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A colored Khovanov spectrum and its tail
for B–adequate links

MICHAEL WILLIS

We define a Khovanov spectrum for sl2.C/–colored links and quantum spin networks
and derive some of its basic properties. In the case of n–colored B–adequate links,
we show a stabilization of the spectra as the coloring n!1 , generalizing the tail
behavior of the colored Jones polynomial. Finally, we also provide an alternative,
simpler stabilization in the case of the colored unknot.

57M27, 57M25

1 Introduction

In [5], Mikhail Khovanov introduced the Khovanov homology Khi;j .L/ of a knot
or link L, the homology of a bigraded chain complex KCi;j .L/ with graded Euler
characteristic equal to the Jones polynomial of L. In [7], Robert Lipshitz and Sucharit
Sarkar defined the Khovanov spectrum of L, a wedge sum of spectra X j .L/ whose
reduced cohomology groups satisfy zH i.X j .L//Š Khi;j .L/. It is then natural to ask
what types of structural results about Khovanov homology extend to the Khovanov
spectrum.

In [16], the author proved that for the torus links T .n;m/, the Khovanov spectra
X .T .n;m// stabilize as m!1, allowing a well-defined notion of a limiting Khovanov
spectrum X .T .n;1//. Due to Lev Rozansky’s arguments in [12], this result could be
interpreted as defining a colored Khovanov spectrum for the n–colored unknot. (Here
“colored” refers to assigning an irreducible sl2.C/ representation to each component of
the link; as in [12], we use the color n to refer to the .nC1/–dimensional representation,
so that the color nD1 corresponds to the usual Jones polynomial and Khovanov
homology.) In this paper, we prove the following two extensions of [16].

Theorem 1.1 There exists a colored Khovanov spectrum for any sl2.C/ colored link.
Its reduced cohomology is isomorphic to the colored Khovanov homology defined in
Cooper and Krushkal [2] and Rozansky [13].
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Remark 1.2 In particular, the coloring nD1 (the 2–dimensional irreducible repre-
sentation of sl2.C/) assigned to each component of L produces a colored Khovanov
spectrum agreeing with the construction of [7]. This fact already guarantees that there
are links with colored spectra that are not wedge sums of Moore spaces; see Lipshitz
and Sarkar [9]. In addition, the results of [16] imply that the 3–colored unknot also
gives rise to non-Moore spaces.

Theorem 1.3 There exists a Khovanov spectrum for any sl2.C/ quantum spin network.
Its reduced cohomology is isomorphic to the homology of the categorified spin networks
defined in [2].

Both the colored Khovanov homology and the categorified quantum spin networks
mentioned in these theorems are defined using the categorified Jones–Wenzl projectors.
Thus Theorems 1.1 and 1.3 will be viewed as special cases of a slightly more general
theorem that can be stated as follows.

Theorem 1.4 For any link diagram D involving a finite number of Jones–Wenzl
projectors, there exists a Khovanov spectrum X .D/ with reduced cohomology isomor-
phic to the homology defined using the categorified Jones–Wenzl projectors as in [12]
and [2].

An example of the type of diagram in the statement of Theorem 1.4 is provided in
Figure 1. Notice that the Jones–Wenzl projectors themselves, and their categorifications,
are defined using tangles. The Khovanov spectrum has not yet been defined for tangles,
and so Theorem 1.4 requires that the projectors involved are closed in some way to form
a link diagram. Nevertheless we will also prove several properties of such spectra, such
as being “killed by turnbacks”, that the projectors and their categorifications satisfy.

P3 P2

Figure 1: An example diagram for which Theorem 1.4 defines a Khovanov spectrum

The proof of Theorem 1.4 is a generalization of the proof in [16] for the torus links.
With [12] in mind, we replace the projectors with torus braids, seeking a stabilization
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of the spectra as the number of twists in each such braid goes to infinity. The strategy
is similar to that in [16], but requires some new bounds and estimates that account for
the presence of crossings away from the twisting, as well as the (possibly changing)
orientations of the strands being twisted.

Remark 1.5 Theorem 1.1 was proved independently by Andrew Lobb, Patrick Orson,
and Dirk Schuetz in [10], which appeared on the arXiv while this manuscript was in
preparation. The authors further remark in that paper that their methods could be used
to prove a statement similar to Theorem 1.4.

Remark 1.6 The Khovanov spectra of Theorem 1.4 will be constructed as homotopy
colimits of the Khovanov spectra for link diagrams as defined in [7]. Up to a finite
formal desuspension, the spectra of [7] are suspension spectra of CW complexes,
and thus their homotopy colimits are also suspension spectra of CW complexes (the
“suspension spectrum” functor from spaces to spectra preserves all homotopy colimits).
Although these colimiting CW complexes are infinite, the stabilization mentioned above
will mean that the resulting spectra will be stably homotopy equivalent to some finite
term in the sequence.

With a well-defined colored Khovanov spectrum in hand, we follow the strategy of
Rozansky in [13] to prove:

Theorem 1.7 The Khovanov spectra of n–colored B–adequate links stabilize as
n!1.

For a more detailed statement and an illustration of the stabilization, see Theorem 5.5
and Tables 1 and 2 in Section 5. Theorem 1.7 gives us the stable tail behavior for the
Khovanov spectra of colored B–adequate links, matching the behavior of the colored
homology and colored Jones polynomials. This theorem is a lifting of Theorem 2.2
in [13] to the stable homotopy category. The proof will be based on two main ideas. First
we verify that all of the isomorphisms constructed in [13] between colored Khovanov
homology groups lift to maps between the corresponding spectra. Second we ensure
that the homological range of isomorphism for these maps (which depends on n) can
be translated into a range of q–degrees for which all nonzero homology is isomorphic
via these same maps. This will allow Whitehead’s theorem to guarantee that the maps
are stable homotopy equivalences.

Finally, we will also provide a more direct argument for the tail of the Khovanov
spectrum of the colored unknot; that is, for X .T .n;1// as n!1.
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Theorem 1.8 In the case of the unknot, the n–colored Khovanov spectra X .T .n;1//
defined in [16] stabilize as n!1, and the stable limit

X .T .1;1// WD
_

j2.2N[0/

X j .T .1;1//

satisfies

X j .T .1;1//'

�
X 0.T .j ;1//' X .j�1/2.T .j ; j � 1// for j > 0;

X�1.T .1;1//' S0 for j D 0;

where S0 denotes the standard sphere spectrum.

For a more detailed visual representation of the statement of Theorem 1.8, see Table 3
in Section 6. The proof of Theorem 1.8 will use much simpler stable homotopy
equivalences than the maps used to prove Theorem 1.7, and will also provide a sharper
bound on the coloring n needed for stabilization in a given q–degree.

This paper is arranged as follows. In Section 2 we review the necessary background
on Khovanov homology, the Khovanov spectrum, and the categorified Jones–Wenzl
projectors as constructed in [12]. We also set our grading conventions for Khovanov
homology used throughout the paper. In Section 3 we build the Khovanov spectrum
for arbitrary diagrams involving Jones–Wenzl projectors, proving Theorem 1.4, and
then derive some simple properties for these spectra similar to those satisfied by the
projectors themselves. Section 4 contains a short description of quantum spin networks
and colored links, allowing quick proofs of Theorems 1.1 and 1.3 via Theorem 1.4.
Section 5 is devoted to proving Theorem 1.7. Finally, Section 6 contains the proof of
Theorem 1.8, with one proof from this section placed in the appendix.

Acknowledgements The author would like to thank: the referee of this paper for
several very helpful comments and suggestions; the referee of his prior paper [16] for
bringing up the question of allowing n!1 as in Theorem 1.8; Matt Hogancamp for
calling attention to the properties of linking a 1–colored unknot with a colored link;
and his advisor Slava Krushkal for his continued support and advice while preparing
this paper. This research was supported in part by NSF grant DMS-1612159.

2 Background

2.1 Our grading conventions for Khovanov homology

For the original definition of the Khovanov homology of a link, see [5]. We quickly
summarize here the main points. Any crossing in a link diagram can be resolved
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in one of two ways: with a 0–resolution or with a 1–resolution . The Khovanov
chain complex KCi;j .L/ of a link diagram L is a bigraded chain complex built out
of a cube of resolutions of the diagram L. The generators of KCi;j .L/ correspond
to assignments of vC or v� to each circle in any given resolution. There are several
different conventions in the literature for the precise meaning of the two gradings i

and j . In this paper, following [7] and [1], we shall let i refer to the homological
grading and j refer to the q–grading, which we define by

degh. � / WD #.1–resolutions/� n�;(1)

degq. � / WD #.1–resolutions/C .#.vC/� #.v�//C .nC� 2n�/;(2)

where nC and n� denote the number of positive and negative crossings respectively
in the diagram for L. Under these grading conventions, the Khovanov differential
increases degh by one and respects degq , allowing KCi;j .L/ to split as a direct sum
over q–degree. The resulting homology groups are then bigraded invariants of the link,
with no shifts necessary for any Reidemeister moves on the diagram used. In what
follows, the q–grading normalization shift nC� 2n� will often be denoted by N .

2.2 The Khovanov homotopy type

Given a link L in S3 , we shall let X .L/ D
W

j2Z X j .L/ denote the Khovanov
spectrum of the link L. For the full description of this invariant, see [7]. We summarize
the important points about X .L/ here:

� X .L/ is the suspension spectrum of a CW complex.

� zH i.X j .L//DKhi;j .L/, the Khovanov homology of the link L (see Equations (1)
and (2) for our grading conventions).

� Each X j .L/ is constructed combinatorially using the Khovanov chain complex
KCj .L/ in q–degree j , together with a choice of “ladybug matching” that uses the
diagram for L (see Section 5.4 in [7]). Note that since KCj .L/ is nontrivial for only
finitely many q–degrees j , the wedge sum above is actually finite.

� Each X j .L/ is an invariant of the link L. That is to say, the stable homotopy
type of X j .L/ does not depend on the diagram used to portray L, nor on the various
choices that are made during the construction.

� Nontrivial Steenrod square operations on zH i.X j .L/IZ=2Z/D Khi;j .LIZ=2Z/

can serve to differentiate links with isomorphic Khovanov homology [9] and also give
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rise to slice genus bounds [8]. One corollary of the work in [16] gives the existence of
nontrivial Sq2 for infinitely many 3–strand torus links. See further calculations in [10].
gbr The most important property of X .L/ for our purposes comes from the following
“collapsing lemma”, a slight generalization of that appearing in Section 2.2 of [16].
Fixing j 2 Z, we consider the Khovanov chain complex KC.L/ represented as the
mapping cone of a chain map

(3) KCjCNL.L/D .KCjCNL00 .L00/! KCj�1CNL0 .L0//;

where L0 and L00 are the links resulting from taking the 1–resolution and 0–resolution,
respectively, of a single crossing in the diagram for L. The superscripts stand for
q–gradings, with NL denoting the q–degree normalization shift nC�2n� in the link
diagram L, and similarly for NL0 and NL00 . There is a corresponding cofibration
sequence of spectra (see Theorem 2 in [7])

(4) †aX jCNL00 .L00/ ,! X jCNL.L/�†bX j�1CNL0 .L0/;

where the † stands for suspensions allowing for shifts in homological degree, with
aDn�

L00
�n�

L
and bDn�

L0
�n�

L
C1, the differences in the count of negative crossings n�

for the various diagrams (the extra C1 for L0 takes into account the loss of a 1–
resolution from the point of view of L0 ). See Equations (1) and (2) above to clarify
the grading shifts.

Lemma 2.1 With KCjCNL.L/ D
�
KCjCNL00 .L00/ ! KCj�1CNL0 .L0/

�
as above,

we have:

� If KCj�1CNL0 .L0/ is acyclic, then the induced inclusion

†aX jCNL00 .L00/ ,! X jCNL.L/

is a stable homotopy equivalence.

