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1 Introduction

Consider a fibration F of the unit 2nC1–sphere S2nC1 by oriented great circles, and
focus on one of the fibers P , as shown below. All fibrations in this paper are fiber
bundles.

S2nC1

P

Figure 1: A fibration of S2nC1 by oriented great circles

The oriented great circle P spans an oriented 2–plane through the origin in R2nC2 ,
which we also denote by P , and so appears as a single point in the Grassmann manifold
G2R2nC2 of all such oriented 2–planes. If the fibration F is smooth, then its base space
MF appears as a smooth 2n–dimensional submanifold of this Grassmann manifold,
and we can focus on the tangent 2n–plane TP MF to MF at P .

Theorem A Every germ of a smooth fibration of S2nC1 by oriented great circles
extends to such a fibration of all of S2nC1 .

A germ of a fibration of S2nC1 by oriented great circles consists of such a fibration in
an open neighborhood of a given fiber P , with two germs equivalent if they agree on
some smaller neighborhood of P . To extend such a germ to a fibration of S2nC1 means
to find a fibration of S2nC1 which agrees with the given germ on some neighborhood
of P .

The main tool for proving Theorem A is the following, also previously known only in
dimension three:
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G2R2nC2

P

TP MF

MF

Figure 2: The base space MF of the fibration F and its tangent plane TP MF at P

Theorem B The space fTP MF g of tangent 2n–planes at P to the base spaces MF

of all smooth oriented great circle fibrations F of S2nC1 containing P deformation
retracts to its subspace fTP MH g of tangent 2n–planes to such Hopf fibrations H

of S2nC1 .

The path to Theorem B consists of the following steps.

First, two definitions. The bad set BS.P /�G2R2nC2 consists of all oriented 2–planes
through the origin in R2nC2 which meet P in at least a line, and the bad cone
BC.P /� TP .G2R2nC2/ is its tangent cone at P .

Proposition 1 A closed, connected, smooth, 2n–dimensional submanifold M of
G2R2nC2 is the base space of a smooth fibration of S2nC1 by great circles if and only
if it is transverse to the bad cone at each of its points.

Next we focus in on the tangent space TP .G2R2nC2/ to the Grassmannian at the
point P , see how to regard it as the 4n–dimensional vector space Hom.P;P?/, and
show that a 2n–plane through the origin there is transverse to the bad cone BC.P /
if and only if it is the graph of a linear transformation T W R2n! R2n with no real
eigenvalues, with the role of R2n played by two copies of P? .

Proposition 2 There is a GL.2n;R/–equivariant deformation retraction of the space
of linear transformations T W R2n! R2n with no real eigenvalues to its subspace of
linear complex structures J W R2n!R2n .

This is due to Benjamin McKay [15].

Algebraic & Geometric Topology, Volume 18 (2018)



1326 Patricia Cahn, Herman Gluck and Haggai Nuchi

By a linear complex structure we mean a linear map J W R2n!R2n such that J 2D�I .
For an orthogonal complex structure, we require in addition that J be orthogonal.

Proposition 3 There is an O.2n/–equivariant deformation retraction of the space of
linear complex structures on R2n to its subspace of orthogonal complex structures.

These results then help us prove:

Proposition 4 There exists a smooth fibration F of S2nC1 by oriented great circles
whose base space MF is tangent at P to any preassigned 2n–plane transverse to the
bad cone BC.P /.

We then assemble these results to prove Theorems A and B.

2 Background

We give some brief background information here, and refer the reader to the arXiv
version of this paper [3] for more details.

Hopf fibrations

In 1931, Heinz Hopf [11] gave a remarkable example of a map f from the unit
3–sphere S3 to the unit 2–sphere S2 . In coordinates,

y1 D 2.x1x3Cx2x4/;

y2 D 2.x2x3�x1x4/;

y3 D x2
1 Cx2

2 �x2
3 �x2

4 I

see Figure 3.

Figure 3: Hopf’s map f from S3 to S2
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This was the first example of a homotopically nontrivial map from a sphere to another
sphere of lower dimension, signaling the birth of homotopy theory. Although Hopf
presented his map via the above formulas early in his paper, he commented later in the
same paper that the great circle fibers of his map were the intersections of the 3–sphere
with the complex lines in C2 .

In a follow-up paper in 1935, Hopf [12] gave higher-dimensional analogues of his first
map, using complex numbers, quaternions, and Cayley numbers, with the nonassocia-
tivity of the Cayley numbers responsible for the truncation of the third series:

S1
� S3

! S2
DCP1; S1

� S5
!CP2; : : : ; S1

� S2nC1
!CPn; : : : ;

S3
� S7

! S4
DHP1; S3

� S11
!HP2; : : : ; S3

� S4nC3
!HPn; : : : ;

S7
� S15

! S8:

Blaschke manifolds

Let M be a closed (compact, no boundary) Riemannian manifold. On each geodesic ˛
from the point p on M , the cut point is the last point to which ˛ minimizes distance,
and the cut locus C.p/ is the set of these. For example, on a round sphere, the cut
locus of each point is just its antipodal point.

p S3 S2

Figure 4: The complex projective plane CP 2

In the picture of CP2 in Figure 4, focus on the point p at the left, and on the geodesics
which begin there and eventually coalesce along its cut locus C.p/, a round 2–sphere
at the right. If we go out along these geodesics any fixed intermediate distance, we
come to a 3–sphere on which we record that a circle’s worth of geodesics from p

will coalesce along each point of C.p/. If this intermediate distance is very small,
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then the 3–sphere is almost round, and its fibration by these circles is almost a Hopf
fibration. But as the 3–sphere moves towards the cut locus at the right, these circles
will eventually shrink until in the limit they become points, and the 3–sphere collapses
to a 2–sphere. The complex projective plane itself is homeomorphic to the mapping
cone of this collapsing map S3! S2 .

Given the closed Riemannian manifold M , if the distance from p to its cut point
along ˛ depends neither on the choice of ˛ nor on the choice of p , then M is called
a Blaschke manifold, the term coined by Marcel Berger [1] in 1978.

Examples of Blaschke manifolds are the standard spheres and projective spaces Sn ,
RPn , CPn , HPn and CaP2 , on which all the geodesics from any point come together
again after the same distance, independent of direction and point of origin.

The terminology honors Wilhelm Blaschke, who asked, in the first, 1921, edition [2] of
his Vorlesungen über Differentialgeometrie, whether such a surface must be isometric
to a round S2 or round RP2 .

In 1963, Leon Green [9] proved that a Blaschke surface can only be a round S2

or RP2 .

By 1980, the combined work of Berger [1], Jerry Kazdan [14], Alan Weinstein [25]
and C T Yang [26] showed that Blaschke manifolds “modeled on” Sn and RPn must,
up to scale, be isometric to them. Quite a lot is known about Blaschke manifolds in
general, but isometry is known in no other cases.

Once again, please see the arXiv version of this paper [3] for more details, as well as
the survey by Benjamin McKay [16] of what is known to date.

In another direction, the study of fibrations of round spheres by great circles has led
to the study of fibrations of Euclidean space by straight lines, at the hands of Marcos
Salvai [21; 22] and Michael Harrison [10].

