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Topology of holomorphic Lefschetz pencils on the four-torus

NORIYUKI HAMADA

KENTA HAYANO

We discuss topological properties of holomorphic Lefschetz pencils on the four-torus.
Relying on the theory of moduli spaces of polarized abelian surfaces, we first prove
that, under some mild assumptions, the (smooth) isomorphism class of a holomorphic
Lefschetz pencil on the four-torus is uniquely determined by its genus and divisibility.
We then explicitly give a system of vanishing cycles of the genus-3 holomorphic
Lefschetz pencil on the four-torus due to Smith, and obtain those of holomorphic
pencils with higher genera by taking finite unbranched coverings. One can also obtain
the monodromy factorization associated with Smith’s pencil in a combinatorial way.
This construction allows us to generalize Smith’s pencil to higher genera, which is
a good source of pencils on the (topological) four-torus. As another application of
the combinatorial construction, for any torus bundle over the torus with a section we
construct a genus-3 Lefschetz pencil whose total space is homeomorphic to that of
the given bundle.

57R35; 14D05, 20F38, 32Q55, 57R17

1 Introduction

Lefschetz pencils on smooth four-manifolds are closely related to symplectic structures
by Donaldson’s construction [6] of Lefschetz pencils on symplectic manifolds and
Gompf’s generalization [10] of Thurston’s construction [25] of symplectic structures
on surface bundles. Moreover, Kas [14] and Matsumoto [20] gave a combinatorial
interpretation of isomorphism classes of Lefschetz fibrations, in particular their results
enable us to construct Lefschetz fibrations (and symplectic four-manifolds) using
simple closed curves on oriented surfaces (these results are generalized to that for
Lefschetz pencils in Baykur and Hayano [2]). For these reasons Lefschetz pencils and
fibrations have attracted a lot of interest from four-dimensional topologists in the last
two decades. On the other hand, Lefschetz originally introduced Lefschetz pencils as
generic pencils (ie linear 1–systems) of very ample line bundles in order to study the
topology of algebraic varieties (see eg Lamotke [16]). It is therefore natural to pay
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attention to holomorphic Lefschetz pencils as well as smooth ones. In this paper we
study holomorphic Lefschetz pencils on the four-torus from a topological point of view.

In order to explain our main result, we first introduce two invariants for Lefschetz
pencils. The genus of a Lefschetz pencil is the genus of the closure of a regular fiber,
and the divisibility of a Lefschetz pencil is the maximum integer by which we can
divide the integral homology class represented by the closure of a regular fiber. Two
Lefschetz pencils on the same four-manifold have the same genus and divisibility if
they are isomorphic, but the converse does not hold in general (the reader can find a
counterexample for the converse in Baykur and Hayano [3], for example). Our first
result states that the converse becomes true for holomorphic Lefschetz pencils on the
four-torus under some assumptions:

Theorem 1.1 Let f0; f1 be holomorphic Lefschetz pencils on the four-torus. Suppose
either that the genus of f0 is greater than 5 or that the divisibility of f0 is greater
than 1. Then f0 and f1 are isomorphic if and only if they have the same genus and
divisibility.

Note that in this paper we define a Lefschetz pencil to be holomorphic if there is some
complex structure on the source manifold of the pencil with respect to which the pencil
is holomorphic (see Section 2.1). In particular, two Lefschetz pencils f0 and f1 in
Theorem 1.1 might not be holomorphic with respect to the same complex structure. One
of the significant points of Theorem 1.1 is that it still holds for such f0 and f1 . If f0

and f1 are pencils of a fixed polarization on the four-torus, the proof is much easier
(see Remark 3.14).

The condition on the genus or the divisibility of f0 in Theorem 1.1 is needed for some
technical reasons and we believe that the theorem still holds without it (see the last
paragraph of Section 3).

As we mentioned in the first paragraph, Lefschetz pencils are not only objects in
complex geometry but are also related to symplectic topology. It is especially important
to find out how smooth Lefschetz pencils differ from holomorphic ones, which is related
to the difference between complex (or Kähler) surfaces and symplectic four-manifolds.
Since there exist noncomplex symplectic four-manifolds, we can easily obtain Lefschetz
pencils on noncomplex four-manifolds using Donaldson’s construction [6]. While it is
in general hard to obtain monodromy factorizations of Lefschetz pencils coming from
Donaldson’s construction, several ingenious techniques, such as fiber-sum operations
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and substitution operations, have been employed in order to give nonholomorphic
Lefschetz pencils and fibrations (on possibly noncomplex four-manifolds) with explicit
monodromy factorizations (see eg Baykur and Korkmaz [1; 4; 15], Fintushel and
Stern [8], Hamada, Kobayashi and Monden [13; 21], Ozbagci and Stipsicz [22] and
Smith [23]). Furthermore, Li [19] constructed nonholomorphic Lefschetz pencils on
minimal Kähler surfaces of general type. The construction in [19] relies not only on
Donaldson’s result [6] but also on the differences between cohomology Kähler cones
and symplectic cones. Since the cohomology Kähler cone of the four-torus coincides
with its symplectic cone (see [19, Proposition 4.10]), this construction cannot give the
affirmative answer to the following question:

Problem 1.2 Does there exist a nonholomorphic Lefschetz pencil on the four-torus?

Problem 1.2 is also important in complex geometry since it might be related to the
existence of non-Kähler symplectic forms on the four-torus. (Here, a symplectic form !

is said to be non-Kähler if there do not exist complex structures compatible with ! .)
Indeed, for a holomorphic Lefschetz pencil we can take a symplectic form on the total
space taming the complex structure by using [10, Theorem 2.11(b)]. Such a symplectic
form is Kähler if it is further compatible with the complex structure. Theorem 1.1,
together with explicit examples we will construct, gives rise to several constraints
on monodromy factorizations of holomorphic Lefschetz pencils on the four-torus; in
particular, it might be possible to construct a nonholomorphic Lefschetz pencil on the
four-torus using Theorem 1.1 (see Remark 5.10).

As we mentioned earlier, a system of vanishing cycles of a Lefschetz pencil completely
determines its isomorphism class. Thus we can find a nonholomorphic Lefschetz pencil
on the four-torus using Theorem 1.1 once we can get vanishing cycles of a holomorphic
Lefschetz pencil on the four-torus with sufficiently large genus or divisibility, and
find another system of simple closed curves (associated with a Lefschetz pencil on
the four-torus) which is not Hurwitz equivalent to the system of the vanishing cycles.
In this paper we first analyze the simplest example of a holomorphic pencil on the
four-torus: a genus–3 Lefschetz pencil due to Smith [24].

Theorem 1.3 The simple closed curves in Figure 6 are vanishing cycles of a genus-3
Lefschetz pencil constructed in [24].

We can obtain holomorphic Lefschetz pencils on the four-torus with larger genera and
divisibilities using finite unbranched coverings. The composition of a Lefschetz pencil
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and a finite unbranched covering of its total space is again a Lefschetz pencil, and any
finite unbranched covering of the four-torus is also the four-torus. We will indeed prove
that any holomorphic Lefschetz pencil on the four-torus with odd genus satisfying the
assumption in Theorem 1.1 is isomorphic to the composition of the genus-3 Lefschetz
pencil in [24] and a finite unbranched covering. (See Lemma 4.7 and the observation
following it.)

As we will observe in the beginning of Section 4, we can obtain vanishing cycles of a
Lefschetz pencil arising from composition of an unbranched covering once we know
vanishing cycles of the original pencil (see Lemma 4.1). We will indeed give vanishing
cycles of such pencils explicitly in Example 4.8 and Section 5.1.

Baykur [1] constructed genus-3 Lefschetz pencils on symplectic Calabi–Yau four-
manifolds (ie symplectic manifolds with trivial canonical classes) with positive b1

relying on combinatorial techniques. The family of Lefschetz pencils given in [1]
covers all possible rational homology types of symplectic Calabi–Yau four-manifolds
with b1 > 0 (see Li [18]), in particular it contains a four-manifold homeomorphic to
the four-torus. We will also construct a genus-3 Lefschetz pencil in a similar manner
(by giving vanishing cycles; see Figure 14) and prove that our pencil is isomorphic
to both the pencil with vanishing cycles in Figure 6 — that is, Smith’s pencil — and
the pencil given by Baykur [1] (see Lemma 5.1 and Remark 5.2). Our construction
of the genus-3 pencil can be generalized to that of a genus-g symplectic Calabi–Yau
Lefschetz pencil fg for any g � 3. We will prove that the pencils with odd genera
are compositions of Smith’s pencil with finite unbranched coverings, and thus these
are holomorphic pencils on the four-torus (Lemma 5.3). We further expect that the
family of pencils ffg j g � 1 is primeg is a candidate for the family of all essential
holomorphic Lefschetz pencils on the four-torus, where the tentative term “essential”
means that they cannot be decomposed as the composition of a holomorphic pencil
and a finite unbranched covering of the four-torus (Conjectures 5.8 and 5.9). Applying
a combinatorial operation to our genus-3 pencil, we will obtain a family of genus-3
Lefschetz pencils ff˛;ˇg parametrized by ˛; ˇ 2Mod.†1

1
IU / with Œ˛; ˇ�D 1, where

U Dfug� @†1
1

and Mod.†1
1
IU / is the mapping class group of the one-holed torus †1

1

fixing U (for the precise definition of this mapping class group, see Section 2.2).

Theorem 1.4 The total space of f˛;ˇ is homeomorphic to that of the torus bundle
over the torus with a section whose monodromy representation sends two elements
generating �1.T

2/ to ˛ and ˇ .
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We will give a monodromy factorization of f˛;ˇ explicitly in (5-5). Note that Smith [24]
observed that any torus bundle over the torus with a section admits a genus-3 Lefschetz
pencil. We believe that this pencil is isomorphic to ours, and in particular the total
space of f˛;ˇ is diffeomorphic to that of a torus bundle over the torus.

The constructions of Lefschetz pencils in the previous paragraph are related to the
smooth classification problem of symplectic four-manifolds with Kodaira dimension 0,
which is one of the central concerns in symplectic topology. It is conjectured that any
Kodaira dimension 0 symplectic manifold is diffeomorphic to one of the K3 surface, the
Enriques surface or a torus bundle over the torus. The family of symplectic Calabi–Yau
manifolds given in [1] contains potential counterexamples of the conjecture. Further-
more, we would obtain a new symplectic four-manifold with Kodaira dimension 0 if
we could apply partial conjugations to any of the Lefschetz pencils in the previous
paragraph so that the fundamental group of the total space of the resulting pencil was
not a 4–dimensional solvmanifold group (see [1, Remark 18]).

In Section 3 we will prove Theorem 1.1 relying on the theory of moduli spaces of
polarized abelian surfaces. In Section 4 we will first prove Theorem 1.3, that is, we will
obtain vanishing cycles of the genus-3 holomorphic Lefschetz pencil due to Smith [24].
We will then discuss compositions of this pencil with finite unbranched coverings.
In Section 5 we will first reconstruct Smith’s pencil from a combinatorial point of
view, and generalize the construction to obtain Lefschetz pencils with higher genera.
Utilizing the technique in the appendix we will prove that the divisibilities of these
Lefschetz pencils are all 1; see Lemma 5.6. We will further modify Smith’s pencil to
prove Theorem 1.4.

2 Preliminaries

Throughout the paper, we will always assume that all manifolds are smooth, oriented
and connected unless otherwise noted.

2.1 Lefschetz pencils and fibrations

Let X be a closed 4–manifold and B � X a nonempty discrete set. A smooth map
f W X nB!CP1 is called a Lefschetz pencil if it satisfies the following conditions:

(1) The restriction f jCrit.f / is injective, where Crit.f / is the set of all critical points
of f .
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(2) Each x 2 Crit.f / is of Lefschetz type, that is, there exists a complex coordinate
.U; 'W U !C2/ (resp. .V;  W V !C/) of x (resp. f .x/) compatible with the
orientation such that  ıf ı'�1.z; w/ is equal to z2Cw2 .

(3) For any b 2B there exist a complex coordinate .U; '/ of x compatible with the
orientation and an orientation-preserving self-diffeomorphism �W CP1

!CP1

such that � ıf ı'�1.z; w/ is equal to Œz W w� 2CP1 .

Each point in B is called a base point of f . A smooth map f W X !CP1 satisfying
the conditions (1) and (2) above is called a Lefschetz fibration. When we deal with a
Lefschetz pencil and fibration at the same time we sometimes write f W X nB!CP1

to mean a Lefschetz fibration assuming B to be the empty set. A Lefschetz pencil or
fibration f is said to be holomorphic if there exists a complex structure of X such that
f is holomorphic and we can take biholomorphic ' ,  and � in the conditions above.

Remark 2.1 Since a Lefschetz singularity germ has infinite Ae –codimension as a
real germ, it is not finitely determined in the smooth category, and thus it is basically
hard to determine whether a given smooth germ is of Lefschetz type or not. However,
in the complex category there is a useful criterion for a critical point to be of Lefschetz
type: a critical point x 2C2 of a holomorphic function f W C2!C is of Lefschetz
type if and only if the complex Hessian

Hess.f /x D det
��

@2f

@zk@zl
.x/
�

1�k;l�2

�
is not equal to 0 (see [26, Lemma 2.11]).

