝ .C; �/˝ZŒ�� S
m.A; ˛; �/

D Z2˝Z .D
0; � 0/;

which proves the lemma and clearly implies (i) and (ii).

From the proof of Lemma 3.10, we know that for a Z2 –trivial twisted product and for
an untwisted product, the vector spaces given by the middle-dimensional cohomology
with Z2 coefficients are isomorphic and the Z2 –valued symmetric structure is also the
same in both cases. Clearly the results in this lemma also hold when the action U is
Z4 –trivial.

Algebraic & Geometric Topology, Volume 18 (2018)



The nonmultiplicativity of the signature modulo 8 of a fibre bundle 1315

3.2.2 Comparing Pontryagin squares for the twisted and untwisted product In
Section 2.1.3 we defined algebraic Pontryagin squares depending on the symmetric
structure of a symmetric complex. A Z4 –valued quadratic function such as the Pontrya-
gin square cannot be recovered uniquely from the associated Z2 –valued bilinear pairing
�0W H

2k.DIZ2/�H 2k.DIZ2/! Z2 . It is crucial for the proof of Theorem 3.5 to
note that the Pontryagin square depends on the definition of the symmetric structure on
integral cochains. In particular, suppose that

.D; �/D .C; �/˝ZŒ�� S
m.A; ˛;U /;

.D0; � 0/D .C; �/˝ZŒ�� S
m.A; ˛; �/;

where .A; ˛;U / is a Z2 –trivial representation.

Then, depending on the integral symmetric structures, we have two different lifts of
the modulo-2 symmetric structure on

V DH 2k.DIZ2/DH 2k.D0IZ2/;

which give rise to two different Pontryagin squares.

In other words, we are considering two chain complexes which are different over Z,
.D; �/ and .D0; � 0/, but are chain equivalent when reduced over Z2 , that is,

.D; �/˝Z Z2 Š .D
0; � 0/˝Z Z2:

But the integral symmetric structures � and � 0 are different in the twisted and untwisted
products, so this gives rise in general to two different Pontryagin squares of the same
Z2 –valued symmetric bilinear form.

Remark 3.11 In what follows we will use the notation P2 for the twisted Pontryagin
square and P 0

2
for the Pontryagin square on an untwisted product.

Proposition 3.12 applies precisely to the general situation of the two Pontryagin squares
P2 and P 0

2
that we have just described above.

Proposition 3.12 Let V be a Z2 –valued vector space and �W V ˝ V ! Z2 a non-
singular symmetric bilinear pairing. Any two quadratic enhancements q; q0W V ! Z4

over � differ by a linear map

q0.x/� q.x/D 2�.x; t/ 2 Z4

for some t 2 V .

Proof See [26; 7; 21, page 10].
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Consequently, from this proposition we know that the two Pontryagin squares P2 and
P 0

2
differ by a linear map. Furthermore, the Brown–Kervaire invariants of two quadratic

enhancements as in Proposition 3.12 are related by the following theorem:

Theorem 3.13 (Brown [4, Theorem 1.20(x)]) Let V be a Z2 –valued vector space
and �W V ˝ V ! Z2 a nonsingular symmetric bilinear pairing; then any two qua-
dratic enhancements q; q0W V ! Z4 over � differ by a linear map, q0.x/� q.x/ D

2�.x; t/ 2 Z4 and

BK.V; �; q/�BK.V; �; q0/D 2q.t/ 2 Z8

for some t 2 V .

Note that when BK.V; �; q/ and BK.V; �; q0/ are divisible by 4 we can write this
relation in terms of the Arf invariant as

Arf.W; �; h/�Arf.W; �; h0/D h.t/ 2 Z2:

We will now show that by setting the condition of a Z4 –trivial action U there is an
isomorphism between the untwisted Pontryagin square and the Z4 –twisted Pontryagin
square, in which case h.t/D 0.

3.2.3 Pontryagin squares and Z4 –trivial representations In the previous subsec-
tion we emphasized that a Z4 –valued quadratic function such as the Pontryagin squares
cannot be recovered uniquely from the associated Z2 –valued bilinear pairing.

Here, .D; �/D .C; �/˝ZŒ�� S
m.A; ˛;U / is as before a 4k –dimensional symmetric

Poincaré complex over Z, with U the action of ZŒ�� on .A; ˛/, and .D0; � 0/ D

.C; �/ ˝ZŒ�� Sm.A; ˛; �/ the 4k –dimensional symmetric Poincaré complex with

.A; ˛; �/ the trivial representation.