Salvai studied the metric structure of the space of all oriented lines in Rn , and then
characterized, within this metric structure, the base spaces of suitably nondegenerate
fibrations of Rn by straight lines.

Harrison focused on the condition that the straight line fibers should be skew (non-
intersecting and nonparallel), and pointed out that a fibration of a round sphere by
great circles leads, via radial projection onto any tangent hyperplane, to a fibration
of that hyperplane by pairwise skew straight lines. He proved that the space of such
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skew fibrations of R3 by straight lines deformation retracts through such fibrations
to its subspace of projected Hopf fibrations, and so has the homotopy type of a pair
of disjoint copies of S2 , a nice follow-up to the corresponding theorem for fibrations
of S3 by great circles.

How do Blaschke manifolds determine fibrations of round spheres by great
subspheres?

Let M be a Blaschke manifold, p a point of M , and TpM the tangent space to M

at p . Let B.p/ denote a round ball of radius r in TpM , where r is the common
distance from each point of M to its cut locus. See Figure 5.

TpM

B.p/
expp

p

M

@B.p/ C.p/

Figure 5: The exponential map exppW TpM !M takes a round ball B.p/

onto the Blaschke manifold M and takes @B.p/ to the cut locus C.p/ .

Theorem (Omori [20], Nakagawa and Shiohama [18; 19]) If M is a Blaschke
manifold, then the cut locus C.p/ to any point p in M is a smooth submanifold of M ,
and exppW @B.p/! C.p/ is a smooth fiber bundle with great subsphere fibers.
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By the above theorem, any Blaschke manifold leads to a smooth fibration of a round
sphere by great subspheres. The Blaschke manifold M can be recovered topologically
from the fibration exppW @B.p/! C.p/, since M is homeomorphic to its mapping
cone. Thus to understand Blaschke manifolds topologically, one should understand the
topological classification of fibrations of spheres by great subspheres.

Conjecture Any smooth fibration of a sphere by great subspheres is topologically
equivalent to a Hopf fibration.

Caution There are many inequivalent fibrations of S7 by 3–spheres (Milnor [17],
Eells and Kuiper [4]), but in general their fibers are not great 3–spheres.

To prove the conjecture, one must figure out how to capitalize on the hypothesis of
great sphere fibers.

The conjecture is known to be true in the following cases:

� Any fibration of S3 by simple closed curves is topologically equivalent to the
Hopf fibration [24].

� Any smooth fibration of S7 by great 3–spheres or of S15 by great 7–spheres
is topologically equivalent to a Hopf fibration [8].

� Any smooth fibration of S2nC1 by great circles is smoothly equivalent to a Hopf
fibration [27; 15].

3 The Grassmann manifold

Coordinates in the Grassmann manifold G2R2nC2

Given a fibration F of S2nC1 by oriented great circles, each fiber P of F lies in and
orients some 2–plane through the origin in R2nC2 , which we denote by P as well, and
so appears as a single point in the Grassmann manifold G2R2nC2 of all such oriented
2–planes.

The base space MF of F then appears as a 2n–dimensional topological submanifold
of G2R2nC2 , and if the fibration F is smooth, then the submanifold MF is also smooth.

Let P be an oriented great circle on S2nC1 , equivalently, an oriented 2–plane through
the origin in R2nC2 , and let P? be its orthogonal complement.
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P? DR2

PL

P DR2

Figure 6: PL is the graph of LW P ! P? in P CP? DR2nC2

The 4n–dimensional vector space Hom.P;P?/ will serve simultaneously as a large co-
ordinate neighborhood about P in G2R2nC2 , and as the tangent space TP .G2R2nC2/

to this Grassmann manifold at P , as follows.

Suppose that the oriented 2–plane Q in R2nC2 contains no vector orthogonal to P ,
and suppose that its orthogonal projection to P is orientation-preserving. Let N.P / be
the collection of all such 2–planes Q. This set N.P / is the domain of our coordinate
chart

G2R2nC2
�N.P /

�
�! Hom.P;P?/;

defined as follows.

Given Q2N.P /, we can view Q as the graph of a linear transformation LQW P!P?

and we set �.Q/DLQ . Note that P is itself the graph of the zero transformation, so
�.P /D 0.

Conversely, given a linear transformation LW P ! P? , the graph of L is a 2–plane
PL in R2nC2 , which we may orient via orthogonal projection back to P , allowing us
to view this graph as an element of N.P /.

Since Hom.P;P?/ is a vector space, the differential �� of

�W N.P /! Hom.P;P?/

is an isomorphism of the tangent space TP .G2R2nC2/ with Hom.P;P?/.
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Thus we may view Hom.P;P?/ simultaneously as a coordinate neighborhood of P

in G2R2nC2 and as the tangent space TP .G2R2nC2/ to this Grassmannian at P . To
connect these two roles, we consider the “identity map”

I W TP .G2R2nC2/D Hom.P;P?/! Hom.P;P?/DN.P /�G2R2nC2:

Caution The map I is not the exponential map. Like the exponential map, it
takes some lines through the origin in TP .G2R2nC2/ D Hom.P;P?/ to geodesics
through P in G2R2nC2 , but with distortion of parametrization. It takes other lines
through the origin to non-geodesics through P .

Next we fix bases of P and P? in order to write elements of Hom.P;P?/ as 2n� 2

matrices. Let fe1; e2g be an orthonormal basis for P , consistent with its orientation.
Now orient P? so that the orientations on P and P? together give the orientation
on R2nC2 . Finally, choose an orthonormal basis ff1; f2; : : : ; f2ng for P? consistent
with its orientation.

We write elements of Hom.P;P?/ as 2n�2 matrices ADA1 jA2 , where A1 and A2

are column 2n–vectors. We see that Hom.P;P?/ is the sum of two copies of P? ,
since we may write

Hom.P;P?/D fA1 jA2g D fA1 j 0gC f0 jA2g D P?CP?;

with the identifications
P? D fA1 j 0g D f0 jA2g:

Geometrically, the columns A1 and A2 have the following meaning.

Let P .t/ be the oriented 2–plane in R2nC2 D P CP? spanned by the frame

fe1C tA1; e2C tA2g:

For �1< t <1, this gives us a path t 7! P .t/ in G2R2nC2 which runs within the
domain N.P / of our coordinate chart �W N.P /! Hom.P;P?/. The corresponding
path in Hom.P;P?/ is the line t 7! tA1 j tA2 , and the tangent vector to this path at
t D 0 is

A1 jA2 2 Hom.P;P?/D TP .G2R2nC2/:

The “bad set” and the “bad cone”

Consider oriented great circle fibrations F of S2nC1 which contain a fixed great circle
fiber P . Because the fibers of F are disjoint, the base space MF certainly cannot also
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pass through Q in G2R2nC2 if the corresponding great circles P and Q intersect
on S2nC1 .

This motivates the following definitions.

The bad set BS.P /�G2R2nC2 consists of all oriented 2–planes through the origin
in R2nC2 which meet P in at least a line. If MF contains the great circle fiber P ,
then MF intersects the bad set BS.P / only at P and nowhere else.

The bad cone BC.P /� TP .G2R2nC2/ is the tangent cone to the bad set at P .