For a Lefschetz pencil or fibration f W X nB!CP1 , the genus of the closure f �1.�/

of a regular fiber is called the genus of f , which is denoted by g.f /. Using a regular
fiber, we further define the number

d.f /D sup
˚
n 2 Z j Œf �1.�/�D n˛ for some ˛ 2H2.X IZ/

	
2 Z>0[f1g;

called the divisibility of f . Two Lefschetz pencils or fibrations f0W X0 nB0!CP1

and f1W X1 nB1!CP1 are said to be isomorphic if there exist orientation-preserving
diffeomorphisms ˆW X0!X1 and �W CP1

!CP1 which make the following diagram
commute:

X0 nB0
ˆ

����! X1 nB1

f0

??y ??yf1

CP1 �
����! CP1
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Obviously two isomorphic Lefschetz pencils or fibrations have the same numbers of
base points and critical points, the same genus and divisibility, but the converse does
not hold in general (a pair f.2;2/ and f.3;1/ in [3], for example, is a counterexample).

2.2 Monodromy factorizations of Lefschetz fibrations/pencils

Let †D†p
g be a compact genus-g surface with p boundary components. We take

points u1; : : : ;up 2 @† from each of the components of @† and let ıi � Int.†/ be a
simple closed curve parallel to the boundary component containing ui . Let U be the
set fu1; : : : ;upg and Diff.†IU / the group of orientation-preserving diffeomorphisms
of † which preserve the set U . We call the set �0.Diff.†IU // the mapping class
group of † and denote it by Mod.†IU /. An element of Mod.†IU / is the isotopy
class of an element in Diff.†IU /, where isotopies fix the set U . The group structure
of Mod.†IU / is induced by compositions of maps, that is, Œ'1� � Œ'2�D Œ'1 ı'2� for
'1; '2 2 Diff.†IU /.

Now let f W X nB!CP1 be a Lefschetz pencil or fibration with n critical points. Set
f .Crit.f //D fa1; : : : ; ang, and take paths ˛1; : : : ; ˛n �CP1 with a common initial
point a0 2CP1

nf .Crit.f // such that
� ˛1; : : : ; ˛n are mutually disjoint except at a0 ,
� ˛i connects a0 with ai ,
� ˛1; : : : ; ˛n are ordered counterclockwise around a0 , ie there exists a small loop

around a0 oriented counterclockwise, hitting each ˛i only once in the given
order.

We take a loop z̨i with the base point a0 by connecting ˛i with a small counter-
clockwise circle with center ai . We call a system of paths z̨1; : : : ; z̨n obtained by
the procedure above a Hurwitz path system of f . For each b 2 B , let Db be a
sufficiently small 4–ball neighborhood of b and �B the disjoint union

F
b2B Db .

For each b we take a section Sb � @Db of f jf �1.E/ , where E � CP1 is a disk
containing f .Crit.f // and all the loops z̨1; : : : ; z̨n . Let H be a horizontal distribution
of f jf �1.E/n.�B[Crit.f // , that is, HDfHxgx2f �1.E/n.�B[Crit.f // is a plane field such
that Ker.dfx/˚Hx D TxX for any x 2 f �1.E/ n .�B [Crit.f //. We assume that
Hx D TxSb for any x 2 Sb and Hx � Tx@Db for any x 2 @Db . Using H , we can
take a lift of the direction vector field of z̨i and a flow of this lift gives rise to a
self-diffeomorphism of f �1.a0/. We call this diffeomorphism a parallel transport
of z̨i and its isotopy class a local monodromy around ai . Note that a local monodromy
does not depend on the choice of H .
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Under an identification of the pair
�
f �1.a0/n�B; f

�1.a0/\
F

b2B Sb

�
with the pair

.†
p
g ;U /, we can regard a parallel transport as a diffeomorphism in Diff.†p

g IU /, and
thus, a local monodromy as a mapping class in Mod.†p

g IU /. A local monodromy
around ai is a Dehn twist tci

along some simple closed curve ci � Int†p
g (see [14]).

The curve ci is called a vanishing cycle of f . Since the concatenation z̨1 � � � z̨n is
nullhomotopic in CP1

n f .Crit.f // and the restriction f j@Db
is the Hopf fibration,

the composition tcn
� � � tc1

is equal to tı1
� � � tıp in Mod.†p

g IU / (which is the identity
if B D∅). The factorization

tcn
� � � tc1

D tı1
� � � tıp

is called a monodromy factorization of f . Two factorizations tcn
� � � tc1

D tdn
� � � td1

D

tı1
� � � tıp are said to be Hurwitz equivalent if one can be obtained from the other by

successive applications of the following two kinds of moves:

� Elementary transformation tcn
� � � tciC1

tci
� � � tc1

! tcn
� � � ttciC1

.ci /tciC1
� � � tc1

.

� Simultaneous conjugation tcn
� � � tc1

! t'.cn/ � � � t'.c1/ for ' 2Mod.†p
g IU /.

Theorem 2.2 [14; 20; 2] Assume that 2 � 2g � p is negative. Two Lefschetz
pencils or fibrations of genus g with p base points are isomorphic if and only if the
corresponding monodromy factorizations are Hurwitz equivalent.

2.3 Moduli spaces of polarized abelian surfaces

By an abelian surface, we mean a complex torus of dimension 2 which can be holo-
morphically embedded into CPN for sufficiently large N . For a complex torus T , a
polarization of T is a cohomology class H 2H 2.T IZ/ which is the first Chern class
of an ample line bundle. Let xƒ�C2 be a lattice and T DC2=xƒ. We can canonically
identify the group H1.T IZ/ with the lattice xƒ. Using this identification we can regard
polarizations of T as integer-valued alternating forms on xƒ. For any polarization E

we can take a basis �1; �2; �1; �2 of xƒ such that E is represented by the following
matrix with respect to this basis:

E D

�
0 D

�D 0

�
;

where D D .d1;d2/ D
�

d1

0
0

d2

�
for di > 0, d1 j d2 . We call the pair .d1; d2/ or the

matrix D the type of the polarization E .
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We denote by H2 the set of all symmetric complex 2�2 matrices with positive-definite
imaginary part, which is a connected complex manifold of dimension 3. For Z D

.z1; z2/ 2 H2 , we denote the ordered set .z1; z2;d1;d2/ by ƒZ . The set ƒZ is
a basis of a lattice in C2 , which we denote by xƒZ . In particular, ƒZ gives rise
to a complex torus TZ D C2=xƒZ . Let HZ be the imaginary part of a hermitian
form represented by the matrix Im.Z/�1 with respect to the standard basis of C2 .
The form HZ is a real-valued alternating form on C2 . It is easy to check that the
representation matrix of HZ jxƒZ

with respect to the basis ƒZ is
�

0
�D

D
0

�
. Thus, HZ

is a .d1; d2/–polarization of TZ . Conversely, any polarized abelian surface can be
obtained by the construction above. More precisely, it is known that for any complex
torus T D C2=xƒ, its polarization H and a basis ƒ of the lattice xƒ with respect
to which the representation of H jxƒ is

�
0
�D

D
0

�
, there exists a matrix Z 2 H2 and a

biholomorphic map ‰W C2!C2 such that two triples .T;H; ƒ/ and .TZ ;HZ ; ƒZ /

correspond by ‰ (see [17, Section 8.1]). In particular, H2 is a moduli space of .d1; d2/–
polarized abelian surfaces with a symplectic basis of the lattice. The following are
basic properties of this moduli space which will be used in this paper.

Lemma 2.3 We fix the pair .d1; d2/ and we regard H2 as a moduli space of .d1; d2/–
polarized abelian surfaces as explained above. Then:

(1) The subset S0 D fZ 2 H2 j NS.TZ / 6Š Zg is contained in a countable union of
proper analytic subsets of H2 , where

NS.TZ /D Im.c1W H
1.TZ IO�TZ

/!H 2.TZ IZ//

is the Néron–Severi group of TZ .

(2) The subset S1 D fZ 2 H2 j TZ Š E1�E2 for some elliptic curves E1;E2g is
contained in S0 .

Proof The first statement is in [17, Exercise 8.1] and the details are left to the reader. In
order to prove the second one, assume that there exist elliptic curves E1;E2 such that
TZ is biholomorphic to E1�E2 . The cohomology classes represented by the divisors
E1�f0g and f0g�E2 are both contained in NS.TZ /. Thus the rank of NS.TZ / is at
least two.

For a holomorphic line bundle L we denote the set of holomorphic sections by �.L/,
which is a finite-dimensional complex vector space. In the rest of this subsection we
will construct an ample line bundle LZ with c1.LZ /DHZ and a basis of �.LZ /

Algebraic & Geometric Topology, Volume 18 (2018)



1524 Noriyuki Hamada and Kenta Hayano

explicitly (for more systematic constructions of line bundles on complex tori and their
sections, see [17, Chapters 2 and 3]). For Z 2 H2 we denote the submodules hz1; z2i

and hd1;d2i of the lattice xƒZ by ƒ1
Z

and ƒ2
Z

, respectively. Let V i
Z

be the real
subspace of C2 generated by ƒi

Z
. It is easy to see that C2 is equal to the direct sum

V 1
Z
˚V 2

Z
. Using this decomposition we define a map �Z W C

2! S1 as

�Z .v1C v2/D exp.� iHZ .v1; v2//;

where vi 2 V i
Z

. We further define a map aZ W
xƒZ �C2!C� by

aZ .�; v/D �Z .�/ exp
�
� Im.Z/�1.v; �/C �

2
Im.Z/�1.�; �/

�
;

where Im.Z/�1 is regarded as a hermitian form on C2 . We then define a line bundle

LZ D .C
2
�C/=�;

where the equivalence relation � is generated by the relation

.vC�; z/� .v; a.�; v/z/

for �2 xƒZ and v 2C2 . By assumption the alternating form HZ is trivial on V 2
Z

. Thus
the restriction Im.Z/�1jV 2

Z
is symmetric. Since the C–extension of V 2

Z
is the whole

space C2 , we can define a symmetric form BZ on C2 by extending Im.Z/�1jV 2
Z

.
We define a holomorphic map #00

Z
W C2!C , called a Theta function, by

#00
Z .v/D

exp
�
�
2

BZ .v; v/
�
�

X
�2ƒ1

Z

exp
�
�.Im.Z/�1

�BZ /.v; �/�
�
2
.Im.Z/�1

�BZ /.�; �/
�
:

We can verify that the map TZ 3 Œv� 7! Œ.v; #00
Z
.v//�2LZ is well-defined, in particular

#00
Z

gives rise to a section of LZ (see [17, Lemma 3.2.4]). For two integers 0� i < d1

and 0� j < d2 we define the map # ij
Z
W C2!C by

#
ij
Z
.v/D aZ .wij ; v/

�1#00
Z .vCwij /;

where wij D .i=d1/z1C .j=d2/z2 . This also gives rise to a section of LZ for each
pair i; j (see [17, Corollary 3.2.6]).

Theorem 2.4 [17, Theorem 3.2.7] The set f# ij
Z
2 �.LZ / j 0� i < d1; 0� j < d2g

is a basis of �.LZ /.
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3 Uniqueness of holomorphic Lefschetz pencils on the
four-torus

In this section we prove Theorem 1.1. Let L be a holomorphic line bundle on T 4 .
Throughout the paper we will use a broken arrow Ü to represent a meromorphic map.
For s0; s1 2 �.L/, we define a meromorphic map Œs0 W s1�W T

4 Ü CP1 as follows:
for x 2 T 4 , take a trivialization ��1

L
.U /ŠU �C and regard the restriction si jU as a

holomorphic function, and define Œs0 W s1�.x/D Œs0.x/ W s1.x/�. It is easy to see that
a point Œs0.x/ W s1.x/� 2 CP1 does not depend on the choice of a trivialization of L

around x . The map Œs0 W s1� is defined on the complement of s�1
0
.0/\ s�1

1
.0/.

Lemma 3.1 For any holomorphic Lefschetz pencil f on T 4 , there exists an ample
line bundle L and sections s0; s1 such that f is equal to Œs0 W s1�.