We will now show that the Pontryagin squares on .D; �/ and .D0; � 0/ can be described
in terms of Z4˝Z .D; �/ and Z4˝Z .D

0; � 0/, respectively.

Firstly we note the following lemma, which is similar to Lemma 3.10.

Lemma 3.14 If the representation .A; ˛;U / is Z4 –trivial then

Z4˝Z .D; �/Š Z4˝Z .D
0; � 0/:

Proof The proof follows from the same argument as the proof of Lemma 3.10.

Lemma 3.15 If the action U is Z4 –trivial then the Z4 –twisted Pontryagin square on
.D; �/ is isomorphic to the untwisted Pontryagin square on .D0; � 0/.
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Proof Let B.2k; 2/ be, as before, the Z–module chain complex concentrated in
dimensions 2kC 1 and 2k ,

B.2k; 2/W � � � ! Z 2
�!Z! � � � ;

and let B.2k; 2/ be a shifted resolution of Z2 as a module over Z4 ,

� � �  0 0 Z4
�2
 �Z4

�2
 �Z4

�2
 �� � � ;

so that H2k.B.2k; 2//Š Z2 and all other homologies are 0. There is a chain map,
unique up to chain homotopy, from B.2k; 2/ to B.2k; 2/, which induces an isomor-
phism in homology. This chain map also induces an injective map in the symmetric
Q–groups

Q4k.B.2k; 2//D Z4!Q4k.B.2k; 2//:

An element x 2H 2k.DIZ2/ can be represented by a chain map

fx W Z4˝Z D! B.2k; 2/;

which is unique up to chain homotopy. The map fx induces a homomorphism of
symmetric Q–groups

.fx/
%
W Q4k.Z4˝Z D/!Q4k.B.2k; 2//:

Evaluating this homomorphism on Z4˝� 2Q4k.Z4˝Z D/, we get the Pontryagin
square as an element P2.x/ 2Q4k.B.2k; 2//. Hence, the algebraic Pontryagin square
on H 2k.DIZ2/ can be expressed in terms of Z4˝ .D; �/ only.

A similar argument holds for the Pontryagin square on .D0; � 0/.

By Lemma 3.14, we know that if .A; ˛;U / is a Z4 –trivial representation then

Z4˝Z .D; �/Š Z4˝Z .D
0; � 0/;

and, since the Pontryagin squares P2 and P 0
2

on .D; �/ and .D0; � 0/ only depend on
Z4˝Z .D; �/ and on Z4˝Z .D

0; � 0/, respectively, we deduce that these Pontryagin
squares are isomorphic.

3.2.4 The algebraic analogue of Theorem 3.5 We can now state and prove the
algebraic analogue of Theorem 3.5. The proof of the algebraic analogue implies the
proof of the geometric statement.
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Theorem 3.16 Let .D; �/ be a 4k –dimensional symmetric Poincaré complex over Z

of the form

.D; �/D .C; �/˝Sm.A; ˛;U /;

with U the action of ZŒ�� on .A; ˛/.

If the representation .A; ˛;U / is Z4 –trivial then

�.D; �/� �.D0; � 0/D 0 2 Z8;

where .D0; � 0/D .C; �/˝Sm.A; ˛; �/ is the trivial product.

Proof The signatures modulo 8 of both .D; �/ and .D0; � 0/ are given by Morita’s
Theorem 2.12 to be

� �.D; �/� BK.H 2k.DIZ2/; �0;P2/ .mod 8/,

� �.D0; � 0/� BK.H 2k.D0IZ2/; �0;P 02/ .mod 8/.

From Lemma 3.10 we know that

.H 2k.DIZ2/; �0/Š .H
2k.D0IZ2/; �

0
0/;

and from Lemma 3.15 we know that the two Pontryagin squares P2 and P 0
2

are
isomorphic, hence

�.D; �/DBK.H 2k.DIZ2/; �0;P2/DBK.H 2k.D0IZ2/; �
0
0;P
0
2/D�.D

0; � 0/2Z8;

so the result follows.