Within the coordinate neighborhood N.P / D Hom.P;P?/ of P in G2R2nC2 , the
bad set BS.P / consists of linear transformations LW P ! P? with nontrivial kernel,
because the graphs of such linear transformations intersect P in at least a line. Equiva-
lently, these are the 2n� 2 matrices AD A1 jA2 of rank 0 or 1. They all have the
form

ADA1 cos t jA1 sin t;

where A1 is a column 2n–vector.

We note that, in the Hom.P;P?/ coordinates on N.P /, the portion of the bad set
within that neighborhood is a union of lines through the origin 0D �.P /, namely

sAD sA1 cos t j sA1 sin t;

with �1< s <1.

It follows from this that the tangent cone to the bad set at P coincides with this portion
of the bad set, that is,

I.BC.P //D BS.P /\N.P /:

With abuse of language, we may simply write BC.P /�BS.P /, and view the bad cone
at P as a portion of the bad set at P .

Properties of the bad cone

(1) In the Hom.P;P?/ coordinates on N.P /, the bad cone at Q contains the translate
of the bad cone at P , namely

BC.P /CLQ � BC.Q/;

where LQ D �.Q/ in our chart �W N.P /! Hom.P;P?/ centered at P .
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That’s because the linear transformations LQ� W P ! P? which correspond to points
of BC.Q/ are those which agree with LQ on some nonzero vector u in P . Thus
LQ� �LQ contains u in its kernel, and hence belongs to BC.P /.

(2) The bad cone BC.P / is homeomorphic to a cone over S1 �S2n�1 .

We see this as follows. If LW P ! P? is a linear transformation with a nontrivial
kernel, then its 2n� 2 matrix A has the form

ADA1 cos t jA1 sin t;

where A1 is some column 2n–vector.

If we fix t and let A1 vary, we get a 2n–plane which is part of the bad cone.

If we then let t vary, we fill out the bad cone with a circle’s worth of such 2n–planes,
modulo the involution .t;A1/ 7! .t C�;�A1/.

Equivalently, BC.P / is a cone over the quotient of S1 � S2n�1 by this involution.
But this quotient is homeomorphic to S1 � S2n�1 , since the antipodal map on an
odd-dimensional sphere is isotopic to the identity.

In similar fashion, the bad set BS.P / is homeomorphic to the suspension of S1�S2n�1 .

TP .G2R2nC2/

P

BC.P /

S1 �S2n�1

Figure 7: The bad cone BC.P /
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When we come to Proposition 1, we will visualize the Grassmann manifold G2R2nC2

with a bad cone BC.P / inside the tangent space TP .G2R2nC2/ at each of its points P ,
thus giving us a field of bad cones, as shown in Figure 8.

4 Proof of Proposition 1

Now we characterize the submanifolds of G2R2nC2 which correspond to the base
space of some smooth fibration of S2nC1 by great circles.

Proposition 1 A closed connected smooth 2n–dimensional submanifold of G2R2nC2

is the base space of a fibration of S2nC1 by great circles if and only if it is transverse
to the bad cone at each of its points.

Proof Suppose first that F is a smooth fibration of S2nC1 by oriented great circles.
We want to show that its base space MF in G2R2nC2 is a smooth submanifold
transverse to the field of bad cones there.

For S3 , this is Theorem B of [7].

For smooth fibrations of spheres by great subspheres of any dimension, this is [8,
Theorem 4.1].

This was proved again for all great circle fibrations of S2nC1 by McKay [15], from a
different point of view.

M

Figure 8: M is like a submarine negotiating a mine field
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Suppose, conversely, that M is a closed, smooth, 2n–dimensional submanifold of
G2R2nC2 which is transverse to the field of bad cones.

There is a canonical S1 bundle E over G2R2nC2 , whose fiber over P is the great circle
in the 2–plane P . Let EM be the restriction of this bundle to the submanifold M ,

EM D f.P; v/ W P 2M; v 2 P; kvk D 1g:

Let �W EM !M be the projection map, and let gW EM ! S2nC1 be the map which
includes each great circle fiber into S2nC1 , that is, g.P; v/D v .

Our task is to show that g is a diffeomorphism.

First, we claim that transversality of M to the bad cone through each of its points
implies that the map g is an immersion.

Suppose, to the contrary, that dg has a nontrivial kernel at some point v in the
fiber P . Consider a path 
 W .�1; 1/ ! EM , and write 
 .t/ D .P .t/; v.t//, such
that 
 .0/D .P; v/ and 
 0.0/¤ 0. We will show that if 
 0.0/ is in the kernel of the
derivative dgv , then M must be tangent to the bad cone BC.P / at P .

Consider the path P .t/D �
 .t/ in M , with P .0/D P .

Using the coordinate neighborhood Hom.P;P?/ about P in G2R2nC2 , the path P .t/

corresponds to a path L.t/ in Hom.P;P?/.

Since P .0/D P , we have L.0/D 0.

Now g
 .t/D v.t/ lies in P .t/, which is the graph of L.t/, so we can write

g
 .t/D .w.t/;L.t/w.t//

as an ordered pair of vectors in P �P? , with w.0/¤ 0.

We differentiate with respect to t and set t D 0 to get

.g
 /0.0/D .w0.0/;L0.0/w.0/CL.0/w0.0// 2 P �P?:

Now we are assuming that .g
 /0.0/ D 0 in R2nC2 D P C P? and we know that
L.0/D 0, so we conclude that L0.0/w.0/D 0.

Since w.0/¤ 0, this tells us that L0.0/ has a nontrivial kernel, and hence lies in the
bad cone BC.P / at P .

Therefore the path P .t/ in M is tangent to the bad cone at P .0/D P , contrary to the
assumption that M is transverse to the field of bad cones.
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So we have just shown that the map gW EM ! S2nC1 is an immersion.

But EM is compact, and so the map g is both open and closed, and hence its image
g.EM / must be all of S2nC1 .

Thus g is a covering map, and since S2nC1 is simply connected for n� 1, g must be
a diffeomorphism.

Thus EM gives a smooth fibration of S2nC1 by great circles, with M as its base
space, completing the proof of the lemma.

Remarks (1) The proofs in [7; 8] that the base space MF of a smooth fibration F

by great subspheres is transverse to the field of bad cones use the fact that the local
trivializations of F are diffeomorphisms.

One can have a topological fibration F of S2nC1 by great circles whose base space MF

is a smooth submanifold of G2R2nC2 occasionally tangent to a bad cone, and then the
local trivializations of F will be smooth homeomorphisms, but not diffeomorphisms.

(2) A small, smooth 2n–disk in G2R2nC2 which is transverse to the field of bad
cones gives a fibration of an open tube in S2nC1 by great circles.

5 Proof of Proposition 2

2n � 2n matrices with no real eigenvalues

In this section, we see how 2n�2n matrices with no real eigenvalues arise in our study
of 2n–planes tangent to the base space of a smooth fibration of S2nC1 by great circles.

In the 4n–dimensional vector space Hom.P;P?/D P?CP? , we need to recognize
those 2n–dimensional subspaces which are transverse to the bad cone BC.P /, since
they will be precisely those, according to Propositions 1 and 4, which can serve as
tangent spaces to the base spaces of fibrations of S2nC1 by great circles.