Proof Let Vi D fŒz0 W z1� 2 CP1
j zi ¤ 0g and let  i W V ! C be a map defined by

 i.Œz0 W z1�/D zj=zi for j ¤ i . For each b 2 B we take a 4–ball neighborhood Db

and a biholomorphic map ˆbW Db ! C2 so that Db and Db0 are disjoint if b ¤ b0

and f ıˆ�1
b
.z; w/ is equal to Œz Ww�. We put ˆb.x/D .ˆ

0
b
.x/; ˆ1

b
.x//. We define a

space L by

LD .f �1.V0/�C/t .f �1.V1/�C/t
G
b2B

.Db �C/=�;

where the equivalence relation � is defined by

.x; z/�

8<:
.x;  1.f .x//z/ for x 2 f �1.V0\V1/;

.x; ˆ0
b
.x/z/ for x 2 f �1.V0/\Db;

.x; ˆ1
b
.x/z/ for x 2 f �1.V1/\Db:

It is easy to see that L together with the projection �f W L!T 4 onto the first component
is a holomorphic line bundle on T 4 . We define two sections s0; s1W T

4!L of L by

s0.x/D

8<:
.x; 1/ 2 f �1.V0/�C for x 2 f �1.V0/;

.x;  1.f .x/// 2 f
�1.V1/�C for x 2 f �1.V1/;

.x; ˆ0
b
.x// 2Db �C for x 2Db;

s1.x/D

8<:
.x;  0.f .x/// 2 f

�1.V0/�C for x 2 f �1.V0/;

.x; 1/ 2 f �1.V1/�C for x 2 f �1.V1/;

.x; ˆ1
b
.x// 2Db �C for x 2Db:

It is easy to verify that the map Œs0 W s1� is equal to f . The line bundle L has nontrivial
holomorphic sections s0; s1 and c2

1
.L/D jBj > 0. Thus by [17, Proposition 4.5.2],

L is ample.
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Remark 3.2 The type of the polarization c1.L/ for L in Lemma 3.1 is not equal
to .1; 1/ since s0 and s1 are linearly independent (see Theorem 2.4).

We can easily prove the following lemma using the inverse function theorem for
holomorphic maps.

Lemma 3.3 Let x 2 T 4 be a base point of h D Œs0 W s1�. Then the condition (3) in
Section 2.1 holds at x if and only if .ds0/x and .ds1/x are linearly independent.

Remark 3.4 For a polarization H of a complex torus T , the following map is
surjective by [17, Corollary 2.5.4]:

T ! c�1
1 .H /�H 1.T IO�L/; v 7! t�vL;

where L is an ample line bundle with c1.L/DH and tvW T ! T is the translation
x 7! xC v . In particular the set of isomorphism classes of holomorphic Lefschetz
pencils obtained from an ample line bundle L depends only on the class c1.L/. Thus,
any holomorphic Lefschetz pencil on T 4 is isomorphic to a pencil obtained from a
pair of sections of a line bundle LZ we constructed in Section 2.3.

3.1 A condition for pencils to be Lefschetz

As we explained in Section 2.3, H2 is a moduli space of .d1; d2/–polarized abelian
surfaces with a symplectic basis of the associated lattice for each type .d1; d2/. Using
a holomorphic function # ij

Z
for 0� i < d1 and 0� j < d2 on C2 we define a map

'Z W TZ Ü CPN , with N D d1d2� 1, by

'Z .xx/D Œ � � � W #
ij
Z
.x/ W � � � �;

where xx 2 TZ is a point represented by x 2C2 . This map is well-defined by double-
periodicity of # ij

Z
and is defined on the complement of the intersection

T
i;j .#

ij
Z
/�1.0/.

We denote the set of all hyperplanes in CPN by .CPN /� , which is canonically
biholomorphic to CPN . For any projective line P � .CPN /� , we define a pencil
fP W TZ Ü P by

fP .xx/DH 2 P if xx 2 '�1
Z .H /:

Let H0;H1 2P be distinct hyperplanes and
P

i;j ak
ij Xij a defining polynomial of Hk .

It is easy to verify that fP is defined on the complement of '�1
Z
.H0 \H1/ and is

isomorphic to Œs0 W s1�, where sk D
P

i;j ak
ij#

ij
Z
2 �.LZ /. Thus, by Lemma 3.1
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any holomorphic Lefschetz pencil on T 4 is isomorphic to fP W TZ Ü P for some
P � .CPN /� . In this subsection, we will discuss when fP becomes a Lefschetz
pencil. Note that the arguments in this subsection are quite similar to those in [26,
Section 2.1.1], in which generic pencils in linear systems of very ample line bundles are
discussed, while we will discuss ample (but not necessarily very ample) line bundles
on the four-torus. For this reason, we will omit details of some of the proofs in this
subsection.

Lemma 3.5 If d1D 1 and fP is a Lefschetz pencil for some P � .CPN /� , then TZ

is not biholomorphic to a product of elliptic curves.

Proof Suppose that TZ were a product E1 �E2 . The line bundle LZ would be a
tensor product p�

1
L1˝p�

2
L2 , where pi is the projection onto the i th component, L1

is a line bundle on E1 of degree 1 and L2 is a line bundle on E2 of degree d . The
space �.LZ / would be generated by s �t1; : : : ; s �td , where �.L1/Dhsi and �.L2/D

ht1; : : : ; td i. Thus, for any line P � .CPN /� the base locus of a pencil fP would
contain s�1.0/, and in particular fP would not be a Lefschetz pencil, contradicting
the assumption.

In what follows, we assume that TZ is not a product of elliptic curves if d1 D 1. Note
that a generic Z2H2 satisfies this assumption by Lemma 2.3. For a homogeneous linear
polynomial q 2CŒfXij g0�i<d1;0�j<d2

� we denote the zero-set of q by Hq 2 .CPN /� .
We define a subset WZ � TZ � .CPN /� by

WZ D��
xx;HP

lijXij

�
2TZ�.CPN /�

ˇ̌̌ X
i;j

lij#
ij
Z
.x/D0;

X
i;j

lij
@#

ij
Z

@zk

.x/D0 for kD1; 2

�
:

We can prove the following lemma by direct calculation.

Lemma 3.6 Let P � .CPN /� be a line. Suppose that xx is not a base point of fP .
The following conditions are equivalent:

(1) .xx;HP
lijXij

/ 2WZ .

(2) fP .xx/DHP
lijXij

and xx is a critical point of fP .

(3) 'Z is not transverse to HP
lijXij

at xx .
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In what follows, we assume that d1d2 is greater than or equal to 3. In this case 'Z is
defined on TZ (see [17, Section 10.1]). For i D 0; 1; 2 we define

(3-1) Ri D fx 2 TZ j rank.d'Z /x D ig:

We denote the union
S

j�i Rj by Si . The set Si is an analytic subset of TZ , and in
particular the dimension of Si makes sense.

Lemma 3.7 The dimension of S1 is at most 1. Furthermore, if NS.TZ / Š Z and
S0 ¤∅, then dim.S0/ is equal to 0.

Proof Since TZ is compact, the image 'Z .TZ / is an analytic set by [5, Theorem 5.8].
Assume that dim.S1/ D 2. Since TZ is irreducible, S1 is equal to TZ . Thus the
dimension of 'Z .TZ / is 1 by the rank theorem (see [5, Theorem A2.2.2]). By Chow’s
theorem (see [5, Theorem 7.1]) 'Z .TZ / is an algebraic curve. If the degree of 'Z .TZ /

were 1, then 'Z .TZ / would be contained in some HP
lijXij

2 .CPN /� , but that would
imply that the section

P
lij#

ij
Z

is the zero-section, contradicting the fact that f# ij
Z
gi;j

is a basis of �.LZ /. Thus the degree of 'Z .TZ / is at least 2, and in particular
'Z .TZ / intersects a generic hyperplane in CPN at more than one point. This would
imply that a generic divisor in jLZ j is reducible, contradicting [17, Theorem 4.3.5].

The map 'Z is constant on each component of S0 . Since 'Z is not a constant map,
dim.S0/ is less than 2. Suppose that dim.S0/ were equal to 1. Take a one-dimensional
component C of S0 and denote the point in 'Z .C / by c 2CPN . Since there exists a
hypersurface H 2 .CPN /� away from c , the intersection number ŒC � �HZ is equal
to 0. On the other hand, the self-intersection H 2

Z
is positive. Since both the class ŒC �

and HZ are contained in NS.TZ /, by assumption ŒC � should be equal to 0, but it
cannot happen since C is an algebraic curve.

In what follows we assume that dim.S0/ is equal to 0 if S0 is not empty. By Lem-
mas 2.3 and 3.7 this assumption holds for generic Z 2H2 . Note also that any pencil fP

would not be a Lefschetz pencil if dim.S0/> 0. Indeed, any point in a one-dimensional
component of S0 is either a base point or a critical point of fP for any P .

Lemma 3.8 The dimension of WZ is at most N � 1.

Proof of Lemma 3.8 Let p1W WZ ! TZ be the projection onto the first component.
By Lemma 3.6, the restriction p1jp�1

1
.Ri / is a fiber bundle with fiber CPN�1�i . Since

Algebraic & Geometric Topology, Volume 18 (2018)



Topology of holomorphic Lefschetz pencils on the four-torus 1529

the dimension of R0 D S0 is 0, it is a finite set (see [5, Proposition 3.4]). Thus
p�1

1
.R0/ is a manifold and its dimension is N �1 if it is not empty. Since R2�TZ is

open, p�1
1
.R2/ is also a manifold and its dimension is N � 1 provided that p�1

1
.R0/

is not empty. Suppose that the dimension of the locally analytic set p�1
1
.R1/ is greater

than N � 1. There exists an open set U � TZ � .CPN /� such that the intersection
p�1

1
.R1/\U is a manifold with dimension greater than N � 1. Since Sing.R1/ is

nowhere dense in R1 , the set U \p�1
1
.reg.R1// is not empty. Since reg.R1/ is open

in R1 , the set U \p�1
1
.reg.R1// is a manifold with dimension greater than N � 1.

However, this is impossible since p�1
1
.reg.R1// is a fiber bundle over reg.R1/, which

is a 1–dimensional manifold if it is not empty, with fiber CPN�2 . Thus the dimension
of p�1

1
.R1/ is at most N �1. Since WZ is the union p�1

1
.R0/[p�1

1
.R1/[p�1

1
.R2/,

its dimension is at most N � 1.

Let p2W WZ ! .CPN /� be the projection onto the second component and DZ the
image of p2 . Since p2 is a proper map, DZ is an analytic set of dimension at most
dim.WZ /; see [5, Theorem 5.8].

Lemma 3.9 The dimensions of DZ and WZ are both N � 1.

Proof Since dim.DZ / � dim.WZ /, it is enough to prove dim.DZ / D N � 1 by
Lemma 3.8. Since dim.DZ / is at most N � 1, there exists a point H 2 .CPN /�

away from DZ . Let �H W .CPN /� n fH g !CPN�1 be the projection from H . The
image �H .DZ / is an analytic set since the restriction �H jDZ

is proper. If dim.DZ /

were less than N � 1, the dimension of �H .DZ / would also be less than N � 1.
Thus we could take a point x 2CPN�1 away from �H .DZ /. We denote the closure
��1

H
.x/ by Px , which is a line in .CPN /� . Using Lemma 3.3 we can verify that fPx

is a Lefschetz pencil on TZ without critical points. This would imply that a blow-up
of TZ admits a surface bundle over CP1 , which is impossible.

We define the subset W 0
Z
�WZ as

W 0
Z D

�
.xx;HP

lijXij
/ 2WZ

ˇ̌̌
det
��X

i;j

lij
@2#

ij
Z

@zk@zl

.x/

�
1�k;l�2

�
¤ 0

�
:

The next two lemmas follow from the same arguments as those in [26, Section 2.1.1].

Lemma 3.10 Suppose that xx 2 TZ is not a base point of fP for a line P � .CPN /� .
Then the following conditions are equivalent:
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(1) .xx;H / 2W 0
Z

.

(2) fP .xx/DH and xx is a Lefschetz-type critical point of fP .

Moreover, if .xx;H / 2W 0
Z

then WZ is regular at .xx;H / with dim.xx;H /WZ DN �1,
and p2 is an immersion at .xx;H /.

Lemma 3.11 Let .xx;H / 2 W 0
Z

and P � .CPN /� be a line containing H . Then
TH P is contained in .dp2/.xx;H /.T.xx;H /WZ / if and only if '�1

Z
.H 0/ contains xx for

any H 0 2 P .

We define two subsets D0
Z

and D00
Z

of DZ as follows:

D0Z D p2.WZ nW 0
Z /; D00Z D fH 2 DZ nD0Z j ].p

�1
2 .H //¤ 1g:

Since WZ nW 0
Z

is analytic and p2 is proper, D0
Z

is analytic by [5, Theorem 5.8].
Furthermore, it is easy to see that D00

Z
is contained in Sing.DZ /, which is an analytic

set with dimension at most N � 2 by [5, Theorem 5.2.2].

Theorem 3.12 For a line P � .CPN /� , the following conditions are equivalent:

(1) The map fP is a Lefschetz pencil.

(2) The line P is away from D0
Z
[D00

Z
and for any .xx;H / 2 p�1

2
.DZ \P / we

have .dp2/.xx;H /.T.xx;H /WZ /CTH P D TH .CPN /� .

We can prove Theorem 3.12 in the same way as in the proof of [26, Proposition 2.9].
By Lemma 3.10 the set D0

Z
D DZ n .D0Z [ D00

Z
/ is a submanifold of .CPN /� of

dimension N � 1. We can easily deduce the following corollary from Theorem 3.12.