The geometric proof of Theorem 3.5, which states that �.E/��.B�F /D 02Z8 for a
fibration F2m!E4k!B2n with trivial action of �1.B/ on H m.F;Z/=torsion˝Z4 ,
is a consequence of the algebraic proof:

Let F2m!E4k!B2n be Poincaré fibration with Z4 –trivial action. Then, according
to Remark 1.28, the Z4 –enhanced symmetric forms over Z2

.H 2k.EIZ2/; �E ; qE/; .H n.BIZ2/˝Z2
H m.F IZ2/; �B˝�F ; qB˝ qF /

of the symmetric Poincaré complexes over Z4

.C.EIZ4/; �E/; .C.BIZ4/; �B/˝ .C.F IZ4/; �F /
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have the same signature, so that

�.E/D BK.H 2k.EIZ2/; �E ; qE/

D BK.H 2k.B �F IZ2/; �B; qB/

D �.B �F / 2 Z8

D �.B/�.F / 2 Z8:

For Theorem 3.5 to be true with a Z2 –trivial action, we would need to prove that there
exists an isomorphism of the untwisted and the twisted Pontryagin squares with U

a Z2 –trivial action. At the moment it is only clear that two such Pontryagin squares
differ by a linear map, as explained in Proposition 3.12. However, there is no problem
if the action is Z4 –trivial, as shown in Theorem 3.5.

List of symbols

Algebra

.C; �/ A 2n–dimensional .�1/n –symmetric Poincaré complex over ZŒ�� [19].

.A; ˛/ A nonsingular .�1/m –symmetric form over Z with ˛W A!A� (Definition
1.25).

.A; ˛;U / A .Z;m/–symmetric representation with U W ZŒ��!H0.HomZ.A;A//
op

(Definition 1.26).

S m.A; ˛;U / Skew-suspension of .A; ˛;U /.

.C; �/˝S m.A; ˛;U /D .D; �/ A 4kD.2mC2n/–dimensional symmetric com-
plex over Z with the action of � given by U (Proposition 1.27).

.C; �/˝S m.A; ˛; �/D .D0; � 0/ The 4k –dimensional symmetric complex over Z

with the action of � given by the trivial action � (Proposition 1.27).

C .2n/�rCs˝S mA�
U.�s/.˛/
������!Cr ˝S mA The symmetric structure of a twisted

product (Theorem 1.20 and [12]).

P2 Pontryagin square depending on the symmetric structure � (Section 2.1.3).

P 0
2

Pontryagin square depending on the symmetric structure � 0 (Section 2.1.3).
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Topology

.C. zB/; �/ The 2m–dimensional symmetric complex over ZŒ�1.B/� of the universal
cover of the base [19].

A DH m.F;Z/ The middle-dimensional cohomology of the fibre F2m (Definition
1.25).

.A; ˛/ The nonsingular .�1/m –symmetric form with ˛ D .�1/m˛�W A ! A�

(Definition 1.25).

.A; ˛;U / The symmetric representation with U W ZŒ�1.B/�!H0.HomZ.A;A//
op

(Definition 1.26).

S m.A; ˛;U / 2m–dimensional .�1/m –symmetric complex given by skew-suspen-
sion of .A; ˛;U / (see Remark 1.24).

.C. zB/; �/˝ZŒ�1.B/� S
m.A; ˛;U / The chain complex model for the total space

with the action of �1.B/ given by U (Proposition 1.27).

�
�
.C. zB/; �/˝ZŒ�1.B/� S m.A; ˛;U /

�
D �.E/ 2 Z The signature of the total

space is the signature of the chain complex model for the total space with the action of
�1.B/ given by U [10, Theorem 4.9].

.C. zB/; �/˝ZŒ�1.B/�S .A; ˛; �/ The chain complex model for the total space with
trivial action of �1.B/, which we denote by � (Proposition 1.27).

�
�
.C. zB/; �/˝ZŒ�1.B/�S

m.A; ˛; �/
�
D�.C. zB/; �/˝ZŒ�1.B/��.S

m.A; ˛; �//D

�.B/�.F / 2 Z The signature of the trivial product B �F is the signature of the
chain complex model for the total space with the action of �1.B/ given by � [10,
Theorem 4.9].

C .2n/�rCs. zB/˝SA�
U.�s/.˛/
������!Cr. zB/˝SA Symmetric structure of a twisted

product (Theorem 1.20 and [12]).

P2 Pontryagin square of twisted product depending on the symmetric structure of
.C. zB/; �/˝S.A; ˛;U / (Section 2.1.3).

P 0
2

Pontryagin square of untwisted product depending on the symmetric structure of
.C. zB/; �/˝S.A; ˛; �/ (Section 2.1.3).
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