Lemma A 2n–dimensional subspace of Hom.P;P?/D P?CP? is transverse to
the bad cone BC.P / if and only if it is the graph of a linear map with no real eigenvalues
from one P? summand to the other.

Proof A 2n–dimensional subspace T of Hom.P;P?/ transverse to the bad cone
can meet each of the two summands P? D fA1 j 0g and P? D f0 jA2g only at the
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BC.P /

P?

P?

P

T D graph of
LT W P

?! P?

Figure 9: T is transverse to the bad cone BC.P / if and only if it is the graph
of a linear map LT W P

?! P? with no real eigenvalues.

origin, since these summands lie entirely in the bad cone. Hence T is the graph of a
linear map LT W P

?! P? between these subspaces, in either order.

If LT has a real eigenvalue � with eigenvector A1 , then its graph T contains the
vector A1 j�A1 , a 2n� 2 matrix of rank 1, hence in the bad cone BC.P /.

Thus a 2n–dimensional subspace T of Hom.P;P?/ which is transverse to the bad
cone is the graph of a linear map LT as above with no real eigenvalues.

Conversely, if T is a 2n–dimensional subspace of Hom.P;P?/ which is the graph
of a linear map LT W P

?! P? with no real eigenvalues, then T contains no 2n� 2

matrices of rank 1, and so is transverse to the bad cone BC.P /, proving the lemma.

Improving maps with no real eigenvalues

Recall that by a linear complex structure we mean a linear map J W R2nC2!R2nC2

such that J 2D�I , and that for an orthogonal complex structure we require in addition
that the map J be orthogonal.
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Given any orthogonal complex structure J W R2nC2!R2nC2 , the unit circles in the
J –complex lines yield a Hopf fibration H of S2nC1 by oriented great circles.

Lemma The tangent 2n–plane to the base space MH at a complex line P is the
graph of J jP? W P

?! P? .

Proof The points L in the large coordinate neighborhood Hom.P;P?/ of P in
G2R2nC2 are represented by 2n� 2 matrices AD A1 jA2 , where the two columns
are the L–images in P? of an ON basis e1 , e2 for P with J.e1/D e2 .

The points Q in this neighborhood which lie in the base space MH of the fibration
H are J –complex lines, meaning images of a J –complex linear map LW P ! P? .
Since L.e1/DA1 and L.e2/DA2 and L ıJ D J ıL, we have

A2 DL.e2/DL.J.e1//D J.L.e1//D J.A1/:

Thus the points of MH in this coordinate neighborhood lie on the graph of the map
J jP? W P

?! P? .

Since the coordinate neighborhood Hom.P;P?/ of P serves as its own tangent space
at P , the graph of J jP? W P

?! P? serves as the tangent 2n–plane to MH at P , as
claimed.

Remarks (1) The portion of MH within the large open neighborhood Hom.P;P?/
of P in G2R2nC2 appears as a 2n–plane through the origin there.

(2) The above lemma and remark hold equally well if J W R2nC2!R2nC2 is only a
linear complex structure such that J.P?/D P? .

Proposition 2 There is a GL.2n;R/–equivariant deformation retraction of the space
of linear transformations T W R2n! R2n with no real eigenvalues to its subspace of
linear complex structures J W R2n!R2n .

Proof See McKay [15, pages 1163–1166].

Let T W R2n!R2n be a linear transformation with no real eigenvalues. Complexify
R2n to get C2n , and regard T W C2n!C2n . Since T is real, its eigenvalues � occur
in conjugate pairs.

Split C2n into a direct sum
P
�E�T of the generalized eigenspaces of T , where

E�T D fv 2C2n
W .T ��I/kv D 0 for some k > 0g;
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with dim.E�T / D multiplicity of the eigenvalue �. Complex conjugation in C2n

takes E�T to Ex�T since T is real.

Reorganize the direct sum as

C2n
D

X
Im�>0

E�T C
X

Im�<0

E�T D V C
C
CV �C ;

and note that complex conjugation interchanges V C
C

and V �
C

.

Now define a complex linear map JT W C
2n! C2n by JT .v/ D iv if v 2 V C

C
and

JT .v/ D �iv if v 2 V �
C

. This map JT commutes with complex conjugation, and
hence takes real vectors to real vectors, so that JT W R

2n!R2n is a linear complex
structure.

It is clear from construction that the correspondence T !JT is GL.2n;R/–equivariant.

Our desired deformation retraction is given by the formula

Tt D .1� t/T C tJT :

One easily checks by looking at the blocks in the Jordan normal form for T that each
of the transformations Tt has no real eigenvalues.

Since T and JT each commute with complex conjugation, the same is true for Tt ,
and hence it also takes real vectors to real vectors.

To confirm that the proposed deformation retraction Tt depends continuously on T ,
we must check that JT itself depends continuously on T .

Since JT is defined as multiplication by i on V C
C

and by �i on V �
C

, this amounts
to checking that the subspaces V C

C
and V �

C
depend continuously on the choice of T

from among the linear transformations R2n!R2n with no real eigenvalues.

This is implied by Lemma 2 on page 1164 of McKay [15], where he shows that the
map T ! JT is the projection of a smooth fiber bundle.

We give a different argument here.

Let �1; �2; : : : ; �n be the eigenvalues of T with positive imaginary part, with complex
conjugates x�1; x�2; : : : ; x�n , which are the eigenvalues of T with negative imaginary part.
In each case, an eigenvalue may be listed several times according to its multiplicity.

Consider the complex polynomials

pC
T
.z/D .z��1/.z��2/ � � � .z��n/ and p�T .z/D .z�

x�1/.z�x�2/ � � � .z�x�n/;
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which are the characteristic polynomials of the restrictions of T to V C
C

and V �
C

,
respectively. Their product pT .z/ D pC

T
.z/p�

T
.z/ is the characteristic polynomial

of T on all of VC .

By the Cayley–Hamilton theorem, the linear transformation pC
T
.T / vanishes on V C

C
,

the linear transformation p�
T
.T / vanishes on V �

C
, while their product (composition)

pT .T /D pC
T
.T /p�

T
.T / vanishes on all of VC .

Since pC
T
.z/ and p�

T
.z/ have no roots in common, they are relatively prime, and hence

there are polynomials aC
T
.z/ and a�

T
.z/ such that

aC
T
.z/pC

T
.z/C a�T .z/p

�
T .z/D 1:

Inserting T in place of z , we get

(?) aC
T
.T /pC

T
.T /C a�T .T /p

�
T .T /D I:

Lemma The kernels of the linear maps pC
T
.T / and p�

T
.T /W VC ! VC are precisely

ker pC
T
.T /D V C

C
and ker p�T .T /D V �C :

Proof We already know pC
T
.T / vanishes on V C

C
, so that ker pC

T
.T / contains V C

C
,

and likewise ker p�
T
.T / contains V �

C
. Now V C

C
and V �

C
are complex n–dimensional

subspaces of the complex 2n–dimensional space VC . If either ker pC
T
.T / is larger

than V C
C

or ker p�
T
.T / is larger than V �

C
, then there would have to be a nonzero

vector v in VC which lies in both kernels. But then applying formula .?/ above to v
would give a contradiction, because the left side would kill v , while the right side
would preserve it. This completes the proof of the lemma.