� If KCjCNL00 .L00/ is acyclic, then the induced surjection

X jCNL.L/�†bX j�1CNL0 .L0/

is a stable homotopy equivalence.

Proof See the brief sketch in [16], which describes the first case for positive crossings.
Both cases are special cases of Lemma 3.32 in [7], presented as in Theorem 2 from the
same paper.
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Lemma 2.1 says that we can resolve crossings in a diagram one at a time, and if one
resolution of a crossing results in a diagram with an acyclic chain complex in the
specified q–degree, this entire part of the full chain complex can be collapsed and we
are left with the chain complex using only the other resolution (up to some potential
suspensions). Just as in [16], we will want to make repeated use of this idea here.

2.3 A categorified Jones–Wenzl projector

The nth Jones–Wenzl projector Pn is a special idempotent element in the Temperley–
Lieb algebra TLn on n strands over coefficient field C.q/, which is characterized by
the following axioms:

I. Pn � ei D ei �Pn D 0 for any of the standard multiplicative generators ei D

in TLn . This is often described by stating that Pn is “killed by turnbacks”.

II. The coefficient of the n–strand identity tangle in the expression for Pn is 1.

(For the original definition of the Pn , see [15]; for an account of the Temperley–Lieb
algebra, the Pn , and some of their uses in 3–manifold theory, see [4].)

In [12] Lev Rozansky provided a categorification for any Pn via an infinite torus
braid. If we let �1; : : : ; �n�1 denote the standard generators of the braid group Bn ,
we introduce the following notation for full twists on n strands:

(5) T k
n WD .�1�2 � � � �n�1/

nk :

After giving a well-defined notion for a stable limit of chain complexes, Rozansky
proved the following theorem.

Theorem 2.2 The Khovanov chain complexes associated to the braids KC.T k
n / stabi-

lize up to chain homotopy as k!˙1. The limiting complex KC.T ˙1n / satisfies the
following properties:

I. Adding a turnback onto the top or bottom of KC.T ˙1n / causes the entire com-
plex to be chain homotopic to a trivial complex.

II. The resulting complex can be viewed as a mapping cone of a map from (for C1)
or to (for �1) the 1–term complex of the identity tangle, where the other terms
involve only nonidentity tangles in nonzero homological degrees.

Proof See [12], and also Section 1.6 in [13].
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This theorem means that, to obtain a chain complex categorifying the Jones–Wenzl
projectors up through a given homological degree, it is enough to replace any Pn in a
diagram with a copy of T ˙k

n for large k (we shall often refer to this as a “finite-twist
approximation”). The exact size of k needed depends on the homological degree we are
interested in. The graded Euler characteristic of this complex stabilizes as k!1 to
give a power series representation of the rational terms appearing in the usual formulas
for the Pn . Positive (right-handed) twisting gives a power series in q , while negative
(left-handed) twisting gives a power series in q�1 .

Remark 2.3 At around the same time, Ben Cooper and Slava Krushkal independently
constructed a categorification of the Jones–Wenzl projectors in [2]. We are unsure if
it is possible to lift their construction to the Khovanov spectrum in general; see [10]
for some further remarks and a lifting in the n D 2 case. Also, in [6], Mikhail
Khovanov introduced separate categorifications for the colored Jones polynomial using
renormalizations to eliminate the denominators present in the terms of the Jones–Wenzl
projectors. Our approach here aims to recover Rozansky’s version outlined above rather
than these alternative categorifications (although the categorified projectors in [2] are
chain homotopic to those produced in [12]; see Section 3 of [2]).

The first goal of this paper is to properly lift Theorem 2.2 to a similar statement about
Khovanov spectra. However, Theorem 2.2 is a statement about complexes of tangles.
As mentioned in the introduction, the Khovanov spectrum has not yet been defined for
tangles in general, and only exists for links. This is the reason for the slightly indirect
phrasing of Theorem 1.4, which can be viewed as a statement about having Khovanov
spectra for Jones–Wenzl projectors that are closed up in any fashion in S3 . We turn
now to the proof of Theorem 1.4.

3 A Khovanov spectrum for diagrams involving Jones–Wenzl
projectors

3.1 Basic notation and a key counting lemma

We begin with some general notation for use throughout this section.

� n 2N will always denote a number of strands for various purposes (typically
for a given torus braid or, later, for an n–strand cabling of a link diagram).

� Boldface capital letters will refer to braids and/or tangles within a diagram.
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� In will denote the identity braid on n strands.

� T k
n will denote a torus braid on n strands with k full right-handed (positive)

twists (see Equation (5)).

� T �k
n will denote such a torus braid with k full left-handed (negative) twists.

� Z will often be used to denote an arbitrary tangle.

� We will use the inner-product notation hZ1;Z2i to indicate connecting two
tangles top to top and bottom to bottom. This notation is meant to imitate the
inner product in the Temperley–Lieb algebra. See Figure 2.

� Z\i will be used to indicate that the i th and .iC1/st strands at the top of the
tangle Z are being capped off. Similarly, Z[i will indicate capping off the i

and iC1 strands at the bottom. See Figure 2.

ZT 1
4

Figure 2: The diagram hT 1
4 ;Z

\2i . T 1
4 indicates the full right-handed twist

on 4 strands, and Z is some fixed .6; 4/–tangle. The \2 indicates a cap on
the 2nd and 3rd strands above Z .

In many link diagrams in this paper, a single copy of T ˙k
n will be singled out for

consideration, allowing the diagram to be viewed as hT ˙k
n ;Z i for some tangle Z

(similar to Figure 2, but without the cap). In these situations, we will also view the
normalization shifts of Equations (1) and (2) as split into contributions based on the Tn

and the Z as in the following definition.

Definition 3.1 In a link diagram L viewed as LD hT ˙k
n ;Z i as above, the symbol �

will be used to denote the q–normalization shift nC�2n� counting only crossings
within one full twist of the n strands (that is, within T ˙1

n ). Similarly, the symbol �
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will be used to denote the homological normalization shift n� counting only crossings
within one full twist. The symbol NZ will be used to denote the q–normalization
shift nC�2n� counting only crossings within the tangle Z . More generally, ND will
denote the shift nC�2n� counting crossings within a diagram D (whether tangle or
otherwise).

We will have no need for the homological normalization shift n� counting only
crossings in Z .

Remark 3.2 Notice that these shifts � , � and NZ depend on the orientation of the
strands, and allowable orientations are affected by the full link diagram involved, not
just the piece being counted. In Figure 2 for example, the value of � depends heavily
on the tangle Z , despite the fact that it only counts crossings within the T 1

4
. In

cases where the tangle Z is changing, subscripts will be attached to the symbol � as
necessary to indicate which full diagram is being considered. Similarly, if there are
multiple Tni

to consider within some single link diagram, the subscript i will be used
for the shifts �i and �i to indicate which twist is being considered.

In order to illustrate these notations, we prove the following very simple observation
about full twists that indicates why they are preferable to work with (as opposed to the
fractional twists that were sufficient in [16]).

Lemma 3.3 For any .n; n/–tangle Z , consider the diagram D.k/ WD hT k
n ;Z i. Then

all of the D.k/ are links with the same number of strands, which can be oriented
equivalently for all k . Thus ND.k/ D k� CNZ with NZ and � independent of k ; in
particular, NZ can be determined by the diagram D.0/D hI ;Z i. Similarly, for such
a diagram, � is also independent of k .

Proof In a full twist, any strand takes the i th point at the top to the i th point on the
bottom, so for the purposes of counting and orienting the strands, this is equivalent to the
identity braid I . The orientations of the strands are all that matters for calculating NZ ,
and also for calculating � and �. Since � counts positive and negative crossings for
one full twist, k full twists will contribute k� .

Remark 3.4 The previous observation was written and notated for positive full twists,
but it is clear that the exact same argument holds for negative full twists as well. This
will be typical of several of the arguments later in this section.
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We conclude this section with the key counting lemma which is used essentially
throughout the paper. This lemma can be viewed as a generalization of Lemma 3.5
in [16], which itself was just a restatement of Marko Stošić’s Lemma 1 in [14].

Lemma 3.5 Fix n�2 in N . For any i 2f1; 2; : : : ; n�1g and any .n�2; n/–tangle Z ,
consider the link diagram D˙ D h.T

˙k
n /\i ;Z i. That is, consider any closure of T ˙k

n

involving at least one turnback at the top. Then for any chosen orientation of the strands,
we have:

� This link diagram is isotopic to D0
˙
D hT ˙k

n�2
;Z[n�ii.

� Letting �˙ count nC� 2n� for crossings from Tn in D˙ and letting � 0
˙

count
this shift for crossings from Tn�2 in D0

˙
, we have

� 0C D �CC 2n;(6)

� 0� D ��C 2n� 6:(7)

Proof We pull the turnback through the full twists, which corresponds to pulling out
two “parallel” strands wrapping around the cylinder defining the torus braid. As in
Lemma 3.3, using full twists ensures that the turnback “exits” the torus braid at the same
two points that it entered, which swing around to give the .n� i/th and .n� i C 1/st

points at the bottom of Z . This leaves us with n� 2 strands for the torus braid, still
with the same amount of twisting. See Figure 3. This proves the first point.

To prove the second point, we first note that the total number of crossings in a full
twist on n strands is n.n� 1/, while the total number for a full twist on n� 2 strands
is .n� 2/.n� 3/. This means that when pulling the turnback through, we managed
to eliminate 4n � 6 crossings. One full twist of these two strands corresponds to
two Reidemeister I moves; the other 4n� 8 eliminations all must have come from
Reidemeister II moves. Regardless of the type of twist and the orientation of the strands,
all of these Reidemeister II moves would have eliminated one positive and one negative
crossing each. The two Reidemeister I moves would have eliminated negative crossings
from a positive twist, or eliminated positive crossings from a negative twist. Again,
this is independent of the orientation of the strands. Calculating the effect of these
eliminations on the normalization nC� 2n� gives the result.

Remark 3.6 There is no difference in having the turnback at the bottom of the T ˙k
n .

The proof makes it clear that it ends up at the top of the Z in that case.
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Z

(n − i)

n − 2

n

n

n ... ...

... ...

... ...

... ...

Z

(n − i)

.  .  .

... ...

(i)

T 1
n

T 1
n

T ± k

T 1
n

.  .  .

.  .  .

n − 2

Figure 3: The diagram h.T ˙k
n /\i ;Z i with the T ˙k

n drawn as separate
copies of T 1

n . The cap is pulled through the twists as shown (the dashed red
line would be for Ck ; the opposite direction would be taken for �k ). The n

and n� 2 show the number of strands entering and exiting at various points.
The .i/ at the bottom of the twisting indicates the i th strand counted from
the left, and similarly for the .n� i/ at the bottom of Z .

3.2 Proving Theorem 1.4

Let D denote a link diagram involving a finite number of Jones–Wenzl projectors.
More precisely, D is obtained from a link diagram by formally replacing a finite
number of identity braids Ini

with Jones–Wenzl projectors Pni
(see Figure 1 in the

introduction provides clarification). Just as in Section 7 of [16], we would like to define
X j .D/ as the homotopy colimit of a sequence of spectra of finite link diagrams that
stabilizes as the twisting in the diagram goes to infinity. To do this we focus on a single
projector at a time. Towards that end, we combine Lemmas 2.1 and 3.3 to establish the
following two sequences.

Proposition 3.7 Fix n 2N and j 2Z. Let Z be an arbitrary .n; n/–tangle. Then the
maps of Lemma 2.1 provide the following two sequences (one for right-handed twists,
one for left-handed twists):

X jCNZ .hT 0
n ;Z i/ ,!†�X jCNZC� .hT 1

n ;Z i/ ,! � � �(8)

,!†k�X jCNZCk� .hT k
n ;Z i/ ,! � � � ;
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X jCNZ .hT 0
n ;Z i/� � � �(9)

�†k.��n.n�1//X jCNZCk�Ckn.n�1/.hT �k
n ;Z i/� � � � ;

where the symbols �, � , and NZ are as defined in Definition 3.1.