Corollary 3.13 Suppose that H 2 .CPN /� is away from DZ . Denote the projection
from H by �H W DZ !CPN�1 . The map

f
��1

H
.x/
W TZ Ü ��1

H
.x/

is a Lefschetz pencil if and only if ��1
H
.x/ is away from D0

Z
[D00

Z
and x is a regular

value of �H jD0
Z

.

Remark 3.14 Using Theorem 3.12 we can prove that for a generic Z 2 H2 the set
of lines in .CPN /� giving rise to Lefschetz pencils on TZ is connected. We can
thus deduce that two Lefschetz pencils on TZ coming from the same polarization are
isomorphic (see the proofs of Lemma 3.16 and Corollary 3.17). Still, Theorem 1.1
does not follow from this fact since the Lefschetz pencils f0 and f1 in Theorem 1.1
do not necessarily give the same polarization on the total spaces.
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We denote the set of all projective lines in .CPN /� by L, which can be identified with
the Grassmannian manifold G2.C

NC1/. Since �H .Sing.DZ // is an analytic set of
dimension at most N � 2, we can deduce the following corollary.

Corollary 3.15 Suppose that fP W TZ Ü P satisfies the conditions (2) and (3) in
Section 2.1. For any open neighborhood U � L of P , there exists a line P 0 2 U such
that fP 0 is a Lefschetz pencil.

3.2 Existence of paths connecting two Lefschetz pencils

Let d1; d2 be positive integers with d1 j d2 . Throughout this subsection, we assume
that d1d2 � 3. As we observed in the beginning of Section 3.1, any holomorphic
Lefschetz pencil on T 4 with genus d1d2 C 1 and divisibility d1 is isomorphic to
fP W TZ Ü P for Z 2 H2 and P 2 L. The aim of this subsection is to take a path in
H2 �L which connects two points associated with two given Lefschetz pencils.

Lemma 3.16 The subset of H2�L consisting of points which yield Lefschetz pencils
is open.

Proof Let S2.C
NC1/ be the space of all pairs of C–linearly independent vectors

in CNC1 endowed with the relative topology of .CNC1/2 ; that is, S2.C
NC1/ is a

noncompact Stiefel manifold. Since the quotient map � W S2.C
NC1/!L is continuous

and open, it is enough to show that the set

f.Z; .v0; v1// 2 H2 �S2.C
NC1/ j .Z; �.v0; v1// yields a Lefschetz pencilg

is an open subset.

For .Z; .v0; v1//2H2�S2.C
NC1/, define diffeomorphisms �v0;v1

W CP1
!�.v0; v1/

and  Z W R
4!C2 by

�v0;v1
.Œl0 W l1�/DHP

.l0v
ij

0
Cl1v

ij

1
/Xij

;  Z .x/D .Z;D/x;

where we put vk D .: : : ; v
ij

k
; : : :/ and DD

�
d1

0
0

d2

�
. We can deduce from Lemma 3.10

that f�.v0;v1/. Z .x//D �v0;v1
.Œl0 W l1�/ and that  Z .x/ is a Lefschetz critical point

if and only if the following three conditions are satisfied:

�

X
i;j

.l0v
ij
0
C l1v

ij
1
/#

ij
Z
. Z .x//D 0.
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�

X
i;j

.l0v
ij
0
C l1v

ij
1
/
@#

ij
Z

@zk

. Z .x//D 0 for k D 1; 2.

� det
��X

i;j

.l0v
ij
0
C l1v

ij
1
/
@2#

ij
Z

@zk@zl

. Z .x//

�
1�k;l�2

�
¤ 0.

Furthermore, by Lemma 3.11 the following two conditions are equivalent:

� The point . Z .x/; �v0;v1
.Œl0 W l1�// is contained in W 0

Z
and

T�v0;v1
.Œl0Wl1�/�.v0; v1/� .dp2/. Z.x/;�v0;v1

.Œl0Wl1�//
.T
. Z.x/;�v0;v1

.Œl0Wl1�//
WZ /:

� .Z; .v0; v1// satisfies the three conditions above and
P

i;j v
ij

k
#

ij
Z
. Z .x//D 0

for k D 0; 1.

We define a map ˆ.Z; .v0; v1//W R
4 �CP1

!C6 as follows:

ˆ.Z; .v0; v1//.x; Œl0 W l1�/D X
i;j

.l0v
ij
0
C l1v

ij
1
/#

ij
Z
. Z .x//;

X
i;j

.l0v
ij
0
C l1v

ij
1
/
@#

ij
Z

@z1

. Z .x//;

X
i;j

.l0v
ij
0
C l1v

ij
1
/
@#

ij
Z

@z2

. Z .x//; det
��X

i;j

.l0v
ij
0
C l1v

ij
1
/
@2#

ij
Z

@zk@zl

. Z .x//

��
;

X
i;j

v
ij
0
#

ij
Z
. Z .x//;

X
i;j

v
ij
1
#

ij
Z
. Z .x//

!
:

Let
V1 D f0g � f0g �C2;

V2 D f0g �C � f0g �C3
�C �C2

DC6;

�D
˚
.x1;x2;x3;x4/ 2R4

j jxi j �
1
2

	
:

We can deduce from Lemmas 3.6, 3.10 and Theorem 3.12, together with double-
periodicity of the Theta functions, that f�.v0;v1/W TZ Ü �.v0; v1/ satisfies the condi-
tions (2) and (3) in Section 2.1 if and only if ˆ.Z; .v0; v1//.��CP1/\ .V1[V2/ is
empty. Since V1 and V2 are closed and ��CP1 is compact, the subset

W0 D f.Z; .v0; v1// 2 H2�S2.C
NC1/ jˆ.Z; .v0; v1//.��CP1/\.V1[V2/D∅g

is open.

We take a point .Z; .v0; v1// 2W0 and suppose that f�.v0;v1/W TZ Ü �.v0; v1/ is
a Lefschetz pencil. We put ��1

v0;v1
.f�.v0;v1/.Crit.f�.v0;v1////D fy1; : : : ;yng, where
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n D 6d1d2 is the number of critical points of f�.v0;v1/ . For each i , we take a disk
neighborhood Di of yi in CP1 such that Di \Dj D ∅ if i ¤ j . The first three
components of ˆ.Z; .v0; v1//.x; Œl0 W l1�/ can never be equal to 0 simultaneously for
.x; Œl0 W l1�/ 2��

�
CP1
n
F

i Di

�
. Since ��

�
CP1
n
F

i Di

�
is compact, there exists

an open neighborhood U �W0 of .Z; .v0; v1// such that for any .Z0; .v0
0
; v0

1
// 2 U

the first three components of ˆ.Z0; .v0
0
; v0

1
//.x; Œl0 W l1�/ will never be equal to 0

simultaneously for .x; Œl0 W l1�/ 2 � �
�
CP1

n
F

i Di

�
. Thus, all the critical values

of f�.v0
0
;v0

1
/W TZ 0 Ü �.v0

0
; v0

1
/ are contained in the disjoint union

F
i Di , where

�.v0
0
; v0

1
/ is identified with CP1 via ��1

v0
0
;v0

1

. Furthermore, we can make U sufficiently
small so that the conjugacy class of a local monodromy of f�.v0

0
;v0

1
/W TZ 0Ü�.v0

0
; v0

1
/

around Di is independent of the choice of .Z0; .v0
0
; v0

1
// 2 U . In particular for any

.Z0; .v0
0
; v0

1
// 2 U and i , the preimage f �1

�.v0
0
;v0

1
/
.Di/ contains at least one critical

point of f�.v0
0
;v0

1
/W TZ 0 Ü �.v0

0
; v0

1
/. Since f�.v0

0
;v0

1
/ has genus g D d1d2C 1 and

b D 2d1d2 base points, 0 D �.TZ 0/ is equal to 4 � 4g C n0 � b D n0 � 6d1d2 ,
where n0 is the number of critical points of f�.v0

0
;v0

1
/ . Thus n0 is equal to n and

the set f �1
�.v0

0
;v0

1
/
.Di/ contains exactly one critical point for each i , which implies

that f�.v0
0
;v0

1
/ satisfies condition (1) for any .Z0; .v0

0
; v0

1
// 2 U . We can eventually

conclude that the set of points in H2 �S2.C
NC1/ giving rise to a Lefschetz pencil is

open.

The proof of Lemma 3.16 implies the following corollaries.

Corollary 3.17 Let W be the set of .Z;P / 2 H2 �L such that fP W TZ Ü P is a
Lefschetz pencil. For .Zi ;Pi/ 2W with i D 0; 1 the two pencils fP0

and fP1
are

isomorphic if .Z0;P0/ and .Z1;P1/ are contained in the same connected component
of W .

Proof Suppose that .Z0;P0/ and .Z1;P1/ are contained in the same connected
component of W . The proof of Lemma 3.16 shows that the monodromy factoriza-
tions of fP0

and fP1
are Hurwitz equivalent. Thus fP0

and fP1
are isomorphic by

Theorem 2.2.

Corollary 3.18 A genus g � 4 holomorphic Lefschetz pencil on T 4 does not have a
reducible fiber.

Proof Suppose that fP W TZ Ü P has a reducible fiber F DF1CF2 . By Lemma 2.3,
Lemma 3.16 and Corollary 3.17, we may assume that NS.TZ / is isomorphic to Z
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without loss of generality. Since ŒFi � 2 NS.TZ / for i D 1; 2, ŒFi � D ni˛ for some
ni 2 Z and ˛ 2 H 2.TZ IZ/. Since F1 and F2 intersect at one point (which is a
Lefschetz singularity of fP ), we have that n1n2˛

2 is equal to 1. Thus 2g� 2D ŒF �2

must be equal to 4, which contradicts the assumption.

Remark 3.19 We can deduce from Corollary 3.18 that a genus g� 4 Lefschetz pencil
on the four-torus T 4 with reducible fibers cannot be holomorphic.

Lemma 3.20 Suppose that the following condition, for .d1; d2/, is satisfied:

.�/
The set fZ 2 H2 j dim.D0

Z
/ � N�1g is contained in a countable union of

analytic sets with positive codimensions.

Then W defined in Corollary 3.17 is path-connected.

Proof For .Zi ;Pi/ 2W , i D 0; 1, we first take a path ˇW Œ0; 1�!H2 which satisfies
the following properties:

� ˇ.i/DZi for i D 0; 1.

� dim.D0
ˇ.t/

/ <N � 1 for any t 2 .0; 1/.

� The group NS.Tˇ.t// is the infinite cyclic group for any t 2 .0; 1/.

We can take such a path by the assumption and Lemma 2.3. We may further assume
that Tˇ.t/ is not a product of elliptic curves by Lemma 2.3 and that an analytic set
S0�Tˇ.t/ , defined after Lemma 3.6, has dimension 0 by Lemma 3.7. By Lemma 3.16
there exists " > 0 such that fP0

W Tˇ.t/ Ü P0 and fP1
W Tˇ.1�t/ Ü P1 are both

Lefschetz pencils for t 2 Œ0; "�. We will prove that there exists a piecewise smooth path
 W Œt0; t1�! H2 �L which satisfies the following conditions:

(1) 2.t0/D P0 .

(2) f2.t/W T1.t/ Ü 2.t/ is a Lefschetz pencil for any t 2 Œt0; t1�.

(3) There exists a monotone nondecreasing function ıW Œt0; t1�! Œ"; 1� "� such that
ı.t0/D " and 1.t/D ˇ.ı.t// for any t 2 Œt0; t1�.

(4) ı.t1/D 1� " and 2.t1/D P1 .

Here i.t/ is the i th component of  .t/. In order to prove existence of such a path,
we define a value T � 1� " by

T D supft 2 Œ0; 1� "� j 9  W Œt0; t1�! L satisfying (1)–(3) and 1.t1/D ˇ.t/g:
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The value T is equal to 1� ". To see this, suppose that T is less than 1� ". Using
Corollary 3.13 we can find a line P 2L such that fP W Tˇ.T /ÜP is a Lefschetz pencil.
By Lemma 3.16 we can take "0 > 0 such that fP W Tˇ.t/ Ü P is a Lefschetz pencil
for any t 2 ŒT � "0;T C "0�. By the definition of T , there exists a path  W Œt0; t1�! L
and s 2 .T � "0;T � such that  satisfies the conditions (1)–(3) and 1.t1/D ˇ.s/. By
the assumption we can take a path in L0

ˇ.s/
which connects 2.s/ and P . We can

then extend a path  so that the extended path z satisfies the conditions (1)–(3) and
z .t1/ D T C "0 , which contradicts the definition of T . Thus we can conclude that
T D 1� ". In the same way as above, we can then take a path  which satisfies the
conditions (1)–(4). Eventually we can obtain a path connecting .Z0;P0/ and .Z1;P1/

by concatenating the three paths t 7! .ˇ.t/;P0/ defined on Œ0; "�, the path  obtained
above and the path t 7! .ˇ.t/;P1/ defined on Œ1� "; 1�.

We can eventually deduce the following from Corollary 3.17 and Lemma 3.20.

Theorem 3.21 Suppose that the condition .�/ in Lemma 3.20 is satisfied. Then any
two holomorphic Lefschetz pencils on T 4 with genus .d1d2C 1/ and divisibility d1

are isomorphic.