Now as T varies continuously among linear transformations R2n!R2n with no real
eigenvalues, the roots of its characteristic polynomial also vary continuously (with
multiple roots permitted to split into simpler ones), and so by the above lemma, the
subspaces V C

C
and V �

C
also vary continuously.

This completes the proof of Proposition 2.

6 Proof of Proposition 3

Now we discuss the second step of our deformation retraction.

Proposition 3 There is an O.2n/–equivariant deformation retraction of the space of
linear complex structures on R2n to its subspace of orthogonal complex structures.
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To prove this, we will use the one-to-one correspondence between linear complex
structures J W R2n!R2n and direct sum decompositions of C2n D V C

C
CV �

C
into a

pair of conjugate complex subspaces, the Ci and �i eigenspaces of J on C2n , as
described in the proof of Proposition 2.

We will check that the complex structure J is orthogonal if and only if V C
C

and V �
C

are orthogonal to one another.

Our goal will then be to describe a deformation retraction from the set of all pairs
V C

C
and V �

C
of complex n–dimensional conjugate subspaces of C2n to its subset

of orthogonal such pairs. Intuitively, this deformation retraction is given by opening
up all the angles between V C

C
and V �

C
in a coordinated fashion until they become

orthogonal.

We now turn to providing the details.

Characterization of orthogonal complex structures

Lemma A linear complex structure J W R2n!R2n is orthogonal if and only if v and
J.v/ are orthogonal to one another for all vectors v in R2n .

Proof If J is an orthogonal complex structure, it is easy to check that v and J.v/

are orthogonal to one another for all vectors v in R2n .

In the other direction, suppose that J W R2n! R2n is a linear complex structure for
which v and J.v/ are orthogonal for all vectors v in R2n .

Apply this statement to the vector w D uCJ.v/ to learn that

0D w �J.w/D .uCJ.v// �J.uCJ.v//

D .uCJ.v// � .J.u/CJ 2.v//D .uCJ.v// � .J.u/� v/

D u �J.u/�u � vCJ.v/ �J.u/�J.v/ � v

D�u � vCJ.u/ �J.v/;

whence J.u/ �J.v/D u � v , confirming that J is an orthogonal transformation.

Lemma A linear complex structure J W R2n! R2n is orthogonal if and only if the
conjugate complex subspaces V C

C
and V �

C
of C2n are orthogonal to one another.

Proof We start with R2 , and let J W R2!R2 be given by the matrix�
0 b

�1=b 0

�
:
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It is easy to see by continuity that every complex structure J on R2 moves some
nonzero vector orthogonal to itself, so that it can be expressed in the above matrix form
for some orthonormal basis.

The above map J is orthogonal if and only if b D˙1.

The eigenvalues of J are i and �i , and corresponding eigenvectors of J on C 2 are
the column vectors uD Œb i � and v D Œb � i �.

The complex subspaces V C
C

and V �
C

of C2 are generated in this case by the i and
�i eigenvectors above. That is,

V C
C
DCfuD Œb i �g DRfuD Œb i �; u0 D iuD Œib � 1�g;

V �C DCfv D Œb � i �g DRfv D Œb � i �; v0 D iv D Œib 1�g:

We compute the dot products of these vectors and learn that

u � v D b2
� 1; u � v0 D 0; u0 � v D 0; u0 � v0 D b2

� 1:

Hence the Ci and �i eigenspaces V C
C

and V �
C

are orthogonal to one another if and
only if b D ˙1, which is precisely the condition that the complex structure J be
orthogonal.

This completes the argument for R2 .

With this in hand, we carry out the general argument for R2n .

If J W R2n!R2n is an orthogonal complex structure, then we can choose an orthonor-
mal basis for R2n with respect to which the matrix for J is in block diagonal form,
with 2� 2 blocks �

0 �1

1 0

�
down the diagonal.

Then V C
C

and V �
C

are each complex n–dimensional subspaces of C2n . Each is an
orthogonal direct sum of complex lines. The r th complex lines in each direct sum
are orthogonal to one another by the completed task in R2 , whereas the r th complex
line in one sum is automatically orthogonal to the sth complex line in the other sum
when r ¤ s . It follows that the complex subspaces V C

C
and V �

C
are orthogonal to one

another in C2n .
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If J W R2n ! R2n is not an orthogonal complex structure, then it follows from our
earlier lemma characterizing orthogonal complex structures that there is some vector v
in R2n for which J.v/ is not orthogonal to v .

The 2–plane spanned by this v and J.v/ is invariant under J , but on it J is not a
rotation by 90ı , as we saw in R2 , and hence V C

C
and V �

C
are not orthogonal to one

another.

This completes the proof of the lemma.

Principal angles

We discuss the notion of principal angles in three settings:

(1) between a pair of real linear subspaces in Rn ,

(2) between a pair of complex linear subspaces in Cn ,

(3) between a complex linear subspace and its complex conjugate subspace in C2n .

The intention is to characterize the relative position of the two subspaces, up to the
action of an appropriate group of isometries of the ambient space, which in the three
cases above are the groups O.n/, U.n/, and O.2n/.

The notion and use of principal angles in the real setting (1) is familiar in geometry,
and goes back at least to Camille Jordan [13]; see also Gluck [6]. But the extension to
the complex settings (2) and (3) appears to be much less familiar, though we note the
papers by Scharnhorst [23] and by Galántai and Hegedüs [5], the latter having a very
nice set of references.

(1) Principal angles between a pair of linear subspaces in Rn

Let P and Q be k –planes through the origin in Rn . Then the relative position of
P and Q in Rn is characterized up to the action of O.n/ by k principal angles
�1; �2; : : : ; �k , obtained as follows.

The angle �1 is the smallest that any vector in P makes with any vector in Q. Pick
such unit vectors v1 in P and w1 in Q. Let P2 be the orthogonal complement of v1

in P D P1 and let Q2 be the orthogonal complement of w1 in QDQ1 . Thus P2

and Q2 are k�1–planes through the origin in Rn .

Remark It follows easily from the minimality of �1 that P2 is also orthogonal to w1 ,
and that Q2 is also orthogonal to v1 .
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We move to the induction step. If �1 D 0, then v1 D w1 and we replace Rn by the
Rn�1 orthogonal to v1 Dw1 , and replace the k –planes P and Q by the k�1–planes
P2 and Q2 .

If �1 > 0, then v1 and w1 are independent and span a 2–plane through the origin.
We replace Rn by the Rn�2 orthogonal to this 2–plane, and replace the k –planes P

and Q by the k�1–planes P2 and Q2 . In this case we need the above remark, to
guarantee that P2 and Q2 lie in this Rn�2 .

Now we iterate the construction, with Rn replaced by either Rn�1 or Rn�2 as detailed
above, and with P and Q replaced by P2 and Q2 .

Following through to the end, we get orthonormal bases

v1; v2; : : : ; vk and w1; w2; : : : ; wk

for the k –planes P and Q, respectively, with principal angles

�1 � �2 � � � � � �k �
�
2

between the vectors v1 and w1 , v2 and w2 , . . . , vk and wk , and with vr orthogonal
to ws for r ¤ s .