Proof To build the right-handed sequence (8), we “start” with the .kC1/st term and
resolve crossings within one of the full twists one at a time until we reach the k th term.
Specifically, we consider the diagram hT kC1

n ;Z i D hT k
n ;T

1
n �Z i, where we use the

product notation to indicate concatenation (see Figure 4). We number the crossings of
the T 1

n sitting above Z starting from the “topmost” such crossing. Then each inclusion
in (8) will be defined as the composition of n.n� 1/ inclusions coming from (4) by
resolving these numbered crossings as 0–resolutions in this order (note that the all-zero
resolution of T 1

n is precisely In ).

We now introduce some notation similar to the notation in Section 3 of [16]. Let
D0 WD T 1

n �Z . Then for each i D 1; 2; : : : ; n.n � 1/, let Di denote the diagram
obtained from Di�1 by resolving the i th crossing with a 0–resolution, and let Ei

denote the diagram obtained from Di�1 (not from Ei�1 ; this will change for the
left-handed sequence) by resolving the i th crossing with a 1–resolution. Thus Di will
have all crossings up to the i th resolved as 0–resolutions, while Ei will have all
crossings up to the .i�1/st resolved as 0–resolutions, but the i th as a 1–resolution.
This arrangement allows us to see, at each step i , the cofibration sequence (ignoring
the homological shifts)

(10) X jCNDi
Ck�Di .hT k

n ;Dii/ ,! X jCNDi�1
Ck�Di�1 .hT k

n ;Di�1i/

� X jCNEi
Ck�Ei

�1.hT k
n ;Eii/:

For further clarification, see Figure 4. Notice the subscripts on the � terms: the
orientations (and thus positive/negative crossing information) of the strands within T k

n

may change when resolving crossings (see Remark 3.2). However, we also know from
Lemma 3.3 that all of the �� terms and N� terms are independent of k . The final term
Dn.n�1/ is precisely Z , so Lemma 3.3 allows the � and NZ terms to be preserved as
indicated in the sequence (8). The suspensions giving the homological shifts are clear:
we are counting the number of negative crossings introduced in a new twist.

The left-handed sequence (9) is built using compositions of the surjections of the
cofibration sequence (4), since the left-handed twist T �1

n needs an all-one resolution to
give the identity braid In . For this reason, the roles of the Di and Ei are swapped, and
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Z

T k
n

.  .  .

.  .  .

. . .. . .

. .
 .

. . .

. . .

Z

.  .  .

. . .

T k
n

.  .  .

. . .

. .
 .

. . .

. . .

D0

n(n−i)

n −1
n

1
2

Z

.  .  .

. . .

T k
n

.  .  .

. . .

. .
 .

. . .

. . .

D1

T      , Z ==

=

〉 〉k +1
n T   ,  (D         ∙ Z )〉 〉k

n T1
n0

=T   ,  (D             Z )〉 〉k
n n (n − 1)

T   , D〉 〉k
n 1

Z

.  .  .

. . .

T k
n

.  .  .

. . .

. .
 .

. . .

. . .

E1

T   , E〉 〉k
n 1

T   , E〉 〉k
n 2T   , D〉 〉k

n 2

.  
.  

. 

Figure 4: Building a single map in the sequence (8) as a composition of
inclusions coming from resolving crossings as in Lemma 2.1. The numbering
on the crossings in the diagram hT k

n ;D0i indicates the order in which we
resolve crossings. D1 and E1 are illustrated as well, with the first crossing
resolved. Note that E2 is obtained from D1 , not from E1 . Thus any Ei will
have precisely one cup/cap.

their definitions change slightly. To prevent confusion, we use new names Fi and Gi

and define G0 WD T �1
n �Z , and let Gi denote the diagram obtained from Gi�1 by

resolving the i th crossing with a 1–resolution, and let Fi denote the diagram obtained
from Gi�1 by resolving the i th crossing with a 0–resolution. Pictorially the Gi match
the Di from above, and the Fi match the Ei , but in the cofibration sequences we see,
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again ignoring homological shifts,

(11) X jC.kC1/n.n�1/�.i�1/CNFi
Ck�Fi .hT �k

n ;Fii/

,! X jC.kC1/n.n�1/�.i�1/CNGi�1
Ck�Gi�1 .hT �k

n ;Gi�1i/

� X jC.kC1/n.n�1/�iCNGi
Ck�Gi .hT �k

n ;Gii/:

Notice the extra shifts of i � 1 and i , which occur because we have been “losing” 1–
resolutions along the way. We can see that, once iDn.n�1/, we arrive at jCkn.n�1/

together with the normalization terms, as desired for hT �k
n ;Z i in sequence (9). We

use Lemma 3.3 in the same way to guarantee that the NZ and � terms don’t change,
and we also see the extra homological shift due to losing 1–resolutions as we go.

Proposition 3.8 Fix j 2 Z and n � 2 in N . Then for any .n; n/–tangle Z , both
sequences (8) and (9) stabilize. That is, there exist bounds bC and b� such that the
maps in (8) are all stable homotopy equivalences for k � bC , and similarly for k � b�

for the maps in (9). Furthermore, bC depends only on j and the all-zero resolution
of Z , while b� depends on j , the number of crossings in Z , and the all-one resolution
of Z .

Proof We will prove the stabilization of the two sequences separately to highlight the
slight differences between the two. The notations Di , Ei , Fi and Gi introduced in
the previous proof will be used throughout. Both cases will be similar to the arguments
in [16].

Focusing first on the right-handed case, we consider the cofibration sequences (10). By
Lemma 2.1, as long as all the Khovanov chain complexes KCjCNEi

Ck�Ei
�1.hT k

n ;Eii/

are acyclic, the inclusions in Equation (10) will be stable homotopy equivalences for
all i D 1,: : : ; n.n� 1/, allowing us to conclude that their composition (which is the
map in the sequence (8)) is as well. Let minq. � / be the minimal q–degree of nonzero
Khovanov homology for a link diagram. Our goal now is to find a bound bC so that,
for all i D 1; : : : ; n.n� 1/,

(12) j CNEi
C k�Ei

� 1<min
q
.hT k

n ;Eii/ for all k � bC:

Figure 5 illustrates the key point of the proof. The diagram hT k
n ;Eii has a turnback

at the “top” of Ei that can be swung around and “pulled through” the twisting T k
n

and then back around to the bottom of Ei , just as in Lemma 3.5. Let E0i denote the
resulting tangle, so that we have hT k

n ;Eii isotopic to hT k
n�2

;E 0i i. Since Khovanov
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Z Z

T k
n T k

n − 2Ei E'i

...

...

... . . .

. . .

. . .

. . . .  .  .

.  
.  

.

... .    .    .

.     .     .

. . .

. . .

. . . .  .  .

.  
.  

.

T   , E〉 〉k
n i T       , E'〉 〉k

n − 2 i

Figure 5: Pulling the turnback in hT k
n ;Eii through the twists to get

hT k
n�2

;E 0i i . The turnback and its path are indicated in red. Note that none of
the crossings in Ei (including Z ) are affected.

homology is an isotopy invariant, we must have

(13) min
q
.hT k

n ;Eii/Dmin
q
.hT k

n�2;E
0
i i/:

Now just as in the proof of Lemma 3.12 in [16], the minimal q–degree of nonzero
Khovanov homology for a diagram is bounded below by the minimal possible q–
degree in the entire Khovanov chain complex, which occurs in the all-zero resolution
by decorating all of the circles with v� . The all-zero resolution of the crossings coming
from T s give identity braids, and so we have

(14) min
q
.hT k

n�2;E
0
i i/� � # circ.hIn�2;Z

\�
[�;all-zeroi/C k� 0

E 0
i

CNE 0
i
:

Here # circ. � / indicates the number of circles present in the planar diagram, while
� WD i mod .n�1/. The “all-zero” subscript indicates that all of the crossings in Z\�[�
have been resolved into zero-resolutions. The � 0 term and the N term are the nC�2n�

normalization terms as usual. The � 0 indicates that we are counting positive and negative
crossings from Tn�2 as opposed to � that was counting such crossings in Tn (see the
notation used in Lemma 3.5).

Since we performed an isotopy to get from Ei to E 0i , the orientations of the strands
did not change. Furthermore, no crossings were added to or removed from Ei . Thus
NEi
DNE 0

i
, and � 0E 0

i
can be viewed as � 0Ei

. We then use (6) from Lemma 3.5 to deduce

(15) min
q
.hT k

n�2;E
0
i i/� � # circ.hIn�2;Z

\�
[�;all-zeroi/C k.�Ei

C 2n/CNEi
:
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Combining (12), (13) and (15) gives us the following new goal for our bound bC :

(16) j CNEi
C k�Ei

� 1< � # circ.hIn�2;Z
\�
[�;all-zeroi/C k.�Ei

C 2n/CNEi

for all k � bC . This is clearly satisfied for all i by choosing

(17) bC WD max
�D1;:::;n�1

j C # circ.hIn�2;Z
\�
[�;all-zeroi/

2n
:

We see clearly from the definition of bC that it depends only on j and the all-zero
resolution of Z , as claimed. The final homological shift is clear.

We now turn to the left-handed sequence (9). The strategy is very similar so we will be
brief. This time we consider the cofibration sequence (11), where our goal is to bound k

to ensure that all of the KCj�.i�1/CNFi
Ck�Fi .hT �k

n ;Fii/ are acyclic, ensuring that
the surjections give stable homotopy equivalences.

Since the Fi pictorially match the Ei from before, we can still use Lemma 3.5 in
the same way to arrive at hT �k

n�2
;F 0i i with corresponding � 0 . Now comes the main

difference between the left- and right-handed sequences. For the right-handed twist,
the all-zero resolution of T k

n�2
is just In ; in particular, it is independent of k . Taking

0–resolutions motivates bounding based on the minimal q–degree. But for the left-
handed twist, it is the all-one resolution of T �k

n that is just In . Taking 1–resolutions
motivates bounding based on the maximal q–degree. So we define maxq. � / to be
the maximal q–degree of nonzero Khovanov homology for a given diagram, which
is bounded above by the maximal q–degree for the full Khovanov chain complex.
Following the logic of the right-handed case, we get

max
q
.hT �k

n ;Fii/Dmax
q
.hT �k

n�2;F
0
i i/

� # cros.hT �k
n�2;F

0
i i/C # circ.hIn�2;Z

\�
[�;all-onei/C k.� 0

F 0
i

/CNFi

D .k.n� 2/.n� 3/C .n.n� 1/� i/C # cros.Z //
C # circ.hIn�2;Z

\�
[�;all-onei/C k.�Fi

C 2n� 6/CNFi

D k.n2
� 3nC �Fi

/C .n.n� 1/� i/C # cros.Z /
C # circ.hIn�2;Z

\�
[�;all-onei/CNFi

:

The # cros. � / denotes the total number of crossings. This term appears because the
q–degree counts the number of 1–resolutions taken (which will be all of the crossings).
The third line breaks this term into several self-explanatory pieces; the n.n� 1/� i

term handles the crossings “above” the Z (see Figure 5). Meanwhile, the changing
of � 0 to �C2n�6 in the third line follows from the left-handed version of Lemma 3.5.
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From the cofibration (11) above, we see that our goal for the left-handed twists is to
ensure that, for all i D 1; : : : ; n.n� 1/ and for all k � b� ,

j C.kC1/n.n�1/�.i�1/CNFi
Ck�Fi

> k.n2
�3nC�Fi

/C.n.n�1/� i/

C# cros.Z /C# circ.hIn�2;Z
\�
[�;all-onei/CNFi

:

This is clearly achieved by setting

(18) b� WD max
�D1;:::;n�1

�j C # cros.Z /C # circ.hIn�2;Z
\�
[�;all-onei/

2n
;

which clearly depends only on j , the number of crossings in Z , and the all-one
resolution of Z as desired.