3.3 The condition .�/ for a pair .d1; d2/

As we proved in the last subsection, any two holomorphic Lefschetz pencils with
genus .d1d2C 1/ and divisibility d1 are isomorphic provided that the condition .�/ in
Lemma 3.20 is satisfied. In this subsection we discuss which pairs .d1; d2/ satisfy this
condition.

We first observe that if d1d2 � 5, the set of Z 2 H2 such that LZ is not very ample
is contained in an algebraic set with positive codimension (see [17, Theorem 4.5.1,
Section 10.1, Theorem 10.4.1]). Furthermore, by the same arguments as those in [26,
Section 2.1.1], we can deduce that D0

Z
has dimension at most N �2 when LZ is very

ample. We thus obtain:

Lemma 3.22 The condition .�/ holds if d1d2 � 5.

The only remaining case covered in Theorem 1.1 is .d1; d2/D .2; 2/.

Lemma 3.23 The condition .�/ holds for .d1; d2/D .2; 2/.
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Proof For Z 2 H2 , the .2; 2/–polarized abelian surface .TZ ;HZ / is isomorphic to
.TZ 0 ; 2HZ 0/, where Z0 DZ=2 2 H2 and .TZ 0 ;HZ 0/ is the .1; 1/–polarized abelian
surface corresponding to Z0 (the isomorphism sends xx 2 TZ to x=2 2 TZ 0 ). Suppose
that TZ is not a product of elliptic curves (this condition holds for generic Z by
Lemma 2.3). The abelian surface TZ 0 is not also a product of elliptic curves. We denote
the Kummer surface TZ=h�1i associated with TZ by KZ . Since LZ 0 is symmetric
in the sense of [17, Section 4.6], there exists an embedding �Z W KZ ! .CP3/� such
that the following diagram commutes (see [17, Section 4.8]):

TZ

'Z //

�

��

.CP3/�

KZ

�Z

;;

where � W TZ ! KZ is the quotient map. Thus, the set R0 � TZ defined in (3-1)
consists of sixteen points which are preimages of singular points of KZ under � , and
R2DTZ nR0 . The preimage p�1

1
.R2/�WZ is a manifold with dimension N �1. If

the dimension of p2.p
�1
1
.R2// is less than N �1, that of DZ \p2.p

�1
1
.R2// is also

less than N � 1. Suppose that the dimension of p2.p
�1
1
.R2// is N � 1. In the same

way as in the proof of Lemma 3.22, we can verify that p�1
1
.R2/\.WZ nW

0
Z
/ is the set

of points at which the restriction p2W p
�1
1
.R2/!DZ is not an immersion, in particular

p�1
1
.R2/\W 0

Z
is not empty. Since p�1

1
.R2/ is irreducible and p�1

1
.R2/\.WZ nW

0
Z
/

is locally analytic, the dimension of p�1
1
.R2/\ .WZ nW 0

Z
/ is at most N � 2.

For xx 2 R0 , the preimage p�1
1
.xx/ is a hyperplane in fxxg � .CPN /� . The proof of

[17, Theorem 4.8.1] implies that the following map is an isomorphism for any x 2C2

representing xx 2R0 :

S2.TxC2/! Hom.'Z .xx/;C/;
X

aij
@2

@zi@zj
7!

�
# 7! aij

@2#

@zi@zj
.x/
�
;

where S2.TxC2/ is the symmetric product of TxC2 and we identify 'Z .xx/ in
.CPN /� with a hyperplane in �.LZ / using the basis f# ij

Z
g of �.LZ /. We let

sij 2 Hom.'Z .xx/;C/ be the image of @2=@zi@zj under the map above. The set
fs11; s12; s22g is a basis of Hom.'Z .xx/;C/, so we can take a dual basis fs�

11
; s�

12
; s�

22
g

of Hom.'Z .xx/;C/
� Š 'Z .xx/. Let #0 D s�

11
Cs�

22
2 'Z .xx/. This theta function

satisfies @2#0=@zi@zj .x/D ıij . In particular, .xx; #0/ is contained in W 0
Z
\p�1

1
.xx/.

Since p�1
1
.xx/ is irreducible, the dimension of .WZ nW 0

Z
/\p�1

1
.xx/ is at most N �2.
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We can eventually conclude that the dimension of

WZ nW 0
Z D .p

�1
1 .R2/\ .WZ nW 0

Z //[ .p
�1
1 .R0/\ .WZ nW 0

Z //

is at most N � 2. Thus the dimension of the image D0
Z
D p2.WZ nW 0

Z
/ is also at

most N � 2.

Theorem 1.1 immediately follows from Theorem 3.21 and Lemmas 3.22 and 3.23.

We thus far cannot guarantee that the assumption .�/ holds when .d1; d2/ D .1; 3/

or .1; 4/. Furthermore, the arguments in this section do not work when .d1; d2/D .1; 2/

(note that we assumed that d1d2 is at least 3 in the paragraph preceding Lemma 3.7).
Still, we believe the following conjecture holds:

Conjecture 3.24 Two holomorphic Lefschetz pencils on the four-torus (with any
genera and divisibilities) are isomorphic if and only if their genera and divisibilities
coincide.

4 Examples of Lefschetz pencils on the four-torus

We can deduce from Corollary 3.13 and Lemmas 3.22 and 3.23 that there exists a
holomorphic Lefschetz pencil on T 4 with genus .d1d2C 1/ and divisibility d1 for
any d1; d2 with d1 j d2 and either d1d2 � 5 or d1 � 2. Such a pencil can be obtained
by taking a generic pencil in the complete linear system of an ample line bundle, in
particular it is in general difficult to determine its monodromy factorization. Note
that so far we have not yet proved the existence of holomorphic Lefschetz pencils
corresponding to .d1; d2/D .1; 2/, .1; 3/ and .1; 4/, while the case of .1; 1/ is already
excluded (cf Remark 3.2). In this section we will first obtain a genus-3 holomorphic
pencil on T 4 with .d1; d2/D .1; 2/ following the construction due to Smith [24], and
determine vanishing cycles of it. We will further obtain holomorphic pencils with
higher genera (and their vanishing cycles) by composing unbranched coverings.

We begin by observing the relation between (possibly branched) coverings and mon-
odromies of mappings. Let X be a closed four-manifold, † a closed surface and
f W X ! † a smooth map with discrete critical value set. As in Section 2.2, we
can define a local monodromy by taking a loop around a critical value of f and
a parallel transport along this loop with respect to a horizontal distribution of the
submersion f jX nCrit.f / . Let qW zX !X be a covering branched at a (possibly discon-
nected and empty) immersed surface S with transverse self-intersections (the reader
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can refer to [11, Chapter 7], for example, for coverings branched at such surfaces).
We denote the set of self-intersections of S by D.S/� X and the critical point set
of the restriction f jSnD.S/ by Tf .S/. In what follows we assume that the image
f .Tf .S// is a discrete set. It is easy to see that the critical value set of the composition
f ı qW zX ! † is contained in the image f .Crit.f /[D.S/[ Tf .S//, which is a
discrete set by assumption. In particular, we can define a local monodromy of each
critical value of f ı q . We will discuss the relation of monodromies of f and f ı q

below.

Let a0 2 † be a point away from f .Crit.f /[D.S/[Tf .S//. By assumption the
fiber f �1.a0/ is a submanifold of X and intersects S transversely. In particular the
intersection f �1.a0/\S is a finite set. Using this we can identify f �1.a0/ with a
genus g closed surface †g with pD ].f �1.a0/\S/ marked points, which we denote
by †g;p . For a point a 2 f .Crit.f /[D.S/[ Tf .S// we take a path ˛ from a0

to a. We further take a loop z̨ by connecting ˛ with a small circle around a. Let H
be a horizontal distribution of the restriction f jX n.Crit.f /[D.S/[Tf .S// such that Hx

coincides with TxS for any x 2S n.Crit.f /[D.S/[Tf .S//. Using the identification
f �1.a0/Š†g;p we can regard the parallel transport Tz̨;H along z̨ with respect to H
as a self-diffeomorphism of †g;p preserving the marked points setwise.

By assumption the restriction qjf �1.a0/
is a covering which is branched at the finite set

f �1.a0/\S . In particular we can take an identification of a fiber .f ı q/�1.a0/ with
a marked surface †zg;p , which is a covering of †g;p branched at p marked points.
Since H is tangent to S at any point in S n .Crit.f /[D.S/[Tf .S//, we can take a
lift zH of H by the branched covering q , which is a horizontal distribution of f ı q .
It is easy to verify that the parallel transport T

z̨;zH is a lift of Tz̨;H by q ; that is, the
following diagram commutes:

†zg;p
Tz̨;zH
����! †zg;p

q

??y ??yq

†g;p

Tz̨;H
����! †g;p

We eventually obtain the following lemma.

Lemma 4.1 Let Mod.†g;p/ be the group of isotopy classes of orientation-preserving
self-diffeomorphisms of †g;p which preserve the marked points setwise, and let
'z̨ 2Mod.†g;p/ be the monodromy of f along z̨ . Then the monodromy of f ı q

along z̨ is represented by a lift of a representative of 'z̨ by q .
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Remark 4.2 Lemma 4.1 does not uniquely determine the monodromy of f ıq along z̨ :
a lift of a representative of 'z̨ by q is unique up to covering transformations of q .
Still, such an ambiguity will not cause any problems in the following subsections.
Indeed, monodromies we will deal with must satisfy some additional conditions, which
determine them uniquely.

4.1 Genus-3 holomorphic pencils due to Smith

In [24] Smith gave a way to construct a genus-3 holomorphic Lefschetz pencil on T 4

by taking a branched covering of a singular projective variety. Although Smith showed
that we can obtain a holomorphic pencil by his construction, he neither carried out
the construction in practice nor obtained vanishing cycles of the resulting pencil (but
mentioned the symplectic representation of the monodromy). In this subsection, we
will construct a genus-3 holomorphic pencil of T 4 following the construction in [24]
and determine the vanishing cycles of the pencil.

We begin with a brief review of Smith’s construction. For homogeneous polynomials
q1; : : : ; qn we denote their zero-set by V .q1; : : : ; qn/�CPm . We put

QD V .x2
Cy2

C z2/�CP3; S D V .x2
Cy2

C z2/�CP2:

The set Q is a singular variety with an A1 –singularity Œ1 W 0 W 0 W 0� 2 Q, and S is
a sphere in CP2 . Let � W Q n fŒ1 W 0 W 0 W 0�g ! S be the restriction of the projection
Œt W x W y W z� 7! Œx W y W z�. We take six conics C1; : : : ;C6 with the following properties:

� Each Ci is away from the singularity Œ1 W 0 W 0 W 0�.

� Two spheres Ci and Cj intersect at two points transversely for i ¤ j with
i; j � 4, or .i; j /D .5; 6/.

� Two spheres C5 and C6 are tangent to Ci at one point for i � 4.

Let q1W Z!Q be a double covering branched at C1 [ � � � [C4 . The space Z has
two A1 –singularities in the preimage q�1

1
.Œ1 W 0 W 0 W 0�/. Let r W Zsm ! Z be the

resolution of these singularities. The space Zsm is a manifold obtained by replacing
neighborhoods of the two singularities of Z with two disk bundles over the sphere with
degree �2. In particular, Zsm has two spheres S1;S2 with self-intersection �2. Since
C1 [ � � � [C4 has twelve transverse double points, Zsm has another twelve spheres
S3; : : : ;S14 with self-intersection �2. Furthermore, the preimage q�1

1
.C5 [ C6/

contains two disjoint sphere S15 and S16 with self-intersection �2. We can take a
double covering q2W

zT !Zsm branched at the disjoint union
F16

iD1 Si . The space zT
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has 16 exceptional spheres in the preimage q�1
2

�F
i Si

�
. We denote the blow-down

of zT along these spheres by T . The composition � ı q1 ı r ı q2 factors through T

and defines a pencil f W T Ü S with four base points which satisfies the conditions
(2) and (3) in Section 2.1. If we take conics C1; : : : ;C6 so that the restriction of � on
the set of double points of C1[ � � � [C4 is injective, the resulting pencil f becomes
Lefschetz.

In what follows, we consider the following conics in Q:

C1 D V .x2
Cy2

C z2; t/; C2 D V .x2
Cy2

C z2; t Cx/;

C3 D V
�
x2
Cy2

C z2; t C 1
2
xC 1

2
y
�
; C4 D V

�
x2
Cy2

C z2; t C 1
2
x� 1

2
y
�
;

C5 D V
�
x2
Cy2

C z2; t C 1
2
xC 1

2
iz
�
; C6 D V

�
x2
Cy2

C z2; t C 1
2
x� 1

2
iz
�
:

It is easy to verify that these conics satisfy the three conditions in the previous paragraph.
We denote the set of double points of C1[ � � � [C6 by D . Using Lemma 4.1 we can
obtain vanishing cycles of f once we can calculate the monodromies of � around
the image �.D/. Let S0 D fŒx W y W z� 2 S j z ¤ 0g. We define a holomorphic
map 'W S0 ! C2 by '.Œx W y W z�/ D .x=z;y=z/. Since the image '.S0/ is equal
to f.X;Y / 2 C2 j .X C iY /.X � iY / D �1g, the composition  ı 'W S0 ! C� is
biholomorphic, where  W C2!C� is defined by  .X;Y /DX C iY . Furthermore,
this map can be extended to a biholomorphic map S ! C D C[ f1g which sends
Œ1 W i W 0� and Œ1 W �i W 0� to 0 and 1, respectively. Using this map, we will identify S

with C throughout this subsection. The following lemma can be deduced easily by
direct calculation.