The principal angles between P and Q characterize their relative position in Rn as
follows.

(1) Theorem (principal angles in Rn ) Let P and Q be a pair of k –planes through
the origin in Rn , and likewise for P 0 and Q0 . Then there is a rigid motion (element of
O.n/) taking P to P 0 and simultaneously taking Q to Q0 if and only if the principal
angles between P and Q are the same as those between P 0 and Q0 .

Proof The condition of matching principal angles is clearly necessary for the existence
of such a rigid motion.

Conversely, if the principal angles �1 � �2 � � � � � �k between P and Q match the
principal angles � 0

1
� � 0

2
� � � � � � 0

k
between P 0 and Q0 , then we easily obtain a rigid

motion of Rn which takes the orthonormal bases v1; v2; : : : ; vk and w1; w2; : : : ; wk

for P and Q to the orthonormal bases v0
1
; v0

2
; : : : ; v0

k
and w0

1
; w0

2
; : : : ; w0

k
for P 0

and Q0 .
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(2) Principal angles between a pair of complex linear subspaces of Cn

Let P and Q be complex k –dimensional linear subspaces of Cn , which to real eyes
look like 2k –planes through the origin in R2n .

To get principal angles between P and Q, and corresponding orthonormal bases for
each of them, we begin as in the real case. Let �1 be the smallest angle that any vector
in P makes with any vector in Q, and pick such unit vectors v1 in P and w1 in Q.

Then consider iv1 and iw1 . These will be another pair of unit vectors in P and Q,
respectively, since each of these is a complex linear subspace. The angle between iv1

and iw1 is also �1 , because multiplication by i is an isometry of Cn which takes P

to itself and Q to itself.

The list of principal angles begins with �1 , �1 , while our orthonormal bases for P and
Q over the reals begins with v1 , iv1 for P and w1 , iw1 for Q.

We economize and list angles and bases from a complex point of view, so that our
principal angles begin with just �1 , while our orthonormal bases for P and Q over
the complex numbers begins with v1 for P and w1 for Q.

We then iterate, as in the real case, and end with complex orthonormal bases

v1; v2; : : : ; vk and w1; w2; : : : ; wk

for the k –planes P and Q, with principal angles

�1 � �2 � � � � � �k �
�
2

between the vectors v1 and w1 , v2 and w2 , . . . , vk and wk , and with vr orthogonal
to ws for r ¤ s .

(2) Theorem (principal angles in Cn ) Let P and Q be a pair of complex k –planes
through the origin in Cn , and likewise for P 0 and Q0 . Then there is an element of
U.n/ taking P to P 0 and simultaneously taking Q to Q0 if and only if the principal
angles between P and Q are the same as those between P 0 and Q0 .

We omit the proof, which is basically the same as in the real case.

(3) Principal angles between conjugate complex linear subspaces in C2n

Let Pk and Pk be conjugate complex subspaces of C2n which meet only at the origin.
We want to define the principal angles between them.
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Let �1 be the smallest angle that any complex line L in Pk makes with its conjugate
complex line xL in Pk . We claim that there will be a unit vector v1 in L which makes
that angle �1 with its complex conjugate xv1 in xL.

The reason for this is that the nearest neighbor map from the unit circle in L to the
unit circle in xL is orientation-preserving, while the complex conjugation map between
these unit circles is orientation-reversing. So there is sure to be a coincidence between
these two maps, meaning a unit vector v1 in L whose nearest neighbor in xL is its own
conjugate xv1 .

Thus v1 makes the angle �1 with xv1 , and likewise iv1 makes that same angle �1

with ixv1 . We note that iv1 and ixv1 , though nearest neighbors in L and xL, are not
complex conjugates of one another.

Now let P2 be the orthogonal complement of the complex line L D Cv1 in Pk ,
and then P2 will automatically be the orthogonal complement of the complex line
xLDCxv1 in Pk .

Remark As in the previous two cases, we find that P2 is also orthogonal to xLDCxv1 ,
and then (automatically) P2 is also orthogonal to LDCv1 , and omit the details.

Then, since Pk and Pk meet only at the origin, we have �1 > 0.

So we replace C2n by the C2n�2 orthogonal to Cv1CCxv1 , and replace P and P

by the complex k�1–dimensional subspaces P2 and P2 , both lying in this C2n�2 ,
thanks to the above remark.

As before, we iterate the construction, with C2n replaced by C2n�2 and with P and
P replaced by P2 and P2 .

Following through to the end, we get complex orthonormal bases

v1; v2; : : : ; vk and xv1; xv2; : : : ; xvk

for the k –planes Pk and Pk , respectively, with constrained principal angles

0< �1 � �2 � � � � � �k �
�
2

between the vectors v1 and xv1 , v2 and xv2 , . . . , vk and xvk , and with Cvr orthogonal
to Cvs for r ¤ s .
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Remark The “constraint” on these principal angles is seen at the beginning, when we
minimize the angle �1 between a complex line L in Pk and its conjugate xL in Pk ,
and then likewise throughout the construction. But it is an easy exercise to check
that the constrained principal angles between Pk and Pk coincide with the ordinary
principal angles between these complex subspaces of C2n . We leave this to the reader,
henceforth drop the adjective “constrained”, and use this information in what follows.

(3) Theorem (principal angles for conjugate complex subspaces of C2n ) Let Pk

and Pk be a pair of conjugate complex subspaces of C2n which meet only at the origin,
and Qk and Qk another such pair. Then there is an element of O.2n/ taking Pk

to Qk (and automatically taking Pk to Qk ) if and only if the principal angles between
Pk and Pk coincide with the principal angles between Qk and Qk .

Proof Let Pk and Pk be a pair of conjugate complex subspaces of C2n which meet
only at the origin, and Qk and Qk another such pair. The condition of matching
principal angles is clearly necessary for the existence of an element of O.2n/ taking
Pk to Qk and Pk to Qk .

Suppose, conversely, that the principal angles between Pk and Pk coincide with the
principal angles between Qk and Qk .

Then by Theorem (2) there is an element F of U.2n/ which takes the orthonormal
bases

v1; v2; : : : ; vk and xv1; xv2; : : : ; xvk

for Pk and Pk to the orthonormal bases

w1; w2; : : : ; wk and Sw1; Sw2; : : : ; Swk

for Qk and Qk .

We claim that F commutes with complex conjugation, and hence takes real points
of C2n to real points of C2n .

Any unit vector in Cv1 can be written as ei�v1 , and since F is complex linear,
F.ei�v1/D ei�w1 . Likewise, F.ei�xv1/D ei�Sw1 . This last equality is also true with
� replaced by �� , hence F.e�i�xv1/D e�i�Sw1 . But e�i�xv1 is the complex conjugate
of ei�v1 , and e�i�Sw1 is the complex conjugate of ei�w1 . Thus F commutes with com-
plex conjugation on Cv1 , and it likewise commutes with complex conjugation on Cxv1 ,
so it commutes with complex conjugation on Cv1CCxv1 . Similarly, it commutes with
complex conjugation on Cvr CCxvr , and hence on all of Pk CPk !Qk CQk .
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If k D n, then Pk CPk is all of C2n and so F commutes with complex conjugation
on all of C2n . If k < n, then we can easily modify F on the orthogonal complement
of Pk CPk so that it commutes with complex conjugation there as well.