Remark 3.9 Notice the similarity between the bounds bC and b� . In both cases, the
bound involves ˙j=2n plus a constant term (independent of j ). Thus all of the careful
tracking of normalization shifts “cancel out” in precisely the same way regardless of
using right- or left-handed twists. The sign change of j versus �j also makes sense
when we recall that the graded Euler characteristic of these spaces is meant to give
a power series expansion of the corresponding rational functions coming from the
Jones–Wenzl projectors, in q for right-handed twists (so using positive j terms) and in
q�1 for left-handed twists (so using negative j terms). With this in mind, the only real
difference between bC and b� comes from the use of the all-zero resolution of D versus
the all-one resolution, and the need to count crossings away from the left-handed twists.

We are now ready to prove Theorem 1.4. Let D denote a diagram obtained from a link
diagram by formally replacing a finite number of identity braids Ini

with Jones–Wenzl
projectors Pni

. Let m 2 N denote the total number of projectors in D . For any
.k1; : : : ; km/ 2 .N [ 0/m , let D˙.k1; : : : ; km/ denote the diagram D with each Pni

replaced by T
˙ki
ni

. Note that it is very important that the diagrams have either all
right-handed twists, or all left-handed twists. We do not allow any mixing of the two.

We focus on the right-handed case first. Fixing j 2 Z, we consider the infinite m–
dimensional cube of maps built as follows. The vertices of the cube correspond to
.k1; : : : ; km/ 2 .N [ 0/m . At each such vertex we place the space

(19) X jCND

C .k1; : : : ; km/ WD†
Pm

iD1 ki�iX jCNDC
Pm

iD1 ki�i .D.k1; : : : ; km//:

Here, the subscripts on the normalization shifts � and � indicate which Tni
is being

referred to (see Definition 3.1 and Remark 3.2). Meanwhile, the ND is referring to the
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normalization shift nC�2n� for all crossings totally separate from any of the inserted
twists (ie crossings present in the original diagram D , discounting the Jones–Wenzl
projectors). Now between any two adjacent vertices of .N [ 0/m , we see all of the ki

remain constant except one of them, say ky{ , which differs by one between the two
vertices. To this edge we assign the map

(20) X jCND

C .k1; : : : ; ky{ ; : : : ; km/ ,! X jCND

C .k1; : : : ; ky{ C 1; : : : ; km/

induced by Lemma 2.1 as in Proposition 3.7.

Definition 3.10 Given a diagram D involving Jones–Wenzl projectors, define the
(right-handed) Khovanov spectrum of D to be the wedge sum

XC.D/ WD
_

j2Z

X jCND

C .D/;

where for each q–degree jCND , the spectrum X jCND

C .D/ is defined to be the
homotopy colimit of the cube of maps described by Equations (19) and (20).

Proof of Theorem 1.4 (right-handed case) We wish to show that the cube of maps
defining X jCND

C .D/ “stabilizes” in a particular sense. To do this we isolate a single
projector Pny{ and fix all of the ki¤y{ . This allows us to view the maps (20) as (ignoring
homological shifts)

(21) X jCky{�y{CNDC
P

i¤y{ ki�i .hT
ky{
ny{ ;Z i/

,! X jC.ky{C1/�y{CNDC
P

i¤y{ ki�i .hT
ky{C1
ny{ ;Z i/;

where the tangle Z includes all of the other T
ki
ni

. Having fixed j , these maps are
all stable homotopy equivalences for ky{ > bC

y{
, for some bound bC

y{
that depends only

on the all-zero resolution of Z . Since the all-zero resolution of any T
ki
ni

is just Ini

regardless of ki , this bound bC
y{

is independent of the other ki (this is the point that
requires that we do not mix right- and left-handed twists in our construction). Thus
we can find the various bounds bCi one projector at a time, effectively ignoring the
rest. Since there are only finitely many projectors, we can find a global bound bC

which works for all of the ki at once and declare that the cube is stable for all
ki > bC . This also allows us to use simpler notation: let D.k/ WD D.k; : : : ; k/,
and similarly X jCND

C .k/ D X jCND

C .k; : : : ; k/. Our proof then shows that, for any
fixed j 2Z , the “diagonal sequence” X jCN.D/

C .k/ stabilizes as k!1, and so the
hocolim X jCND

C .D/' X jCND

C .k/ for some large enough k depending on j . Since
the chain complexes of the twists are known to stabilize to the categorified Jones–Wenzl
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projectors, the wedge sum XC.D/D
W

j2Z X jCND

C .D/ satisfies the requirements of
Theorem 1.4.

The left-handed twists work in exactly the same fashion, so we only mention the slight
differences. We populate the vertices of the cube by spaces

(22) X jCND
� .k1; : : : ; km/ WD

†
Pm

iD1 ki .�i�ni .ni�1//X jC
Pm

iD1 ki ni .ni�1/CNDC
Pm

iD1 ki�i .D.k1; : : : ; km//

and the edges are maps

(23) X jCN.D/
� .k1; : : : ; ky{ ; : : : ; km/� X jCND

� .k1; : : : ; ky{ C 1; : : : ; km/

induced by Lemma 2.1 once again. Notice the extra grading shift
Pm

iD1 kini.ni � 1/,
which counts the number of crossings available in all of the T

�ki
ni

.

Definition 3.11 Given a diagram D involving Jones–Wenzl projectors, define the
(left-handed) Khovanov spectrum of D as the wedge sum

X�.D/ WD
_

j2Z

X jCND
� .D/;

where for each q–degree jCND , the spectrum X jCND
� .D/ is defined to be the

homotopy colimit of the cube of maps described by Equations (22) and (23).

Proof of Theorem 1.4 (left-handed case) Focusing on one projector (y{ ) at a time as
before, the formula (18) for b�

y{
does appear to depend on the other ki since the term

# cros.Z / will count crossings in the other twists. However, this count is canceled out
precisely by the extra grading shift

Pm
iD1 kini.ni � 1/, and the bounds b�i are again

mutually independent allowing the same argument as for the right-handed case to go
through. The details here are left to the reader.

Thus we have two equally eligible candidates, XC.D/ and X�.D/, for a spectrum
that satisfies the requirements of Theorem 1.4, depending on whether we want to view
the Euler characteristic as a power series representation of the corresponding rational
function in qC1 or q�1 . In either case, the wedge summand in a specific q–degree can
be computed using a finite-twist approximation D.k/, where the amount of twisting k

needed depends both on the diagram D and on the q–degree being considered.
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Remark 3.12 The independence of the various ki used in the proofs above has been
used to take the homotopy colimit “diagonally”, simplifying the notation by tracking
only a single value of k . However, this independence can also be viewed as allowing us
to take the colimit one projector at a time, in any order we like. This is already implicit
in the diagonal version in the passage from D.k/ to D.kC1/, where it does not matter
in what order we treat all of the projectors going from their individual k –twists to their
individual .kC1/–twists.

3.3 Properties of X .D/

Before going on to establish the connection to spin networks and colored links, we state
and prove some properties for XC.D/ for diagrams D with Jones–Wenzl projectors as
above. The propositions in this section will be stated and proved for right-handed twists
only; the left-handed versions for X�.D/ are proved analogously, using alterations
similar to those discussed in the previous section. As such, we drop the C notation for
the time being.

Our first property is perhaps the most fundamental one. Recall that the first axiom used
to characterize both the Jones–Wenzl projectors and their categorifications is that they
are “killed by turnbacks”. The following proposition gives the analogous statement for
our spectra X .D/.

Proposition 3.13 For any diagram D involving at least one Jones–Wenzl projector
that is capped by at least one turnback, X .D/' �.

Proof Theorem 1.4 ensures that the cohomology of X .D/ matches the homology
defined using the categorified Jones–Wenzl projectors, which is known to vanish for
such D (see Theorem 2.2). As noted in Remark 1.6, X .D/ has the stable homotopy
type of the suspension spectrum of a CW complex up to some finite formal desuspension,
and thus Whitehead’s theorem implies that the trivial cohomology of X .D/ forces it
to be contractible.

The next proposition ensures that crossings in a diagram involving projectors still give
rise to cofibration sequences in the same sense as Equation (4), leading to a version of
Lemma 2.1 for our spectra X .D/.
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Proposition 3.14 Let D be a diagram involving a finite number of Jones–Wenzl
projectors, and consider a specified crossing in D . Let D0 and D00 be the correspond-
ing diagrams where the crossing is replaced with its 1–resolution and 0–resolution
respectively. Then we have the cofibration sequence of spectra

(24) †aX jCND00 .D00/ ,! X jCND .D/�†bX j�1CND0 .D0/;

where the shifts are precisely the same as those indicated with Equation (4). In particular,
if either of †aX jCND00 .D00/ or †bX j�1CND0 .D0/ is contractible, then the other is
stably homotopy equivalent to X jCN.D/.D/.

Proof In short, the sequence (24) is built by applying (4) to a suitably large finite-twist
approximation X .D.k// for X .D/. The homological and q–degree shifts coming
from (4) are based on counting positive and negative crossings in the honest link
diagram D.k/. The crossings away from the twists account for the shifts in (24),
while the crossings within the twisting contribute only to renormalizing the diagonal
sequences used for D0 and D00 . The final statement is then clear (see Lemma 2.1).

In more detail, we consider the term †
Pm

iD1 k�iX jCNDC
Pm

iD1 k�i .D.k// in the diago-
nal sequence used to build X jCND .D/ (continuing to use the notation of earlier in this
section). Resolving the specified crossing in the diagram D.k/ results in the diagrams
D0.k/ and D00.k/ which would be used to approximate X .D0/ and X .D00/. The key
point to notice is that for the honest link diagram D.k/, the shift ND C

Pm
iD1 k�i is

the same as ND.k/ , and similarly for D0.k/ and D00.k/. Thus we can use Equation (4)
to build a cofibration sequence

†A†
P

k�iX jCND00.k/.D00.k// ,!†
P

k�iX jCND.k/X .D.k//

�†B†
P

k�iX j�1CND0.k/.D0.k//:

The homological shifts A and B are differences in total counts of negative crossings.
Since a and b account for these differences away from the twisting, the reader can
easily verify that AD aC

P
k.�00i � �i/ and B D bC

P
k.�0i � �i/. Putting these in

place we see the sequence

†a†
P

k�00
i X jCND00.k/.D00.k// ,!†

P
k�iX jCND.k/X .D.k//

�†b†
P

k�0
iX j�1CND0.k/.D0.k//:

Since all of these spectra stabilize as k!1, we can take k large enough so that each
term in this sequence is stably homotopy equivalent to the corresponding spectrum
in (24).
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Corollary 3.15 For any diagram D involving an n–strand Jones–Wenzl projector Pn

concatenated with a braid ˇ on those n strands,

X jCND .D/'†aCˇ�X jCNDnˇ�ˇ
�

.D nˇ/;

where D nˇ is used to denote the diagram created by replacing ˇ with In , the identity
braid on those same n strands (this replacement is referred to as straightening the
braid ˇ ), and ˇ� is the number of crossings of the form in ˇ viewed vertically
(ie the number of crossings that require 1–resolutions to transform ˇ into In ). The
homological shift a is the difference between the number of negative crossings in the
two diagrams, as in Lemma 2.1.