Lemma 4.3 The image �.D/ is contained in f�n 2C j nD 0; : : : ; 7g[f0;1g, where
� D exp

�
� i
4

�
. Furthermore, the intersection C5\C6 is contained in ��1.f0;1g/.

For any w 2CDCnf1g, the map ��1.w/!C defined as Œt Wx W y W z�! t=.x� iy/

is biholomorphic. Using this, we will identify the fiber ��1.w/ with C for any w 2C .
With this identification in hand, we can define a path  .i/W J !C , where i D 1; : : : ; 6,
for any path  W J !C (where J �R), by

 .i/.t/D z 2 ��1. .t//\Ci � C:

The value of this path is indeed determined uniquely since Ci is a section of � .
Let ˛ be an oriented path in C which intersects �.D/ only at its terminal point.
The corresponding paths ˛.1/; : : : ; ˛.6/ are also oriented paths in C two of which,
say ˛.i/ and ˛.j/ , intersect at their common terminal point. We denote by z̨ the
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oriented loop based at the initial point of ˛ obtained by connecting ˛ with a small
counterclockwise circle around the terminal point of ˛ . We can easily verify that
the parallel transport along z̨ is isotopic to a composition of the point-pushing self-
diffeomorphism of C along the paths ˛.1/; : : : ; ˛.6/ , the mth

ij power of the local
full-twist around the common terminal point of ˛.i/ and ˛.j/ , and the inverse of the
point-pushing self-diffeomorphism, where mij is the multiplicity of the intersection
of Ci and Cj in the fiber on the terminal point of ˛ , which is 1 if i; j � 4 or i; j � 5,
and 2 otherwise.

Let ˛k , where k D 1; 2; 3; 4, and ˇ be paths in C defined by

˛k W Œ�1; 1�!C; ˛k.s/D s�k�1;

ˇW Œ��; ��!C; ˇ.�/D " exp.i�/;

where " > 0 is a sufficiently small real number. In order to determine monodromies
of � , we first calculate the paths ˛.j/

k
and ˇ.j/ . Under the identification S Š C ,

˛1.s/D s corresponds to Œs2 � 1 W �i.s2C 1/ W 2s�. Thus, ˛.j/
1
.s/D t=.x � iy/ can

be calculated as follows:

˛
.1/
1
.s/D

0

x�iy
D 0;

˛
.2/
1
.s/D

�x

x�iy
D

s2�1

2
D�

1

2
C

1

2
s2;

˛
.3/
1
.s/D

�x=2�y=2

x�iy
D

s2�1

4
� i

s2C1

4
D
��3

2
p

2
C
��1

2
p

2
s2;

˛
.4/
1
.s/D

�x=2Cy=2

x�iy
D

s2�1

4
C i

s2C1

4
D

�3

2
p

2
C

�

2
p

2
s2;

˛
.5/
1
.s/D

�x=2�iz=2

x�iy
D

s2�1

4
C i

s

2
D�

1

4
.1� is/2;

˛
.6/
1
.s/D

�x=2Ciz=2

x�iy
D

s2�1

4
� i

s

2
D�

1

4
.1C is/2:

In the same way as above, we can also calculate the other paths as follows:

˛
.1/
2
.s/D 0; ˛

.2/
2
.s/D�1

2
C

i
2
s2;

˛
.3/
2
.s/D 1

2
p

2
��3
C

1

2
p

2
�s2; ˛

.4/
2
.s/D 1

2
p

2
�3
C

1

2
p

2
�3s2;

˛
.5/
2
.s/D�1

4
.1C ��1s/2; ˛

.6/
2
.s/D�1

4
.1C �3s/2;

˛
.1/
3
.s/D 0; ˛

.2/
3
.s/D�1

2
�

1
2
s2;
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˛
.3/
3
.s/D 1

2
p

2
��3
C

1

2
p

2
�3s2; ˛

.4/
3
.s/D 1

2
p

2
�3
C

1

2
p

2
��3s2;

˛
.5/
3
.s/D�1

4
.1C s/2; ˛

.6/
3
.s/D�1

4
.1� s/2;

˛
.1/
4
.s/D 0; ˛

.2/
4
.s/D�1

2
�

i
2
s2;

˛
.3/
4
.s/D 1

2
p

2
��3
C

1

2
p

2
��3s2; ˛

.4/
4
.s/D 1

2
p

2
�3
C

1

2
p

2
��1s2;

˛
.5/
4
.s/D�1

4
.1C �s/; ˛

.6/
4
.s/D�1

4
.1C ��3s/;

ˇ.1/.�/D 0; ˇ.2/.�/D�1
2
C

1
2
"2e2i� ;

ˇ.3/.�/D 1

2
p

2
��3
C

1

2
p

2
��1"2e2i� ; ˇ.4/.�/D 1

2
p

2
�3
C

1

2
p

2
�"2e2i� ;

ˇ.5/.�/D�1
4
.1C "ei.���

2
//2; ˇ.6/.�/D�1

4
.1C "ei.�C�

2
//2:

We can draw the paths ˛.j/i in the plane C as shown in Figure 1. In each of the figures,
the five dots are the points ˛.1/

k
.0/; : : : ; ˛

.6/

k
.0/ (note that ˛.5/

k
.0/D ˛

.6/

k
.0/), while

˛
.1/

k
is the constant path, the bold line describes the path ˛.2/

k
, the dotted lines (which

are colored in red) describe the paths ˛.3/
k

and ˛.4/
k

(the denser one is ˛.4/
k

, while the
other one is ˛.3/

k
) and the semi-dotted lines (which are colored in light blue) describe

the paths ˛.5/
k

and ˛.6/
k

(the denser one is ˛.5/
k

, while the other one is ˛.6/
k

). Moreover,
at each of the transverse crossings except for the terminal points, the path going over
the other path goes through the crossing point after the other path comes to the point
as the parameter s increases.

For k D 1; : : : ; 8 we define a path k in C as follows:

� For k � 4, let k be the concatenation of ˇjŒ0;.k�1/�i=4� and ˛k jŒ";1� .

� For k � 5, let k be the concatenation of ˛k�4jŒ�1;�"� and ˇjŒ�.9�k/�i=4;0�

with the opposite orientation.

According to the arguments above, the monodromy of � along the path zk is the
product of the full-twists along the paths shown in Figure 2 and the squares of the
full-twists along other paths, which have either ˛.5/

k
.0/ or ˛.6/

k
.0/ as end points and

are not described in Figure 2. (Note that we only need local monodromies derived from
the double points in C1[ � � � [C4 in order to obtain vanishing cycles of f W T ! S .)

By Lemma 4.1 we can obtain local monodromies of the genus-1 Lefschetz fibration
� ıq1 ı r W Zsm! S by taking a lift of the full-twists along the paths in Figure 2 under
the double covering of CŠ��1."/ branched at the set ��1."/\.C1[� � �[C4/ of four
points (ie the four nested dots in Figure 2). The resulting local monodromies are the
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1
2

3

4

5
6

˛
.j/
1
.s/; s � 0 ˛

.j/
1
.s/; s � 0 ˛

.j/
2
.s/; s � 0 ˛

.j/
2
.s/; s � 0

˛
.j/
3
.s/; s � 0 ˛

.j/
3
.s/; s � 0 ˛

.j/
4
.s/; s � 0 ˛

.j/
4
.s/; s � 0

Figure 1: The paths ˛.j/i in C ŠR2

A path for z1 Paths for z2 A path for z3 Paths for z4

A path for z5 Paths for z6 A path for z7 Paths for z8

Figure 2: The monodromy along zi is the product of the full-twists along the
paths above and other twists which are less important

squares of Dehn twists along the curves in Figure 3. Here, two of the four marked points
in Figure 3 are the points in the preimage of 12 C Š ��1."/, while the other two
marked points are two points in the preimage of the intersection ��1."/\ .C5[C6/.
All the marked points describe sections of the Lefschetz fibration � ı q1 ı r with
self-intersection .�2/.
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Figure 3: Vanishing cycles of the Lefschetz fibration � ı q1 ı r W Zsm! S ,
associated with (top row, left to right) 1 , 2 , 3 , 4 and (bottom row, left to
right) 5 , 6 , 7 , 8

To obtain the pencil f W T Ü S , we further take a double covering q2W
zT ! Zsm

branched at 16 spheres with self-intersection .�2/. Four of these spheres are the
sections of � ı q1 ı r , and the other twelve spheres are contained in singular fibers
of � ı q1 ı r , each of which is an irreducible component of a fiber containing two
Lefschetz singularities with parallel vanishing cycles.

Lemma 4.4 We denote the fiber .� ıq1 ır/
�1."/ by F �Zsm . The preimage of each

vanishing cycle in Figure 3 under the restriction q2jq�1
2
.F / is connected.

Proof We first observe that there is a one-to-one correspondence between the set of
isomorphism classes of double coverings of a four-manifold X branched at B � X

and the set of homomorphisms 'W H1.X nBIZ=2Z/! Z=2Z sending a meridian
of each component of B to 1. Furthermore, for a given double covering qW zX !X

branched at B , the corresponding homomorphism 'qW H1.X nBIZ=2Z/! Z=2Z

can be obtained as follows: for a simple closed curve c , the value 'q.Œc�/ is 1 (resp. 0)
if the preimage q�1.c/ is connected (resp. disconnected).

Let S �Zsm be one of the twelve spheres in singular fibers of � ıq1ır and N1�Zsm

a tubular neighborhood of S . The restriction of � ı q1 ı r on N1 has two Lefschetz
singularities and a regular fiber of this restriction is an annulus. According to [11,
Section 8.2] we can draw a handlebody picture of the closure N1 which reflects the
configuration of the two singularities as shown in Figure 4 on the left (two .�1/–framed
knots correspond to the two Lefschetz singularities). Moreover, applying the algorithm
in [11, Section 6.2] to our situation, we can obtain a diagram of the complement
N1 nN2 of a smaller tubular neighborhood N2 of S as shown in Figure 4 on the right
(the bold handles and the two 3–handles in the figure correspond to handles of S ).
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�1 �1
�1

0 �1

[ 3–handle� 2

Figure 4: Handlebody pictures of (left) the closure N1 of a neighborhood
of S and (right) the complement N1 nN2 of a smaller neighborhood of S

in N1

Let c1; : : : ; c12 � †1;4 be the vanishing cycles in the four-punctured torus †1;4

described in Figure 3. It is easy to verify (by drawing a handlebody picture using the
observation above) that the first homology of the complement of the sixteen spheres
in Zsm is isomorphic to the group�

H1.†
4
1IZ=2Z/˚

12M
iD1

.Z=2Zei/

�.
hfci C ei j i D 1; : : : ; 12gi;

where the ei coincide with the meridians of the spheres in singular fibers. As we
observed above, the homomorphism 'q2

associated with the branched covering q2

must send each ei to 1. Since ci is equal to ei in the group above, the preimage
q�1

2
.ci/ is connected.

Figure 5: The involution � , which is the rotation by � around the indicated axis.

Since the vanishing cycles c1; : : : ; c12 span the homology group H1.T
2IZ=2Z/, the

argument in the proof of Lemma 4.4 also shows that a double covering of T 2 branched
at the marked points by which each loop ci cannot be lifted is unique up to isomorphism.
In particular, we can obtain vanishing cycles of the pencil f W T Ü S once we can
find such a branched covering, which is obtained by dividing †3 by the involution �
shown in Figure 5. Taking the preimage of the vanishing cycles in Figure 3 by the
branched covering induced by �, we can eventually obtain vanishing cycles zc1; : : : ; zc12

of f W T Ü S as shown in Figure 6, and thus the monodromy factorization associated
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with f ,

(4-1) tzc12
� � � tzc1

D tı1
� � � tı4

:

As the pencil f has genus 3, it gives rise to a .1; 2/–polarization on T (see Lemma 3.1).

Figure 6: Vanishing cycles of a holomorphic genus-3 pencil on T 4 due to
Smith. From left to right, the curves (top row) zc12 , zc11 , zc10 , zc9 ; (middle
row) zc8 , zc7 , zc6 , zc5 ; (bottom row) zc4 , zc3 , zc2 , zc1 .

Remark 4.5 To be precise, the pencil we have constructed here is not a Lefschetz
pencil yet since it does not satisfy the condition (1) in Section 2.1. However, we
can obtain a holomorphic genus-3 Lefschetz pencil on T 4 by perturbing the conics
C1; : : : ;C6 so that the restriction of � on the set of double points of C1 [ � � � [C4

becomes injective. We can further check (using Mathematica) that the monodromy
factorization of the Lefschetz pencil obtained in this way is Hurwitz equivalent to that
of our pencil.