Finally, since F commutes with complex conjugation on all of C2n , it takes the real
points R2n of C2n to themselves, and is hence an element of the subgroup O.2n/

of U.2n/.

This completes the proof of Theorem (3).

Proof of Proposition 3 We will exhibit an O.2n/–equivariant deformation retraction
of the space of linear complex structures on R2n to its subspace of orthogonal complex
structures.

We start with a linear complex structure J W R2n!R2n and the corresponding direct
sum decomposition of the complexification C2n D V C

C
CV �

C
into a pair of conjugate

complex subspaces, the Ci and �i eigenspaces of J W C2n!C2n .

We want to move V C
C

and V �
C

apart until they are orthogonal, keeping the intermediate
positions as complex conjugates of one another, so as to deform the linear complex
structure J through other linear complex structures, until we arrive at the orthogonal
complex structure corresponding to the terminal positions of V C

C
and V �

C
in this

deformation, as shown in Figure 10 for C4 . In C2n , we open up V C
C

and V �
C

like 2n

pairs of scissors in the real 2–planes spanned by

v1 and xv1; iv1 and ixv1; : : : ; vn and xvn; ivn and ixvn

at rates proportional to the complementary angles �
2
� �i , so that they all open up to

angle �
2

at the same time.

Each of these 2–planes contains a line of real vectors and an orthogonal line of purely
imaginary vectors.

As the 2n pairs of scissors open up, the opening vectors vk and xvk remain symmetric
with respect to reflection in the real line in their 2–plane, and hence remain conjugates
of one another.

By contrast, the opening vectors ivk and ixvk remain symmetric with respect to
reflection in the purely imaginary line in their 2–plane, and hence remain negative
conjugates of one another.
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Figure 10: Opening up a pair of complex 2–dimensional conjugate subspaces
in C4 , guided by the principal angles, until they become orthogonal.

It follows that the complex 2n–dimensional subspaces V C
C

and V �
C

remain complex
conjugates of one another as they open up, until they are finally orthogonal to one
another.

This opening up of V C
C

and V �
C

is not affected by the ambiguity in the choice of the
above bases for these subspaces, even if several successive principal angles are equal.

During this opening, all the complex structures on C2n commute with complex conju-
gation, and hence take the subspace R2n of real points to itself.

The result is a deformation retraction of the space of linear complex structures on R2n

to its subspace of orthogonal complex structures, and the geometric naturality of all
the constructions testifies to the O.2n/–equivariance of this procedure.

This completes the proof of Proposition 3.

7 Proof of Proposition 4

Proposition 4 There exists a smooth fibration F of S2nC1 by oriented great circles
whose base space MF is tangent at P to any preassigned 2n–plane transverse to the
bad cone BC.P /.

We begin with a sketch of the proof.
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We start in the tangent space Hom.P;P?/ to G2R2nC2 at P with a given 2n–plane
which is transverse to the bad cone BC.P /, and hence the graph of a linear map
AW P?! P? with no real eigenvalues. See Figure 11.

BC.P /

P?

P?

P

T D graph of
AW P?! P?

Figure 11: The graph of AW P?! P? is transverse to the bad cone

We must find a fibration F of S2nC1 by great circles including P , with this preassigned
tangent 2n–plane to its base space MF at P .

To do this, let JAW P
?!P? be the linear complex structure with the same generalized

eigenspaces as A, the one to which we deformed A in Proposition 2.

Extend JA to a complex structure on R2nC2 D P CP? which rotates the oriented
2–plane P within itself by 90ı .

This complex structure JA on R2nC2 determines a Hopf-like fibration HJA
of S2nC1

by the oriented unit circles on the JA –complex lines.

The graph of JAW P
?! P? is a 2n–plane in Hom.P;P?/, which can be regarded

as part of the base space of this fibration HJA
, and also as its tangent space at P .

We will interpolate between the graphs of A and JA , using the fact that they have
the same generalized eigenspaces, to construct the base space MF of a fibration F
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BC.P /

P?

P?
P

MF

graph of
AW P?! P?

graph of
JAW P

?! P?

Figure 12: Interpolating between the graph of A and the graph of the
corresponding linear complex structure JA

of S2nC1 by great circles which is tangent at P to the graph of A, and which agrees
with the fibration HJA

outside a small neighborhood of P .

The details of the interpolation are given in the full proof, which we begin now.

Proof of Proposition 4. Recall that the 4n–dimensional vector space Hom.P;P?/
serves both as a coordinate neighborhood about P in G2R2nC2 , and as the tangent
space to this Grassmannian at P .

We start with a 2n–dimensional subspace of Hom.P;P?/, which is the graph of a
linear transformation AW P?! P? with no real eigenvalues. Our goal is to construct
a smooth fibration F of S2nC1 by oriented great circles, whose base space MF can
be viewed within this neighborhood as the graph of the smooth nonlinear function
N W P?! P? , defined by

N.x/D f .jxj/A.x/C .1�f .jxj//J.x/

for all x 2 P? ; see Figure 12. Here, f W Œ0;1/! Œ0; 1� is a smooth bump function
which will be defined shortly, and J DJA is the linear complex structure corresponding
to A which was defined in the proof of Proposition 2.

Algebraic & Geometric Topology, Volume 18 (2018)



Germs of fibrations of spheres by great circles always extend to the whole sphere 1353

Our task is to choose f so that the differential dNx of N at each point x 2 P? has
no real eigenvalues.

We compute dNx applied to a vector v in P? , keeping in mind that the linear functions
A and J serve as their own differentials at all points x :

dNx.v/D f .jxj/A.v/C .1�f .jxj//J.v/

Cf 0.jxj/
�

x

jxj
� v
�
A.x/�f 0.jxj/

�
x

jxj
� v
�
J.x/:

Suppose that dNx.v/ D �v at some point x 2 P? , for some unit vector v , and for
some real number �.

We will insert this into the previous equation, and then choose the bump function f to
prevent this from happening at any point x and for any �.

We get

�vDf .jxj/A.v/C.1�f .jxj//J.v/ Cf 0.jxj/
�

x

jxj
�v
�
A.x/�f 0.jxj/

�
x

jxj
�v
�
J.x/;

and rewrite this as

�v�
�
f .jxj/AC .1�f .jxj//J

�
.v/D f 0.jxj/

�
x

jxj
� v
�
ŒA.x/�J.x/�:(??)

Next we will find an � > 0 so that the left-hand side of .??/ has norm � � , independent
of the bump function f and the point x 2 P? . Then we will choose f so that the
right-hand side has norm < � .

Suppose first that we cannot find a positive lower bound for the norm of the left-hand
side.

The left-hand side cannot be zero at any x 2 P? , since the linear maps tAC .1� t/J

from P? to P? have no real eigenvalues for 0� t � 1, as we showed in the proof of
Proposition 2.

Now suppose that as we vary x 2 P? among those x for which dNx has a real
eigenvalue, the norm of the left-hand side of .??/ becomes arbitrarily close to zero.
Note that as we vary x , the eigenvalue � of dNx , if it exists, might change.