Proof Let Pn1
be the projector with ˇ concatenated. Since any braid ˇ is a product of

elementary generators �˙1
� in the braid group Bn1

(so �2 f1; : : : ; n1�1g), it is enough
to prove the statement for such generators (ie for a single crossing above the Pn1

).
For each j 2 Z, Proposition 3.14 allows us to build a cofibration sequence (24) using
this crossing. One of the two resolutions will lead to a diagram involving a turnback
above Pn1

, forcing the corresponding spectrum to be contractible via Proposition 3.13.
Thus the other resolution, corresponding to “straightening” the crossing �˙1

� , will give
a spectrum stably homotopy equivalent to the original. The �ˇ� shift comes from
the �1 term for the 1–resolution in (24) needed to “straighten” any ��1

� in ˇ . The
homological shift is determined similarly.

The next corollary can be viewed as lifting the idempotency of the Jones–Wenzl
projectors and their categorifications to the realm of spectra.

Corollary 3.16 Let D be a diagram involving two concatenated projectors of possibly
different sizes, say Pn1

�Pn2
with n1� n2 (see Figure 6 for clarification on this notion).

Let D0 be obtained from D by replacing the smaller projector Pn1
with an identity

braid In1
. Then X .D/' X .D0/.

Proof We fix j 2Z and replace D by D.k/ for k>bC as in the proof of Theorem 1.4.
Here we make stronger use of the independence of the various ki to fix k1 > bC

1
,

while still allowing the other ki to limit towards infinity together. In symbols, we are
considering X jCN.D/Ck1�1Ck

Pm
iD2 �i .D.k1; k; : : : ; k//. Having fixed k1 in this way,

we can view the T
k1
n1

as a braid that is allowed to be straightened as in Corollary 3.15.
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Pn2

Pn1

.  .  .

Figure 6: An example of two concatenated projectors Pn1
�Pn2

with n1�n2 ,
for which Corollary 3.16 allows us to absorb Pn1

into Pn2
on the level of

the spectra.

When doing this, the grading shift effectively removes the k1�1 , and there is no
�ˇ� term because all of the crossings are of the form . This leaves us with precisely

X jCN.D/Ck1�1Ck
Pm

iD2 �i .D.k1; k; : : : ; k//' X jCN.D/Ck
Pm

iD2 �i .D0.k//;

and since the T
k1
n1

contributed only full twists to the diagram, the strand orientations
before and after the straightening can be the same so that N.D/DN.D0/. Thus we
are left with X jCN.D0/Ck

Pm
iD2 �i .D0.k//, which is precisely the sequence needed to

build X .D0/. Any homological shifts that are needed along the way cancel precisely;
we leave these details to the reader.

4 Applications to quantum spin networks and colored links

The aim of this section is to provide the necessary background in order to view
Theorem 1.1 and Theorem 1.3 as corollaries of Theorem 1.4, and then to prove them
accordingly. In short, the “proof” for both statements is that categorified quantum
invariants of spin networks and colored links are defined using diagrams involving
Jones–Wenzl projectors, for which Theorem 1.4 supplies a well-defined Khovanov
spectrum. In the case of colored links, the proof of invariance requires only a few more
remarks related to Reidemeister moves and framing. The reader who is already familiar
with these subjects can safely skim this section, although the notation used for colored
links will be used again in the following sections related to tails. We also state and
prove a property about the colored Khovanov spectrum of a 1–colored unknot linking
as simply as possible with another colored link related to some discussions in [3].

Algebraic & Geometric Topology, Volume 18 (2018)



A colored Khovanov spectrum and its tail for B–adequate links 1435

4.1 Quantum spin networks

A (closed) quantum spin network (the notion dates back to Roger Penrose in [11])
consists of a trivalent graph where each edge has been labeled with a natural number.
The labels are not entirely independent: for each vertex where three edges labeled
n1; n2; n3 meet, we must have

(25) ni � nj C nk for all fi; j ; kg D f1; 2; 3g; n1C n2C n3� 0 mod 2:

From such a spin network G , a q–deformed quantum invariant can be defined as
follows (see Chapter 4 in [4]). First we replace each n–labeled edge by a cable of
n parallel strands together with a copy of the Jones–Wenzl projector Pn . Then we
replace each vertex having edge labels n1 , n2 , n3 with a “balanced splitting” of the
cables as in Figure 7. Call the resulting diagram D.G/. The final step is to evaluate
the Jones polynomial of D.G/, using the rational expressions for the Jones–Wenzl
projectors present.

n1 n
2

+1 n −2 n3

n2 n3

n
2

+1 n −3 n2

n
2

+2 n −3 n1

Figure 7: Building the q–deformed invariant of a quantum spin network.
The ni are labels in the original network, and the fractions on the right hand
side tell how many parallel strands to send each direction from the vertex.

In [2], Cooper and Krushkal replace the projectors in D.G/ with their own categorified
projectors, thus defining a categorified spin network. If instead of this we replace the
projectors with Rozansky’s categorifications using infinite twists, we see a diagram of
the form covered by Theorem 1.4.

Definition 4.1 Given a quantum spin network G , we define the Khovanov spectrum
of the spin network G to be X .G/ WD X .D.G// as defined in Theorem 1.4 for the
diagram D.G/.

Proof of Theorem 1.3 X .G/ as defined using Theorem 1.4 is clearly well-defined
with regards to isotopies of the graph of G , which induce isotopies of D.G/. There is
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also a “twist” move at a vertex, shown in Figure 8. This move is accomplished by a
framing twist on the strand labeled n1 , which would result in a shift of q–degree for
the spectrum (a framing twist creates a torus braid on the relevant cable, which can be
straightened at the cost of such a shift using Corollary 3.15). This corresponds to the
shift described in Section 4.2 of [4].

n1

n2 n3

n1

n2 n3

Figure 8: A twist move on a spin network coming from a framing twist on
the strand labeled n1

4.2 Colored links

Let L be a framed, oriented link in S3 with ` components. A coloring of L refers
to assigning an irreducible sl2.C/ representation to each component of L. Such
representations are characterized by their dimension, allowing us to simply consider
colorings as assignments of nonnegative integers to each link component (following [12],
a coloring of n will indicate the .nC1/–dimensional irreducible representation assigned
to a link component). That is, for each hD 1; : : : ; `, we color the hth component of L

with a natural number nh . Call such a coloring 
 .

Definition 4.2 A colored link L
 is a framed, oriented link L in S3 together with
its coloring 
 . The colored diagram DL
 of a colored link L
 is obtained by taking
a blackboard framed link diagram representing L, cabling each component with its
designated nh number of strands (using the blackboard framing), and inserting a copy
of the nth

h
Jones–Wenzl projector Pnh

into each such cabled component. See Figure 9.

Remark 4.3 Note that it is always possible to represent a framed link L by a link
diagram where each component is given the blackboard framing. This is accomplished
by representing the unframed link L via any suitable projection to the plane as usual,
and then adding positive or negative kinks (Reidemeister I moves) to the diagram,
which adjust the framing of the link as necessary.
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Pn1
Pn2

n1 n2

Figure 9: On the left is an example L
 , with components colored n1 and n2 ;
on the right is the colored diagram DL
 used for calculating the colored
Jones polynomial.

Given a colored link L
 with colored diagram DL
 , the colored Jones polynomial
of L
 is calculated by taking the usual Jones polynomial of the diagram DL
 . Using
categorified Jones–Wenzl projectors as in [12] or [2], we can build a colored chain
complex for L
 in the same way, whose homology groups are referred to as the
colored Khovanov homology of L
 (see [2] and [13]). Using Rozansky’s version of
the categorified projectors allows us to prove Theorem 1.1.

Definition 4.4 Given a colored link L
 , we define the colored Khovanov spectrum
of L
 to be Xc.L
 / WD X .DL
 / as defined by Theorem 1.4 for the diagram DL
 .

Proof of Theorem 1.1 As indicated above, the colored Khovanov homology groups
for a colored link L
 are defined by a link diagram DL
 involving Jones–Wenzl
projectors. Therefore Theorem 1.4 gives the existence of a colored Khovanov spectrum
that properly recovers the colored homology. There is a choice of where to place the
projector on each cabled component when creating DL
 . The invariance of Xc with
respect to such a choice is proved one q–degree at a time. Since each X j

c .L
 / is
equivalent to X j .DL
 .k// for some large enough k , and DL
 .k/ is just an honest
link diagram with T k

nh
in place of the Pnh

, we see that these twists T k
nh

can be slid
up and down along the cablings, including above or below other cablings, as desired.
Similarly, invariance under Reidemeister moves II and III is proved by considering the
finite approximation for each j , where such moves give clear isotopies of honest link
diagrams. Meanwhile, Reidemeister I moves give framing shifts as expected, since
undoing a kink corresponds to adding a full twist on a cable.

We end this short section with a quick property of the colored Khovanov spectra inspired
by the discussion in Section 3.8 of [3], which illustrates the use of Proposition 3.14
and Corollary 3.15 in dealing with the colored spectra.
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Definition 4.5 Let L
 denote a colored link with ` components, and let ˛h denote
the component of L
 colored with nh . Define L

o.h/

 to be the colored link obtained

from L
 by introducing a new unknotted, 1–colored component ˛`C1 that links
positively once around the component ˛h as in Figure 10.

n

1

h

Figure 10: The new unknotted, 1–colored component ˛`C1 linking positively
once around the component ˛h (colored with nh ), forming L

o.h/

 .

Proposition 4.6 For any colored link L
 with ` components as above, the colored
spectra of L
 and L

o.h/

 for any h2f1; : : : ; `g fit in the following cofibration sequence:

(26) X jC1�2nh
c .L
 / ,! X j

c .L
o.h/

 /�†2nhX j�1�4nh

c .L
 /:

Proof We focus on X j
c .L

o.h/

 /, built via the diagram DL

o.h/



. In this diagram we slide
the specified Pnh

along the cabling to be drawn directly below the “new” unknot ˛`C1 ,
which is colored by 1 so that we need no cabling for this component (note that P1 is
just the identity strand). We then construct the cofibration sequence of Proposition 3.14
by resolving the “upper-left” crossing (see Figure 11).

As illustrated in Figure 11, we denote the resulting diagrams D0 and D1 for the
0–resolution and 1–resolution respectively. The 0–resolution is also the oriented one,
and so the resulting shift in q–degree is only �1 for the loss of a positive crossing.
The 1–resolution allows for an orientation as shown in the diagram, where all of the
previously positive crossings (there were originally 2nh of them, but one was resolved)
become negative. Thus we have a q–degree shift of �1 for the loss of the resolved
positive crossing, �1 for the loss of a 1–resolution, and �3.2nh� 1/ for the positive
crossings becoming negative (�1 each for losing a positive crossing, and �2 each for
adding a negative crossing). We also have a homological shift of �2nh given the loss
of a 1–resolution and the addition of 2nh � 1 negative crossings, which is offset by
the 2nh suspension. The diagrams also make it clear that crossings away from this
area retain their sign, so that these shifts are the only shifts present and we see

(27) X j�1.D0/ ,! X j .DL
o.h/


/�†2nhX jC1�6nh.D1/:
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...

...

DL

Pnh

o (h)
γ

...

...

D

≅ ≅
0

Pnh

...

...

D'0

Pnh

...

...

D'1

D1

Pnh

...

...

Pnh

Figure 11: Resolving the upper-left crossing in DL
o.h/



to create a cofibration
sequence. The resulting diagrams D0 and D1 are isotopic to D00 and D01 ,
which allow the use of Corollary 3.15.

At this point, we first use an isotopy (Reidemeister moves) to rearrange D0 and D1

into D0
0

and D0
1

respectively (also shown in the diagram). The D0
0

and D0
1

are then
diagrams with braids above the Pnh

. The shifts in (26) are obtained from those in (27)
by straightening these braids (all positive crossings for D0

0
, and all negative for D0

1
)

as in Corollary 3.15.

Remark 4.7 There are similar cofibration sequences for a .�1/–linking unknot
(ie switching the orientation of the unknot ˛`C1 in Figures 10 and 11). The details of
the resulting degree shifts are left to the reader.