Remark 4.6 Recently, Baykur [1] has also constructed a genus-3 symplectic Calabi–
Yau Lefschetz pencil whose total space is homeomorphic to the standard four-torus T 4 ,
but its diffeomorphism type was unknown. In addition, the geometric structure of the
pencil is not clear since his construction is based on a purely combinatorial method in
terms of relations among Dehn twists. In Section 5, we will see that his pencil is in
fact isomorphic to the pencil corresponding to (4-1) (see Remark 5.2) after observing
some arguments on combinatorial structures of the factorization (4-1). Thus, we now
understand in detail the geometric structure of Baykur’s pencil; in particular, his pencil
is not only homeomorphic but also diffeomorphic to the standard T 4 , and the pencil
may be considered holomorphic.
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4.2 Holomorphic Lefschetz pencils with higher genera

As observed in the beginning of this section, for any integers d1; d2 > 0 with d1 j d2

and either d1d2 � 5 or d1 � 2, there exists a genus-.d1d2C1/ holomorphic Lefschetz
pencil on T 4 with divisibility d1 . In this subsection we will explain how to obtain
monodromy factorizations of some of these Lefschetz pencils. We will also find a
holomorphic Lefschetz pencil corresponding to .d1; d2/D .1; 4/, whose existence is
not verified so far.

Let c 2 H 2.T 4IZ/ be a .d1; d2/–polarization of T 4 . The cohomology class c

is equal to d1˛1 [ ˇ1 C d2˛2 [ ˇ2 for some generating system ˛1; ˇ1; ˛2; ˇ2 of
H 1.T 4IZ/. Let ai ; bj 2H1.T

4IZ/ be, respectively, duals of ˛i ; ǰ with respect to the
Kronecker product. We take an unbranched covering map qW zT ! T 4 corresponding
to the subgroup of H1.T

4IZ/ generated by n1a1; b1; n2a2; b2 for some positive
integers n1; n2 . It is easy to see that zT is again a 4–torus and the set�

q�.˛1/

n1

; q�.ˇ1/;
q�.˛2/

n2

; q�.ˇ2/

�
generates H 1. zT IZ/. In particular the pull-back q�.c/ 2 H 2. zT IZ/ is a . zd1; zd2/–
polarization of zT , where zd1 D gcd.n1d1; n2d2/ and zd2 D n1n2d1d2= zd1 . Since d2 is
divisible by d1 , we have that zd1 is also divisible by d1 . Furthermore, zd2 is divisible
by d2 since n1d1= zd1 must be an integer. Conversely, for any positive integers l1; l2

with .l1d1/j.l2d2/, the pull-back xq�.c/ by an unbranched covering map xq correspond-
ing to the subgroup hl1a1; b1; l2a2; b2i �H1.T

4IZ/ is an .l1d1; l2d2/–polarization
of zT . We thus obtain the following:

Lemma 4.7 Let c 2H 2.T 4IZ/ be a .d1; d2/–polarization of T 4 . For any positive
integers zd1; zd2 such that zd1j

zd2 and di j
zdi for i D 1; 2, there exists an unbranched

covering map qW zT ! T 4 such that the pull-back q�.c/ is a . zd1; zd2/–polarization
of zT . If q is an n–fold unbranched covering, zd1

zd2 is equal to nd1d2 .

Let f W T 4 Ü CP1 be a holomorphic pencil associated with a .d1; d2/–polarization
c 2H 2.T 4IZ/ and qW zT ! T 4 a finite unbranched covering map. It is easy to verify
that the composition f ı qW zT Ü CP1 is also a holomorphic pencil associated with
the polarization q�.c/. By Lemma 4.7, for any d1; d2 with d1d2 even we can obtain
a holomorphic pencil on T 4 associated with a .d1; d2/–polarization by composing a
finite unbranched covering map with the genus-3 pencil in the preceding subsection,
which is associated with a .1; 2/–polarization. We can perturb the resulting pencil so
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that no fiber contains more than one critical point; and hence it becomes a Lefschetz
pencil. We can further obtain the vanishing cycles of the pencil f ıq using Lemma 4.1
once we find out how the deck transformations of q act on a reference fiber of f ı q .
In what follows we will apply the above procedure to obtain two holomorphic pencils
on T 4 with the same genus but distinct divisibilities.

Example 4.8 Let f W T 4 ÜCP1 be the holomorphic pencil obtained in the preceding
subsection. According to Lemma 4.7, for a double unbranched covering qW zT ! T 4

the type of a polarization associated with the composition f ıq is either .1; 4/ or .2; 2/.
We will give two double unbranched coverings which yield both types of polarization.

b1 b2

a1 a2

Figure 7: The curves generating H1.T
4IZ/

It is easy to see that H1.T
4IZ/ is generated by the elements represented by the

curves a1; b1; a2; b2 shown in Figure 7 (which are contained in a reference fiber of f ).
Let q1W

zT1 ! T 4 be a double unbranched covering corresponding to the subgroup
ha1; 2b1; a2; b2i �H1.T

4IZ/. The restriction of q1 on the preimage of a reference
fiber of f is the quotient map by the involution �1 shown in Figure 8, in particular the
restriction of the deck transformation of q1 is equal to �1 .

�1
�1

=�1
�!

�

Figure 8: The involutions �1 and �1 . Both of them are rotations by � .

Let �1 be the involution of a fiber of f ı q shown in Figure 8, which is a lift of the
hyperelliptic involution � of the genus-3 fiber. For any i D 1; : : : ; 6 we take a lift di

of zci in Figure 6 under the unbranched covering map q1 as shown in Figure 9. The
other lift of zci is �1.di/, which is also given in Figure 9. Since zciC6 is equal to �.zci/,
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Figure 9: Vanishing cycles of the Lefschetz pencil f ı q1 . The curves di

and �1.di/ for (top, left to right) i D 6; 5; 4 and (bottom, left to right)
i D 3; 2; 1 .

the lifts of the curve zciC6 are �1.di/ and �1.�1.di//. Thus a monodromy factorization
of the pencil f ı q1 is

t�1.�1.d6//t�1.d6/ � � � t�1.�1.d1//t�1.d1/ � t�1.d6/td6
� � � t�1.d1/td1

D tı1
� � � tı8

:

Applying the algorithm given in the appendix, we can calculate the divisibility of f ıq1

(using Mathematica), which is equal to 1. Thus the type of polarization associated
with f ı q1 is .1; 4/.

Let q2W
zT2 ! T 4 be a double unbranched covering corresponding to the subgroup

ha1; b1; a2; 2b2i �H1.T
4IZ/. We take involutions �2 and �2 of a genus-5 surface as

shown in Figure 10. It is easily verified that the restriction of q2 to the preimage of a
reference fiber of f is the quotient map by �2 , and �2 is a lift of � under this map. By
Lemma 4.1, we can obtain vanishing cycles of f ı q2 by taking lifts of the zci , which
are denoted by ei and given in Figure 11 together with �2.ei/; �2.ei/; �2.�2.ei// for
i D 1; : : : ; 6. We eventually obtain a monodromy factorization of f ı q2 given by

t�2.�2.e6//t�2.e6/ � � � t�2.�2.e1//t�2.e1/ � t�2.e6/te6
� � � t�2.e1/te1

D tı1
� � � tı8

:

Applying the algorithm in the appendix (using Mathematica), we can verify that the
divisibility of f ıq2 is equal to 2. Thus, the type of polarization associated with f ıq2

is .2; 2/.
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�2 �2

Š
�2

Figure 10: The involutions �2 and �2 . Left: the punctured dots are on
opposite sides of the surface. Right: another description of the surface, where
the involution �2 becomes the rotation by � about the dotted circular axis.

Figure 11: Vanishing cycles of f ı q2 . From left to right, the curves (top
row) e6 , e5 , e4 ; (bottom row) e3 , e2 , e1 .

Remark 4.9 By Corollary 3.15 we can obtain two holomorphic Lefschetz pencils by
perturbing f ı q1 and f ı q2 . These Lefschetz pencils are not isomorphic, since they
have distinct divisibilities. As far as the authors know, this pair is the first example of a
pair of nonisomorphic holomorphic Lefschetz pencils on the same four-manifold with
the same genus, the same number of base points and explicit monodromy factorizations.

5 Combinatorial approach and its applications

In this section we will observe a combinatorial aspect of our pencils. We can reconstruct
the factorization (4-1) in a combinatorial way by utilizing a lift to Mod.†4

2
IU / of
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Matsumoto’s factorization in Mod.†2/, which was given in [12]. In [1], Baykur
independently gave a very similar construction to obtain a genus-3 Lefschetz pencil
whose total space is homeomorphic to T 4 . In fact, it turns out that his factorization is
Hurwitz equivalent to the factorization (4-1) (see Remark 5.2). Although the combi-
natorial construction has been already presented in [1], we repeat it here in a slightly
different way (more symmetric) for completeness. Our combinatorial construction of
Smith’s pencil is pretty useful for obtaining two new families of symplectic Calabi–Yau
Lefschetz pencils: one is a generalization of Smith’s pencil to higher genera, the other
consists of pencils on four-manifolds homeomorphic to the total spaces of torus-bundles
over the torus admitting sections.

In this section we will freely use elementary transformations, especially commutativity
relations, and permutations in the calculations. Given a Dehn twist factorization
W D ta1

� � � tak
(which is not necessarily equal to the identity or the boundary twist) and

a mapping class � , we denote the simultaneous conjugation �W��1D t�.a1/ � � � t�.ak/

by �.W / throughout the section.

5.1 Smith’s pencil and its generalization

As we mentioned, in order to combinatorially construct the factorization (4-1) we make
use of a lift of Matsumoto’s factorization. Matsumoto’s factorization is well known as
a factorization of a genus-2 Lefschetz fibration on T 2 �S2 # 4CP2 ; see [20]. In [12],
the first author found several lifts of the factorization to Mod.†4

2
/, each of which gives

four .�1/–sections of Matsumoto’s Lefschetz fibration. One of them is

(5-1) tB0;1
tB1;1

tB2;1
tC1

tB0;2
tB1;2

tB2;2
tC2
D tı1

� � � tı4
;

where the curves are as shown in Figure 12.

We first modify the relation to make it match our scheme. Consider a 3–chain relation
.tc tatb/

4D tı3
tC1

as in the top right of Figure 12. Substituting for tC1
in (5-1) we have

tı1
� � � tı4

D tB0;1
tB1;1

tB2;1
� .tc tatb/

4t�1
ı3
� tB0;2

tB1;2
tB2;2

tC2

D tB0;1
tB1;1

tB2;1
� .tc tatb/

2.tc tatb/
2
� tB0;2

tB1;2
tB2;2

t�1
ı3

tC2

D tB0;1
tB1;1

tB2;1
� .tc tatb/

2
� tB0

0;2
tB0

1;2
tB0

2;2
.tc tatb/

2t�1
ı3

tC2

D .tc tatb/
2tB0

0;1
tB0

1;1
tB0

2;1
� tB0

0;2
tB0

1;2
tB0

2;2
.tc tatb/

2t�1
ı3

tC2

D tB0
0;1

tB0
1;1

tB0
2;1

tB0
0;2

tB0
1;2

tB0
2;2
.tc tatb/

2t�1
ı3

tC2
.tc tatb/

2

D tB0
0;1

tB0
1;1

tB0
2;1

tB0
0;2

tB0
1;2

tB0
2;2
� .tc tatb/

4t�1
ı3
� tC2

;
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B0;1 B1;1 B2;1
c

b

a

C1

B0;2
B1;2 B2;2

ı2

ı3

ı1

ı4C2

Figure 12: A lift of Matsumoto’s factorization. The curves Bi;j for i D

0; 1; 2 and j D 1; 2 are as labeled. Top right: the curve C1 and a 3–chain
configuration. Bottom right: the curve C2 and the boundary curves.

where B0
i;1
D .tc tatb/

�2.Bi;1/ and B0
i;2
D .tc tatb/

2.Bi;2/ for i D 0; 1; 2, which are
as depicted in Figure 13. (Note that the geometric action of the mapping class
.tc tatb/

˙2t
�1
ı3

on the surface rotates the subsurface between ı3 and C1 by ˙180

degrees with respect to the horizontal axis, while holding ı3 and C1 .) By resubstituting
the 3–chain relation in the reverse way, we obtain

(5-2) tB0
0;1

tB0
1;1

tB0
2;1

tB0
0;2

tB0
1;2

tB0
2;2

tC1
tC2
D tı1

� � � tı4
:

This expression has a nice symmetry: namely, each B0i;j is preserved by the 180 degree
rotation with respect to the vertical axis, while C1 and C2 switch.