So we suppose for each integer n there is a real number �n , a unit vector vn , and a
real number tn 2 Œ0; 1� such thatˇ̌

�nvn� ŒtnAC .1� tn/J �.vn/
ˇ̌
<

1

n
:
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We note that the real numbers �n are bounded in size, since

jtAC .1� t/J j � jAjC jJ j

is bounded and vn is a unit vector.

Then, due to the compactness of this bounded interval of real numbers, compactness
of the unit 2n�1–sphere in P? , and compactness of the interval Œ0; 1�, there is a
subsequence .nk/ of the integers with

�nk
! �; vnk

! v and tnk
! t;

so that in the limit we have

�v� ŒtAC .1� t/J �.v/D 0;

which contradicts the fact that tAC .1� t/J has no real eigenvalues.

Thus, independent of our choice of f (yet to be made), there is an � > 0 such thatˇ̌
�v�

�
f .jxj/AC .1�f .jxj//J

�
.v/
ˇ̌
� �:

We fix this � > 0 and consider the right-hand side of .??/,

f 0.jxj/
�

x

jxj
� v
�
ŒA.x/�J.x/�;

which has norm � jf 0.jxj/jjA�J jjxj.

We will determine how to choose f so that

jf 0.s/js <
�

jA�J j

for any real number s in Œ0;1/.

Let S.f /D supfsjf 0.s/j W s � 0g. We want to choose the bump function f so that
S.f /� �=jA�J j, thus making S.f / as small as necessary.

Start by choosing any smooth bump function f W Œ0;1/! Œ0; 1� so that f .s/D 1 for
s near 0 and f .s/D 0 for s sufficiently large.

Then define fn.s/D f .s
1=n/ for nD 1; 2; 3; : : : .

A quick check shows that S.fn/D S.f /=n, hence, for sufficiently large n, the bump
function fn can be used in place of f , so that the right-hand side of .??/ has norm <� .
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This contradicts our supposition that dNx.v/D �v at some point x 2 P? , for some
unit vector v and for some real number �, and therefore confirms that the differential
dNx of N at each point x 2 P? has no real eigenvalues.

Now we want to define the fibration F of S2nC1 by oriented great circles so that its
base space MF within the coordinate neighborhood Hom.P;P?/ is the graph of N ,
and outside that neighborhood coincides with the base space MJ of the fibration of
S2nC1 by the unit circles on the J –complex lines.

Since the differential dNx at each x 2 P? has no real eigenvalues, the base space
MF is everywhere transverse to the field of bad cones, and so, by Proposition 1, is
indeed the base space of a smooth fibration F of S2nC1 by oriented great circles.

By construction, MF agrees with the graph of A near the fiber P , so that we certainly
have TP MF DA, as required.

This completes the proof of Proposition 4.

8 Proof of Theorem B

Theorem B The space fTP MF g of tangent 2n–planes at P to the base spaces MF

of all smooth oriented great circle fibrations F of S2nC1 containing P , deformation
retracts to its subspace fTP MH g of tangent 2n–planes to such Hopf fibrations H

of S2nC1 .

That is, the set of 2n–planes in TP G2R2nC2 tangent to the base space of a fibration
of S2nC1 by great circles deformation retracts to its subspace of 2n–planes tangent to
Hopf fibrations.

Proof Start with the space fTP MF g of tangent 2n–planes at P to the base spaces
MF of all smooth great circle fibrations F of S2nC1 .

Use Propositions 1 and 4 to write

fTP MF g D f2n–planes in TP .G2R2nC2/ transverse to BC.P /g

D flinear maps T W R2n
!R2n with no real eigenvaluesg;

with P? playing the role of R2n .

Then by Propositions 2 and 3, the above space deformation retracts to its subspace

forthogonal complex structures J W R2n
!R2n

g;
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which is in one-to-one correspondence with the space fTP MH g of tangent 2n–planes
at P to the base spaces MH of Hopf fibrations H of S2nC1 containing the fiber P

by the second lemma in Section 5.

This proves Theorem B.

9 Proof of Theorem A

Theorem A Every germ of a smooth fibration of S2nC1 by oriented great circles
extends to such a fibration of all of S2nC1 .

Proof Let F be a germ of a smooth fibration of S2nC1 by great circles containing
the fiber P , and MF �G2R2nC2 its base space.

We must produce a smooth fibration F 00 of all of S2nC1 by great circles which agrees
with F in a neighborhood of P .

Let TP MF be the tangent 2n–plane to MF at P .

We know that TP MF is transverse to BC.P /, so by Proposition 4, there is a smooth
fibration F 0 of all of S2nC1 by great circles with TP MF 0 D TP MF .

By routine interpolation, we get a smooth submanifold M 00 of G2R2nC2 which agrees
with MF in a small neighborhood of P , and then agrees with M 0

F
outside a slightly

larger neighborhood of P , and whose tangent planes are all as close as desired to
TP MF 0 D TP MF . See Figure 13.

MF

MF 0 M 00 DMF 00

P

TP MF

Figure 13: Interpolation between the base space MF of the germ and the
base space MF 0 of an entire fibration which is tangent to the germ

Thanks to this closeness, the tangent planes to M 00 are transverse to the bad cones at
all points, and hence M 00 DMF 00 is the base space of a fibration F 00 of all of S2nC1

by great circles. This fibration F 00 agrees with F in a neighborhood of P , completing
the proof of Theorem A.
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10 Why is Theorem A easy to prove in dimension 3?

There are two special features in this lowest dimension:

(1) The Grassmann manifold G2R4 of oriented 2–planes through the origin in R4

is isometric (up to scale) to S2 �S2 .

(2) There is a moduli space for the family of all fibrations of S3 by oriented great
circles: two copies of the space of distance-decreasing maps of S2! S2 ; see
Gluck and Warner [7].

In particular, the base space MF of a fibration F of S3 by oriented great circles
appears in the S2 �S2 structure of G2R4 as the graph of a distance-decreasing map
from either S2 factor to the other.

Then in this lowest dimension, Theorem A says that every germ G of a (smooth)
fibration of S3 by oriented great circles extends to a fibration F of all of S3 , and the
proof is contained in Figure 14.

Figure 14: Proof of Theorem A in dimension 3

Let the germ G correspond to a distance-decreasing map g from a neighborhood N

of the south pole on one S2 factor of G2R4 to the other S2 factor.
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Then a distance-decreasing map f W S2 ! S2 which extends g is constructed by
folding S2 in half, so that the northern hemisphere goes to the southern hemisphere,
then compressing the southern hemisphere into the neighborhood N of the south pole
(with no compression near the south pole), and finally composing this fold-compression
with the given distance-decreasing map g .

The graph of the resulting distance-decreasing map f W S2! S2 inside S2 �S2 D

G2R4 is the base space MF of the desired fibration F of S3 by oriented great circles
which agrees with G in a neighborhood of a fiber.

The best unsolved problem for great circle fibrations of spheres

Prove that the space of all (smooth) fibrations of S2nC1 by great circles deformation
retracts to its subspace of Hopf fibrations.

This was proved for S3 in Gluck and Warner [7]. Theorem B of the present paper can
be regarded as an infinitesimal version of this desired theorem.
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