5 Finding a tail for the colored Khovanov homotopy type of
B–adequate links

5.1 Discussion and strategy

This section is dedicated to proving Theorem 1.7. Before investigating the details of the
proof, we outline the general strategy and logic, expanding on the summary given in the
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introduction. The goal is to adapt Rozansky’s proof in [13] of the fact that the colored
Khovanov homology groups of B–adequate links stabilize as the color goes to infinity.
The proof in that paper builds maps fn that give isomorphisms of colored homology
groups between the n–colored and .nC1/–colored link L, but only within a certain
homological range. In order to prove Theorem 1.7 then, it is enough to show that:

� The maps fn in [13] are induced by maps Fn between colored spectra, at least
within the homological range of isomorphism.

� If n is large enough, the homological range of isomorphism guaranteed by
Rozansky is enough to cover all nonzero homology of the corresponding colored
spectra (and thus the Fn induce isomorphisms on all homology, and so give
stable homotopy equivalences by Whitehead’s theorem).

Neither of these statements is difficult to prove conceptually, but the notation involved
becomes somewhat cumbersome. The reason is that, on the one hand, the colored
spectrum is a homotopy colimit, and in order to build maps we resort to finite approxi-
mations (ie the corresponding diagram with high twisting of the cables). This requires
q–degree shifts depending on k . On the other hand, the maps fn built by Rozansky
are compositions of a large number of simpler maps, many of which themselves shift
the q–degree, which will lead to separate q–degree shifts depending on n. In addition,
the maps were built with the use of the categorified Jones–Wenzl projectors rather than
finite-twist approximations of them. Thus some care will be needed.

Throughout this section, following [13], all of the twisting will be left-handed (ie using
X�.D/ from the proof of Theorem 1.4). We recall here that, in addition to shifts
of the form k� for the normalization shift nC�2n� , the left-handed sequence also
requires shifts of the form kn.n�1/ for counting the total number of crossings within
the twist, accounting for 1–resolutions needed to move backward in the sequence. See
Equation (9).

5.2 Notation and a restatement of Theorem 1.7

We begin with some notation. Some of this is repeated from previous sections but is
recalled here for convenience. Note that, since the colored Khovanov spectrum of a
link requires a specified framing, B–adequacy will be stated in terms of a blackboard
framed diagram.

� L denotes a framed, oriented link having a blackboard framed diagram which is
B–adequate (the diagram will also be denoted L).
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� � denotes the total number of crossings in the diagram L.

� � denotes the total number of positive crossings in the diagram L (only important
for the homological shift, which will be ignored as often as possible).

� �! denotes the total number of crossings in a minimal B–adequate diagram for L,
ignoring framing (only important for one key bound).

� � denotes the total number of circles present in the all-one resolution of the
diagram L.

� X j
c .Ln/ will denote the colored Khovanov spectrum, in q–degree j , of the link L

with all of its components colored with the natural number n; see Definition 4.4.

� For each .n; k/ 2N2 , denote by L.n; k/ the diagram obtained from L by cabling
all components with n parallel strands, and adding a twist of T �k

n to each cabling
between every crossing. That is, if we replace the diagram L with the graph with
vertices at crossings and edges for strands between them, then each edge would be
assigned a T �k

n (see the beginning of Section 4 in [13]).

� m denotes the total number of twistings T �k
n coming from Jones–Wenzl projectors

in the diagram L.n; k/. This plays a similar role to `, the number of components of
the link L, in the previous section. However, as the previous item suggests, m> ` for
our diagrams since we will be placing many such twistings on each component.

� For any oriented diagram (link or tangle) D , denote by ND the normalization shift
nC� 2n� counting all crossings in D .

The following notation is important enough to warrant its own definition.

Definition 5.1 For a given diagram L as above, the colored q–degree shift is the
integer function s.n; k/ that counts the normalization shift, the number of crossings,
and the number of circles in the all-one resolution of the link L.n; k/. That is, with
notation as above,

(28) s.n; k/ WDNL.n;k/C kmn.n� 1/C n2�C n�:

Remark 5.2 Note that n� is the proper count for the number of circles in the all-one
resolution of L.n; k/, since each T �k

n present will become an In , and the all-one
resolution of a crossing coming from the original diagram gives a cabled version of the
same resolution as in Figure 12.
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1− resolution

all-one
resolution

Figure 12: Illustration of the all-one resolution of a crossing in a cabled diagram

Before moving forward, we use this notation to restate the result of Theorem 1.1.

Theorem 5.3 (Theorem 1.1 restated for unicolored links) For any colored link Ln

with the coloring n on every component, there exists a colored Khovanov spectrum
Xc.Ln/ WD

W
j2Z X jCs.n;0/

c .Ln/, with wedge summands defined to be the homotopy
colimits of the following sequences

(29) X jCs.n;0/.L.n; 0//� � � �� X jCs.n;k/.L.n; k//� � � � ;

which stabilize for large enough k . In particular, for large enough k we have a
finite-twist approximation for X jCs.n;0/

c .Ln/ as

(30) X jCs.n;0/
c .Ln/' X jCs.n;k/.L.n; k//:

Remark 5.4 The term s.n; 0/ is included in the original wedge summand for Xc.Ln/

for convenience moving forward; note that the terms n2� and n� in (28) are independent
of k , and simply persist throughout the sequence (29).

Proof This is essentially the sequence built in the proof of Theorem 1.4 for X�.D/
as applied to Theorem 1.1, except that extra projectors (and thus extra copies of T �k

n )
are present. These extra projectors cause no issues, however, thanks to Corollary 3.16.
In the proof of Theorem 1.4, the shift in the sequence includes a normalization term
�
P

ki�i and a crossing counting term
P

kini.ni � 1/. Here the ki and ni are all
equal, and both terms are then absorbed into the shift s.n; k/. Meanwhile, the left-
handed twisting of a cabling where all strands are oriented the same way (in accordance
with the orientation of L) means that all of the crossings involved are negative. This
ensures that the homological shifts cancel out (we lose negative crossings at the same
rate that we lose 1–resolutions), so no suspensions are necessary.
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We now restate Theorem 1.7 in a more precise fashion.

Theorem 5.5 Fix a framed, oriented B–adequate link with blackboard framed dia-
gram L. With notation as above, for each j 2 Z there exist sequences of maps

(31) X jCs.1;0/
c .L1/�†�3�X jCs.2;0/

c .L2/� � � �†�.n
2�1/�X jCs.n;0/

c .Ln/� � � �

that become stable homotopy equivalences for n> �!� 2j C 1.

This version of Theorem 1.7 is the desired final result. However, as indicated in the pre-
vious section, we actually build the required maps by taking finite-twist approximations
for the various Xc.Ln/. Using (30) we translate Theorem 5.5 into the following:

Theorem 5.6 Fix a framed, oriented B–adequate link with blackboard framed dia-
gram L. With notation as above, for each j 2 Z and for each .n; k/ 2N2 there exists
a map

(32) Fn;k;j W †
�..nC1/2�1/�X jCs.nC1;k/.L.nC 1; k//

�†�.n
2�1/�X jCs.n;k/.L.n; k//

such that, for large enough k , the following properties both hold:

(1) Both the X .L.n; k// and X .L.nC 1; k// terms are stably homotopy equivalent
to their respective colored Khovanov spectra, so that Fn;k;j provides the map
Fn;j below:

(33) †�..nC1/2�1/�X jCs.nC1;0/
c .LnC1/

'†�..nC1/2�1/�X jCs.nC1;k/.L.nC1; k//

�†�.n
2�1/�X jCs.n;k/.L.n; k//

'†�.n
2�1/�X jCs.n;0/

c .Ln/;

which is used to construct the sequence (31).

(2) For n > �! � 2j C 1, the map Fn;k;j (and thus, Fn;j ) is a stable homotopy
equivalence.

Before discussing the proof of this theorem, we provide a table and example to illustrate
the statement of Theorem 5.5. The following lemma and corollary are provided to
avoid useless clutter.
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Lemma 5.7 For any link L, and for any n2N , we have that j D 0 gives the maximal
possible q–degree for nonzero colored spectrum X jCs.n;0/

c .Ln/.

Proof By the finite-twist approximation (30), we have that

X jCs.n;0/
c .Ln/' X jCs.n;k/.L.n; k//

for some large enough k . The link L.n; k/ has Khovanov chain complex generator z

with maximal possible q–degree occurring in the all-one resolution, assigning vC to
all of the circles. Since the all-one resolutions of the left-handed twists give identity
braids, this generator z has q–degree equal to

degq.z/D #.1–resolutions/C .#.vC/� #.v�//C .nC� 2n�/

D #.crossings/C #.circles/CNL.n;k/

D s.n; k/;

which corresponds to j D 0.

Corollary 5.8 For any link L, and for any n 2 N , we have that X jCs.n;0/
c .Ln/ is

trivial for odd j .

Proof We see from the proof of Lemma 5.7 that in any finite approximation for
X jCs.n;0/

c .Ln/, there is a generator in q–degree corresponding to j D 0. The parity
of q–degree is constant throughout the Khovanov chain complex, so we must have
j even.

Remark 5.9 Lemma 5.7 can be regarded as giving an alternative meaning for what
the grading j , and the shift s.n; k/, are describing. We see that s.n; k/ is precisely
the maximum possible q–grading for the Khovanov chain complex of L.n; k/, and
then j is a measure of how far from that maximum we are. This means j � 0, which
correctly corresponds to building a power series in q�1 for the rational terms in the
decategorified setting of the projectors.

We now present the general table of colored spectra for any link L arranged to take
advantage of Theorem 5.5.

With Table 1 in mind, we can reinterpret some of the theorems stated above.

� Theorem 5.3 guarantees that all of the colored Khovanov spectra in Table 1 exist,
and Equation (30) guarantees that any one of them is stably homotopy equivalent to the
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j D 0 j D�2 j D�4 j D�6 : : :

Xc.L1/ X s.1;0/
c .L1/ _ X s.1;0/�2

c .L1/ _ X s.1;0/�4
c .L1/ _ X s.1;0/�6

c .L1/ _ � � �

Xc.L2/ X s.2;0/
c .L2/ _ X s.2;0/�2

c .L2/ _ X s.2;0/�4
c .L2/ _ X s.2;0/�6

c .L2/ _ � � �

Xc.L3/ X s.3;0/
c .L3/ _ X s.3;0/�2

c .L3/ _ X s.3;0/�4
c .L3/ _ X s.3;0/�6

c .L3/ _ � � �
:::

:::
:::

:::
:::

Table 1: The table of unicolored Khovanov spectra for a link L , with the
vertical axis indicating color via subscript on L and the horizontal axis
indicating the suitably normalized q–degree. Stabilization occurs vertically
starting at a color that depends on both j (the column) and L .

spectrum of a finite-twist approximation L.n; k/. Note that there is no single bound
for k that approximates all of the spectra in the table at once, since the bound would
depend on both j and n.

� Theorem 5.5 asserts that there are “vertical” maps connecting all of the terms in any
column of Table 1, and furthermore that these maps are stable homotopy equivalences
for n> �!� 2j C 1. Thus in any given column (fixed j ) we see that the spectra are
all stably equivalent for large enough n. This is the general statement of Theorem 1.7.

� Theorem 5.6 is the stepping stone to proving Theorem 5.5. It asserts the existence of
the vertical maps after replacing each entry in Table 1 by its corresponding finite-twist
approximation as guaranteed by Equation (30). Since we build the maps one at a
time, we can focus on two adjacent entries in one column of the table (fix j and focus
on n and nC1 for some n) and take k to be larger than both stability bounds for
these two entries. Then this vertical map composes with the finite-twist approximation
equivalences as in Equation (33) to give the maps asserted by Theorem 5.5.

To illustrate the stabilization as n!1, we build the table for L being the simplest
nontrivial link, that is, the positive Hopf link.

Example 5.10 Let L be the positive Hopf link. The reader can quickly verify that

�D �!
D 2; � D 2; NL D 2;

s.n; 0/DNL.n;0/C 0C n2�C n� D n2NLC n2�C n� D 4n2
C 2n;

which means that the bound n> �!� 2j C 1 for stabilization becomes

n> 3� 2j:

Thus we have Table 2 for the Hopf link.
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j D 0 j D�2 j D�4 j D�6 : : :

Xc.L1/ X 6
c .L1/ _ X 4

c .L1/ _ X 2
c .L1/ _ X 0

c .L1/

Xc.L2/ X 20
c .L2/ _ X 18

c .L2/ _ X 16
c .L2/ _ X 14

c .L2/ _ � � �

Xc.L3/ X 42
c .L3/ _ X 40

c .L3/ _ X 38
c .L3/ _ X 36

c .L3/ _ � � �

Xc.L4/ X 72
c .L4/ _ X 70

c .L4/ _ X 68
c .L4/ _ X 66

c .L4/ _ � � �

'

Xc.L5/ X 110
c .L5/ _ X 108

c .L5/ _ X 106
c .L5/ _ X 104

c .L5/ _ � � �

'

Xc.L6/ X 156
c .L6/ _ X 154

c .L6/ _ X 152
c .L6/ _ X 150

c .L6/ _ � � �

'

Xc.L7/ X 210
c .L7/ _ X 208

c .L7/ _ X 206
c .L7/ _ X 204

c .L7/ _ � � �

'

Xc.L8/ X 272
c .L8/ _ X 270

c .L8/ _ X 268
c .L8/ _ X 266

c .L8/ _ � � �

' '

:::
:::

:::
:::

:::

Table 2: The table of unicolored Khovanov spectra for the positive Hopf
link L . The vertical stable homotopy equivalences begin when n> 3� 2j ,
illustrated in the first two columns.

Notice that in the second column of Table 2, stabilization begins after nD 8 (that is,
n> 3� 2.�2/D 7). Also, note the absence of horizontal dots in the first row. When
n D 1, the colored Khovanov homology (and spectrum) is just the usual Khovanov
homology (and spectrum), which we know only exists in these four q–degrees for the
positive Hopf link L.

5.3 The proof

As mentioned in the discussion on strategy above, the maps Fn;k;j will be lifts of the
maps fn defined in Theorem 2.12 of [13]. In that paper, Rozansky considers these as
grading-preserving maps between “shifted colored Khovanov homology groups”,

(34) fnW
zH iR;jR .Ln/! zH iR;jR .LnC1/;

where we have used iR and jR to denote Rozansky’s grading conventions. The
existence of these maps is asserted by [13], and the fact that they are isomorphisms so
long as iR � n� 1.
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Here, we first provide the translation between Rozansky’s grading conventions and our
own. The reader can verify from [13] that

iR D # cros� # 1–resolutionsD # 0–resolutions;(35)

jR D� .#.vC/� #.v�//C n�;(36)

where the # cros term refers to the total number of crossings in the diagram DLn
(see

Figure 9 in Section 4). From this and Equations (1) and (2) we see that

i D�iRC nC;(37)

j D .�iR � jR/C .n
C
� 2n�/C # crosC n�;(38)

where the nC and n� are counting positive and negative crossings in the diagram DLn
.

Although some further simplifications are possible, this format most clearly matches
the format seen in the sequence (31) of Theorem 5.5 involving the s.n; k/ shift.

Now these colored homology groups use the diagrams DLn
containing the categorified

Jones–Wenzl projectors. In [12] these categorified projectors are defined as stable limits
of complexes using T �k

n in place of the projectors, as in the proof of Theorem 1.1.
This means that for large enough k the following homology groups match:

zH iR;jR .Ln/Š zH
iR;jR .DLn

.k//; zH iR;jR .LnC1/Š zH
iR;jR .DLnC1

.k//;

so long as iR � n�1, the homological range which we are interested in. Thus we may
focus on these finite-twist approximations of the colored links Ln , and the maps fn in
this context will give rise to the maps Fn;k;j we seek. The reader may check that the
grading shifts now correspond to those present in (32).

Now we prove the two lemmas that correspond to the two points discussed in the
beginning of this section. For the first lemma, we avoid going into detail about the
precise definition of the maps fn ; the interested reader should consult Sections 3 and 4
of [13].

Lemma 5.11 The maps fn of Rozansky can be lifted to maps Fn;k;j as in (32).

Proof The maps fn are built out of several sorts of maps corresponding to local
transformations as in Section 4 of [13]:

1. Reidemeister moves involving strands away from the projectors.

2. Short exact sequences of complexes arising from resolving a crossing away from
the projectors.

Algebraic & Geometric Topology, Volume 18 (2018)



1448 Michael Willis

3. “Straightening braids” via resolving crossings adjacent to projectors.

4. Adding new Pn projectors adjacent to an existing PnC1 projector, and other
similar uses of the idempotent-like behavior of the categorified projectors.

5. “Sliding” projectors above and below other strands.

6. Viewing the categorified PnC1 as a cone of a map C ! InC1 where the com-
plex C involves no identity braid diagrams (there are further grading conditions;
see both [12] and [13]). This allows a short exact sequence roughly of the form
KC.hC;Z i/ ,! KC.hPnC1;Z i/� KC.hInC1;Z i/.

The first two types of maps clearly extend first to the finite-twist approximations, then to
the corresponding spectra (type 1 can be viewed as the content of Section 6 of [7], while
type 2 is Lemma 2.1 also based on [7]). Types 3 and 4 lift in a manner corresponding to
Corollaries 3.15 and 3.16 respectively, giving stable homotopy equivalences for large
enough k . Type 5 is just a combination of Reidemeister moves on the level of the
finite-twist approximation, as in the proof of well-definedness of the colored spectrum
(proof of Theorem 1.1 in Section 4.2).

For type 6, we return to [12], where the cone format of the categorified PnC1 is derived
based on the finite-twist approximations, which exhibit this cone structure via resolving
all of the crossings in the twisting. And so this map lifts to a long composition of
maps of spectra coming from the cofibrations (4) which, on the level of homology, is
precisely the desired map.

We note here that some of these maps giving stable homotopy equivalences (especially
types 3 and 4) rely not just on Rozansky’s bounds, but in the new setting on a proper
lower bound for k . Since there are only finitely many such moves used to build the
map fn , we can always force k to be large enough to satisfy all of these lower bounds
before we begin.

The second lemma requires the following theorem from [13].

Theorem 5.12 [13, Theorem 2.1] Using the notation of Equation (34), we have that
zH iR;jR .Ln/D 0 for jR < �

1
2
.iRC�

!/.

Proof This is one of several bounds on nonzero shifted colored Khovanov homology
provided by Theorem 2.1 in [13]. It is treated as a corollary of Theorem 2.11, which is
proved with a spectral sequence built from the multicone presentation of the colored
Khovanov chain complex resulting from resolving crossings away from the projectors.
See Section 5 of that paper.
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Using this result we can prove the following.

Lemma 5.13 Fix j 2 Z. Then for n> �!� 2j C 1, we have (for large enough k )

H i.†�.n
2�1/�X jCs.n;k/.L.n; k///D 0

for all i < � � nC 1, which is equivalent to all iR > n� 1 for zH iR;jR .Ln/.

Proof For large enough k we have

H i.†�.n
2�1/�X jCs.n;k/.L.n; k///ŠH iC.n2�1/�X jCs.n;0/

c .Ln//Š zH
iR;jR .Ln/:

Definition 5.1 describes s.n; k/ as a count of normalizations, crossings, and circles.
This allows us to use equations (2) and (35) to convert

j C s.n; k/D j CNL.n;k/C # crossings.L.n; k//C n�

D #.1–resolutions/C .#.vC/� #.v�//CNL.n;k/;

j C # 0–resolutionsC n� D .#.vC/� #.v�//;

so that
jR D� #.vC� v�/C n�

D� j � # 0–resolutions

D� j � iR:

The last line follows from the fact that the suspensions are designed to ensure that iR

counting 0–resolutions in Ln is the same as counting 0–resolutions in the finite-twist
approximation L.n; k/. A similar (and simpler) conversion ensures that the bound
i < � � nC 1 is equivalent to iR > n� 1. Meanwhile, the bound n > �! � 2j C 1

quickly yields
j > 1

2
.�!
� nC 1/:

Combining all of these gives, for n> �!� 2j C 1 and i < � � nC 1 (iR > n� 1),

jR D�j � iR< �
1
2
.�!
� nC 1/� iR < �

1
2
.�!
C iR/;

which is precisely the bound of Theorem 5.12 for zero homology as desired.

Proof of Theorem 5.6 From Lemma 5.11, we have the existence of the required
maps Fn;k;j that induce isomorphisms on homology for all homological gradings
corresponding to iR � n� 1. From Lemma 5.13, once n > �! � 2j C 1 all of the
spaces involved have zero homology in all homological gradings corresponding to
iR > n� 1. Therefore for n > �! � 2j C 1 the maps Fn;k;j induce isomorphisms
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on all homology groups, and so by Whitehead’s theorem they are stable homotopy
equivalences as desired.

As noted above, this provides the proof of Theorem 1.7.

6 A more explicit tail for the colored Khovanov homotopy
type of the unknot

6.1 The idea

In this final section we prove Theorem 1.8 by giving an alternative, more explicit proof
showing the tail behavior for the colored Khovanov spectrum of the unknot. Since
cabling an unknot with a torus braid twist simply produces the torus links T .n;m/,
we use the notation X .T .n;1// for the spectrum of the n–colored unknot.

Remark 6.1 There is an important distinction to be made here. Earlier, the notation T k
n

was used to denote a torus braid consisting of k full (right-handed) twists. Now we
use the notation T .n;m/ to denote a torus link with m fractional 1=nth (right-handed)
twists as in [16].

Before going into the details of the proof, we provide a table to illustrate the goal of the
construction, similar to Table 1 for the general case. First, a quick lemma that can be
regarded as the translation of Lemma 5.7 and Corollary 5.8 into this setting, presented
to avoid needless clutter.

Lemma 6.2 For n 6� j mod 2, the spectrum X j .T .n;1// is trivial. Likewise,
X j .T .n;1// is trivial for j < �n.

Proof This is a simple consequence of Corollaries 7.2, 7.3, and 7.4 in [16]. For nD 2

and nD 3, the statement is clear from the formulas presented there. For n� 4, one can
compute the minimal q–degree available in the all 0–resolution of the relevant torus
link (which is just �nC the number of crossings), which gives a minimal q–degree
available for X j .T .n;1// (notice that the degree shift in the formulas of Corollary 7.2
is precisely the number of crossings in the relevant torus link). Since the parity of
q–degree is constant throughout the Khovanov chain complex of a given link, the
parity of this q–degree can also be used to prove the first statement (after the indices
are shifted properly). See Corollary 5.8, or Lemma 7.6 in [16], for a more detailed
discussion of this idea.
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j D 0 j D 2 j D 4 j D 6 : : :

X .T .1;1// X�1.T .1;1// _ X 1.T .1;1//

'

X .T .2;1// X�2.T .2;1// _ X 0.T .2;1// _ X 2.T .2;1// _ X 4.T .2;1// _ � � �

' '

X .T .3;1// X�3.T .3;1// _ X�1.T .3;1// _ X 1.T .3;1// _ X 3.T .3;1// _ � � �

' '

X .T .4;1// X�4.T .4;1// _ X�2.T .4;1// _ X 0.T .4;1// _ X 2.T .4;1// _ � � �

' ' '

:::
:::

:::
:::

:::

Table 3: The table of colored Khovanov spectra for the unknots, notated as
spectra of torus links, with the horizontal axis indicating suitably normalized
q–degree. The vertical stabilizations in each column besides the first begin
at X 0 , which corresponds to color nD j .

With Lemma 6.2 in hand, we can construct Table 3 for the colored unknot.

The goal of this section will be to construct the “vertical” stable homotopy equivalences
already presented in Table 3. Note that, like in the general case (Table 1), the j terms
are arranged to “start” at zero, but now increase in the positive direction. This stems
from the fact that we will be using right-handed twists rather than the left-handed twists
considered in the previous section. Also, since T .1;1/ is just an unknot, there is no
need for an infinite wedge sum in the first row (similar to the first row in Table 2 for
the Hopf link; see Example 5.10).

The construction of these vertical maps follows a simple observation. It is well known
that the torus links satisfy T .n; nC1/ Š T .nC1; n/. The sequences used to build
X .T .n;1// in [16] were based on going from X .T .n;m// ,! X .T .n;mC1//. We
can combine these two ideas to see a “diagonal” sequence of the following form
(omitting the T from the notation):

(39) X .n; n�1/ ,!X .n; n/ ,!X .n; nC1/ ,!� � �

'

X .nC1; n/ ,!X .nC1; nC1/ ,!X .nC1; nC2/ ,!� � �

'

X .nC2; nC1/ ,!� � �
: : :
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If we can find a lower bound on n so that all of these maps are stable homotopy equiv-
alences, including the horizontal dots (indicating that in fact X .n; n�1/' X .n;1/,
and similarly for the other rows), we would have stable equivalences between spectra
X .n;1/ as n!1, as desired. Of course, this cannot be done once and for all; instead,
it is done one (shifting) q–degree at a time. The vertical equivalences in Table 3 will
be precisely the resulting maps.

6.2 The proof

The techniques used in this section borrow as much from the results in [16] as from
the ideas in this paper. Thus we recall some notation from [16] below.

Definition 6.3 X .T .n;1//D
W

j2Z X j�n.T .n;1//, where for each j 2 Z,

(40) X j�n.T .n;1//

WD hocolimŒX j�n.T .n; 0// ,! � � � ,! X .j�n/Cm.n�1/.T .n;m// ,! � � � �:

This is the sequence making up the horizontal maps in the conceptual Equation (39)
above. The original definition in [16] did not include the extra q–degree shift of �n in
the definition; this term has been included here for convenience, as suggested by the
format of Table 3. In fact this shift plays a role similar to that of the term s.n; 0/ in
Section 5. (Indeed, since the unknot has no crossings and one circle in any resolution,
this term is precisely s.n; 0/; the negation is because we will be considering right-
handed twisting rather than left-handed.)

In [16] we prove that such sequences of maps become homotopy equivalences for large
enough m. We restate the precise result here, as we shall need a small improvement to
the bound as well as a careful translation of the q–degrees to our new setting.

Theorem 6.4 [16, Theorem 4.1] Fix a 2 Z and n 2N . Define

f .a; n/ WDmax
�

aCn�1

n
; n
�
:

Then for any m� f .a; n/,

(41) X a.T .n;m// ,! X aCn�1.T .n;mC 1//

is a stable homotopy equivalence.

Our new improvement on the bound is very slight, but crucial.
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Lemma 6.5 The bound f .a; n/ in Theorem 6.4 can be improved to a new bound

(42) f 0.a; n/ WDmax
�

aCn�1

n
; n� 1

�
:

The proof of Lemma 6.5 requires one small addition to the proof of Lemma 3.5
in [16], which itself is a result of Stošić. Since this will require reintroducing several
notations from [16] that are not used elsewhere in this paper, we relegate this proof to
an appendix. Meanwhile, the following corollary translates the result above for use
with the sequences (40).

Corollary 6.6 Fix j 2Z and n2N . Then for m�max.j�1; n�1/, the sequence (40)
stabilizes. That is, the maps

X .j�n/Cm.n�1/.T .n;m// ,! X .j�n/C.mC1/.n�1/.T .n;mC 1//

are stable homotopy equivalences.

Proof The bound m � n � 1 is the improvement (over m � n) of Lemma 6.5.
Meanwhile, the term .aC n� 1/=n in the bound (42) contains the q–degree a, which
corresponds here to .j � n/Cm.n� 1/. Some simple algebra ensures that

m�
aCn�1

n
” m� j � 1:

With these bounds in place, we are ready to provide the vertical equivalences of Table 3
via the idea of Equation (39).

Lemma 6.7 Fix j 2 .2N [ 0/. Then for n� j , we have

(43)
X j�n.T .n;1//' X j�nC.n�1/2.T .n; n� 1//;

X j�.nC1/.T .nC 1;1//' X j�.nC1/Cn2

.T .nC 1; n//:

Proof This follows directly from Corollary 6.6. When n� j , the n�1 term dominates
in the bound m�max.j �1; n�1/, allowing the sequence (40) to stabilize as soon as
mD n� 1. Of course, if n� j , then nC 1� j as well.

Lemma 6.8 For n� j as above, define the map �n;j to be the composition

X j�nC.n�1/2.T .n; n� 1//! X j�nC.n�1/2C.n�1/.T .n; n//

! X j�nC.n�1/2C2.n�1/.T .n; nC 1//

' X j�.nC1/Cn2

.T .nC 1; n//;
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where the first two maps are the same maps appearing in the sequence (40), and the
final equivalence comes from the isotopy T .n;m/ Š T .m; n/. Then �n;j defines a
stable homotopy equivalence

�n;j W X j�nC.n�1/2.T .n; n� 1//
'
�!X j�.nC1/Cn2

.T .nC 1; n//:

Proof As in the previous lemma, the first two maps are stable homotopy equivalences
due to the bound in Corollary 6.6.

Remark 6.9 We see that this map �n;j plays a role similar to that of the Fn;j of
the previous section, but is much easier to define than the maps fn in [13] that lead
to Fn;j .

Proof of Theorem 1.8 Combining Lemmas 6.7 and 6.8 gives stable homotopy equiv-
alences

X j�n.T .n;1//' X j�nC.n�1/2.T .n; n� 1// (by Lemma 6.7)

' X j�.nC1/Cn2

.T .nC 1; n// (by Lemma 6.8)

' X j�.nC1/.T .nC 1;1// (by Lemma 6.7)

for arbitrary n� j , which gives all of the necessary stable homotopy equivalences as
indicated in Table 3. The calculations presented in Theorem 1.8 refer to the beginning
of the stabilization, that is, when n D j so that we are considering X 0.T .j ;1//.
A further application of Corollary 6.6 shows that X 0.T .j ;1//'X .j�1/2.T .j ; j�1//

so long as j > 0, while the j D 0 case stabilizes immediately (ie for nD 1) giving the
spectrum of an unknot, which is known to be the sphere spectrum in q–degrees ˙1.

Remark 6.10 It is clear that a similar argument could be used to define X .U
 / for
an unlink U allowing the colors on each component to tend to infinity. We do not go
through the calculation here.

We conclude with a brief discussion on the differences between the new approach
of this section and the general approach of the previous one. One difference is that
we use right-handed twisting in this new approach, but this is of no consequence and
a left-handed version of the new approach could easily be derived. The important
difference is that, in the general case, the stable homotopy equivalences required
are based on Rozansky’s maps fn , which are very complicated, requiring multiple
properties of the categorified projectors (idempotency, straightening adjacent braids, a
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careful multi-cone presentation). Even with no crossings (as in the unknot or unlink),
the passage from cabling with n strands to cabling with nC1 requires extra projectors
and clever manipulations between them. In our new approach for the unknot, the
only maps required are those that already arise in the stable sequence (40) based on
resolving crossings, and maps derived from Reidemeister moves providing the isotopy
between T .n; nC1/ and T .nC1; n/. In fact this new approach views the tail of the
colored Khovanov spectra of the unknot as a stabilization (one q–degree at a time) of
the sequence X .T .nC1; n// as n!1, rather than as a statement about categorified
projectors and colored spectra in the usual sense.

The simple form of the maps used in this approach also gives an improvement on the
bound on n for stabilization. In Rozansky’s approach, the bound grows like 2j , while
here the bound grows like j . Compare Table 3 to Table 2 to see the gap between
beginning of stabilization for adjacent columns in the two cases.

Appendix: Proof of Lemma 6.5

In [16] the bound m� n needed for stabilization appears solely due to its presence in
Lemma 3.5 in that paper, which itself is a rephrasing of Lemma 1 in [14]. A careful
reading of [16] ensures that this bound is never used explicitly again. Thus our goal in
this section is to prove this lemma holds in the case mD n� 1 as well.

For this we recall the notation of [16]. When mD n� 1, the lemma is concerned with
resolving crossings from T .n; n/ in order to arrive at T .n; n�1/. In this situation,
we introduce the following notation:

� D0 WD T .n; n/.

� For i D 1; : : : ; n� 1, the diagrams Di and Ei are those obtained by resolving
the “topmost” crossing of Di�1 as a 0–resolution and 1–resolution respectively.
Thus we have the cofibration sequences (see [16] for the degree shifts)

X .Di/ ,! X .Di�1/� X .Ei/

and Dn�1 D T .n; n� 1/.

� ci denotes the number of negative crossings present in Ei .

With this notation in place, we wish to prove:
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Lemma A.1 For all i D 1; : : : ; n� 1,

ci D 2n� 3:

Proving this will verify the bound ci � nCm� 2 of Lemma 3.5 of [16] in the case
mD n�1, and then the rest of the results of [16] go through to prove Lemma 6.5 here.

Remark A.2 Note that these definitions for Di and Ei are different from those used
in the proof of Proposition 3.8, where arbitrary tangles are being considered away from
the twisting and we “slide” the topmost twist over to be adjacent to the tangle rather
than to the other twists before resolving crossings. The pictures used in the proof below
will make the difference clear, and will resemble the similar pictures in [16].

...

...

...

E1

...

...

...

n n − 2

Figure 13: The picture for E1 , where the topmost turnback is pulled around
the cabling allowing for the diagram on the right. The red circles in the
diagram on the right indicate Reidemeister moves that will occur while
pulling the turnback through the twisting.

Proof of Lemma A.1 The case c1 is considered separately from ci>1 . For E1 we
see the diagram illustrated in Figure 13, where the strands are closed up outside of the
picture in the usual way. The red circles clearly indicate that the turnback can be pulled
through via n�2 Reidemeister II moves, then a negative Reidemeister I move, then
another n�2 Reidemeister II moves. Each Reidemeister II move involves precisely
one negative crossing, which quickly proves the claim.
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T (n, n −1)

E
... . . .

i >1 i i +1

T (n, n −1)

... . . .

i i +1

T (n −2, n −3)

... . . .

i i +1

Figure 14: The picture for Ei>1 . The topmost turnback is pulled around
the cabling and then through the torus braid T .n; n�1/ along the indicated
dashed line, eliminating two strands from the braid but keeping the twisting
at one strand less than a full twist, leaving us with T .n�2; n�3/ .

For Ei>1 , we see that the turnback can be pulled through the torus braid T .n; n�1/

leaving us with a copy of T .n�2; n�3/ as in Figure 14 (note that we use the notation T

to indicate the torus braid rather than the complete torus link; however, we continue
to use the parentheses notation to indicate fractional twists rather than the full twists
indicated by superscripts throughout the rest of the paper).

Now we count crossings similarly to the proof of Lemma 3.5. The initial braid
T .n; n�1/ had .n�1/2 crossings, while the new T .n�2; n�3/ has .n�3/2 crossings.
The crossings “above” the braid remain unchanged, so the total change in the number
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of crossings is .n�1/2 � .n�3/2 D 4n � 8. Since the turnback was able to swing
completely around the entire torus braid (see the red dashed line in Figure 14), it must
have accomplished precisely two (negative) Reidemeister I moves. This leaves 4n�10

crossings eliminated by Reidemeister II moves (see Figure 13 to see that these are the
only moves involved). Thus half of the 4n� 10 crossings were negative, plus the two
Reidemeister I moves gives precisely 2n� 3 as required.
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