B02;1
B01;1 B00;1

B02;2 B01;2 B00;2

C1 C2

Figure 13: Modified lift of Matsumoto’s factorization

To construct Smith’s pencil, we now consider a 4–holed genus-3 surface and two
configurations for the relation (5-2) as in Figure 14, which give

td1
td2

td3
td4

td5
td6
� ts1

ts2
D tı1

tı2
� ts3

ts4
;

td7
td8

td9
td10

td11
td12
� ts3

ts4
D tı3

tı4
� ts1

ts2
:

We rewrite them as
td1

td2
td3

td4
td5

td6
D tı1

tı2
� ts3

ts4
t�1
s1

t�1
s2
;

td7
td8

td9
td10

td11
td12
D tı3

tı4
� ts1

ts2
t�1
s3

t�1
s4
:
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Combining them and canceling out ts3
ts4

t�1
s1

t�1
s2

and ts1
ts2

t�1
s3

t�1
s4

, we then obtain

(5-3) td1
td2

td3
td4

td5
td6

td7
td8

td9
td10

td11
td12
D tı1

tı2
tı3

tı4
:

d1

d2
d3

d4

d5

d6

a
b

c

s3 s4

s2 s1
ı2

ı1

(a) (b) (c)

d7

d8
d9

d11

d10

d12

s3 s4
ı3

ı4

s2 s1

(d) (e) (f)

Figure 14: Combinatorial construction of Smith’s Lefschetz pencil

Lemma 5.1 The factorization (4-1) is Hurwitz equivalent to the factorization (5-3).

Proof Noticing that we already have zc1D d11 , zc3D d10 , zc5D d6 , zc6D d9 , zc7D d5 ,
zc9 D d4 , zc11 D d12 and zc12 D d3 , we have

tı1
� � � tı4

D tzc12
tzc11

tzc10
tzc9

tzc8
tzc7

tzc6
tzc5

tzc4
tzc3

tzc2
tzc1

D td3
td12

tzc10
td4

tzc8
td5

td9
td6

tzc4
td10

tzc2
td11

� td3
tzc10

td4
tzc8

td5
td6
� td9

tzc4
td10

tzc2
td11

td12

� td3
tzc10

tzc8
td4

td5
td6
� td9

tzc4
tzc2

td10
td11

td12

� td3
ttzc10

.zc8/tzc10
td4

td5
td6
� td9

ttzc4
.zc2/tzc4

td10
td11

td12

� ttd3
tzc10

.zc8/ttd3
.zc10/td3

td4
td5

td6
� ttd9

tzc4
.zc2/ttd9

.zc4/td9
td10

td11
td12

D td1
td2

td3
td4

td5
td6

td7
td8

td9
td10

td11
td12

;

where the last equality follows from observing that td3
tzc10

.zc8/D d1 , td3
.zc10/D d2 ,

td9
tzc4
.zc2/D d7 and td9

.zc4/D d8 .

Remark 5.2 As mentioned earlier, the Lefschetz pencil constructed by Baykur [1]
whose total space is homeomorphic to T 4 is isomorphic to the pencil corresponding
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to (5-3), hence (4-1). To see this we first take the simultaneous conjugation of (5-3) by
.tc tatb/

2 , where the curves a, b , c are as shown in Figure 14(c). Letting d 0i be the
resulting curve of di mapped by .tc tatb/

2 , we see

tı1
� � � tı4

D td1
td2

td3
td4

td5
td6

td7
td8

td9
td10

td11
td12

� td 0
1
td 0

2
td 0

3
td 0

4
td 0

5
td 0

6
td 0

7
td 0

8
td 0

9
td 0

10
td 0

11
td 0

12

� td 0
1
td 0

2
td 0

3
td 0

4
td 0

5
td 0

6
td 0

8
td 0

9
tt�1

d 0
9

t�1

d 0
8

.d 0
7
/td 0

10
td 0

11
td 0

12

� td 0
1
td 0

2
td 0

3
td 0

4
td 0

5
td 0

6
td 0

8
td 0

9
td 0

10
tt�1

d 0
9

t�1

d 0
8

.d 0
7
/td 0

11
td 0

12

� td 0
1
td 0

2
td 0

3
td 0

4
td 0

5
td 0

6
tt

d 0
8

t
d 0

9
.d 0

10
/td 0

8
td 0

9
tt�1

d 0
9

t�1

d 0
8

.d 0
7
/td 0

11
td 0

12
:

The last factorization is exactly the same as Baykur’s factorization.

The construction of the factorization (5-3) can be generalized to higher genera, which
provides a new family of symplectic Calabi–Yau Lefschetz pencils. We consider the
surface †2g�2

g of genus g� 3 with 2g�2 boundary components in a circular position
and the

�
2�

g�1

�
–rotation � around the center as shown in the top left of Figure 15. Take

the configuration for the relation (5-2) as in the figures in the top right, bottom left and
bottom right of Figure 15. Then, as before, we have

td1;1
td2;1

td3;1
td4;1

td5;1
td6;1
D tı1

tı2
� ts0

ts3
t�1
s1

t�1
s2
:

We put W1 D td1;1
td2;1

td3;1
td4;1

td5;1
td6;1

(as a factorization) and for i D 1; : : : ;g� 1

take the simultaneous conjugation Wi WD �i�1.W1/ of W1 by the rotation map �i�1 :

Wi D td1;i
td2;i

td3;i
td4;i

td5;i
td6;i
D tı2i�1

tı2i
� ts2i�2

ts2iC1
t�1
s2i�1

t�1
s2i
;

where dj ;i D �i�1.dj ;1/, s2i�2 D �i�1.s0/, s2i�1 D �i�1.s1/, s2i D �i�1.s2/,
s2iC1 D �

i�1.s3/, ı2i�1 D �
i�1.ı1/ and ı2i D �

i�1.ı2/. Note that s2g�2 D s0 and
s2g�1 D s1 . When we combine W1; : : : ;Wg�1 , a similar canceling process as before
works well, so that we obtain

(5-4) W1 � � �Wg�1 D

g�1Y
iD1

td1;i
td2;i

td3;i
td4;i

td5;i
td6;i
D tı1

� � � tı2g�2
:

This factorization gives a genus-g Lefschetz pencil with 2g � 2 base points and
6g � 6 irreducible critical points for g � 3. We denote this Lefschetz pencil by
fgW Xg nBg ! CP1 (for g � 3). Note that f3 is nothing but the Lefschetz pencil
corresponding to the factorization (5-3), ie Smith’s pencil. It is straightforward to
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�

ı1

ı3

ı4

ı2

ı2g�2

ı2g�3

ı2

s3

s2 s1

s0

ı1

d2;1

d1;1

d3;1

d6;1 d5;1

d4;1

Figure 15: Construction of a generalization of Smith’s pencil. Top: the
surface †2g�2

g and the rotation � (left) and the curves s1 D s2g�1 , s2 , s3 ,
s0 D s2g�2 , ı1 and ı2 (right). Bottom: the curves d1;1 , d2;1 , d3;1 (left) and
the curves d4;1 , d5;1 , d6;1 (right).

see that the Euler characteristic of Xg is 0. The signature of the relation (5-1) is 0

(see [12]) and the signature of a braid relation is also 0 in the sense of Endo–Nagami [7].
Since the relation (5-4) is constructed by a combination of copies of the relation (5-1)
and braid relations, the signature of (5-4) is 0, hence the signature of Xg is 0. It is
also easy to verify that the fundamental group of the total space Xg of fg is Z4 . By a
theorem of Baykur and Hayano [3, Theorem 4.1], the Lefschetz pencil fg is symplectic
Calabi–Yau. Since a symplectic Calabi–Yau manifold whose fundamental group is
isomorphic to �1.T

4/D Z4 is indeed homeomorphic to T 4 (see [9, Corollary 3.3]),
so is the total space Xg . In fact, for odd g we can even show that Xg is diffeomorphic
to the T 4 and fg is holomorphic.
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Lemma 5.3 For odd g , the Lefschetz pencil fg can be obtained by perturbing f3 ı q ,
where qW T 4! T 4 is a

�g�1
2

�
–fold unbranched covering.

In order to prove Lemma 5.3 we first observe that, in general, the order among
W1; : : : ;Wg�1 in (5-4) does not matter.

Lemma 5.4 The factorization W�.1/W�.2/ � � �W�.g�1/ D tı1
� � � tı2g�2

is Hurwitz
equivalent to W1W2 � � �Wg�1 D tı1

� � � tı2g�2
for any permutation � of f1; : : : ;g� 1g.

Proof We will show that WiWj in the factorization can switch to Wj Wi for i ¤ j .
We only need to consider the cases ji � j j D 1 and fi; j g D f1;g � 1g, otherwise
WiWj obviously switches since the supporting subsurfaces for Wi and Wj are dis-
joint. Recalling that Wi D tı2i�1

tı2i
ts2i�2

ts2iC1
t�1
s2i�1

t�1
s2i

as a mapping class, and
noticing that the only curve among them that intersects with the curves of WiC1 D

td1;iC1
td2;iC1

td3;iC1
td4;iC1

td5;iC1
td6;iC1

is s2iC1 , and in addition, s2iC1 is away from
any other curve in Wj for j ¤ i C 1, we get

tı1
� � � tı2g�2

DW�.1/ � � �WiWiC1 � � �W�.g�1/

�W�.1/ � � �Wi
.WiC1/Wi � � �W�.g�1/

DW�.1/ � � � ts2iC1
.WiC1/Wi � � �W�.g�1/

�W�.1/ � � �WiC1Wi � � �W�.g�1/;

where the last equivalence is achieved by taking a simultaneous conjugation by t�1
s2iC1

.
The same argument works when Wi is replaced by W1 and WiC1 by Wg .

Proof of Lemma 5.3 By Lemma 5.4 the factorization (5-4) is Hurwitz equivalent to
the following factorization for odd g :

.g�1/=2Y
iD1

td1;2i�1
td2;2i�1

� � � td6;2i�1
�

.g�1/=2Y
iD1

td1;2i
td2;2i

� � � td6;2i
D tı1

� � � tı2g�2
:

Then, by only using commutativity relations, it can be reformulated as

.g�1/=2Y
iD1

td1;2i�1
� � �

.g�1/=2Y
iD1

td6;2i�1
�

.g�1/=2Y
iD1

td1;2i
� � �

.g�1/=2Y
iD1

td6;2i

D

.g�1/=2Y
iD1

tı4i�3

.g�1/=2Y
iD1

tı4i�2

.g�1/=2Y
iD1

tı4i�1

.g�1/=2Y
iD1

tı4i
:
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Each of the subfactorizations
Q

i tdj ;2i�1
,
Q

i tdj ;2i
,
Q

i tı4i�3
,
Q

i tı4i�2
,
Q

i tı4i�1

and
Q

i tı4i
is preserved by the

�
4�

g�1

�
–rotation �2 , which acts freely on the sur-

face †g
2g�2 . Now we can take the quotient by �2 , which gives the surface †4

3
and the

factorization (5-3). In this way, we can think of the factorization (5-4) for odd g as a�g�1
2

�
–fold unbranched covering of the factorization (5-3), ie an unbranched covering

of Smith’s pencil f3 .

Remark 5.5 Lemma 5.3 can be easily generalized to the claim that for g1 , g2 such that
.g1�1/ j .g2�1/, the pencil fg2

is obtained as a ..g2�1/=.g1�1//–fold unbranched
covering of fg1

. On the other hand, for g such that g�1 is prime the pencil fg cannot
be obtained as a finite unbranched covering of any Lefschetz pencil of lower genus
since the surface †g of such a genus g cannot be the total space of an unbranched
covering of any surface of lower genus other than 2, which is easily excluded in any
case.

Lemma 5.6 The divisibility of fg is 1.

Proof Let a; b; ai ; bi for i D 1; : : : ;g� 1 and ıj for j D 1; : : : ; 2g� 2 be oriented
simple closed curves in †2g�2

g as shown in Figure 16. We take points q1; : : : ; q2g�2

in @†2g�2
g so that the natural map �0.fq1; : : : ; q2g�2g/! �0.@†

2g�2
g / is bijective.

Let D � Int.†2g�2
g / be a disk sufficiently close to ı1 , and ı the simple closed

curve @D with suitable orientation. Let †2g�1
g D †2g�2

g n Int.D/ and q 2 @D , and
write QD fq; q1; : : : ; q2g�2g. We denote the homology classes in H1.†

2g�1
g ;QIZ/

represented by a; b; ai ; bi ; ı; ıj by the same symbols a; b; ai ; bi ; ı; ıj , respectively.

It is easy to verify that the following equalities hold in H1.†
2g�1
g ;QIZ/:

d1i D bi � bi�1C ı2i�1C ı1;iı;

d2i D ai C bi � ai�1� bi�1C ı2i�1C ı1;iı;

d3i D ai � ai�1C ı2i�1C ı1;iı;

d4i D bi � bi�1C ı2i C ı1;iı;

d5i D ai C bi � ai�1� bi�1C ı2i C ı1;iı;

d6i D ai � ai�1C ı2i C ı1;iı;

where ag D a1 , bg D b1 and ı1;i 2 f1; 0g denotes the Kronecker delta. We can take
a handle decomposition of the blow-up zXg of the total space Xg of fg by applying
the procedure explained in the appendix. Let zdij 2 C2 be the chain corresponding
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a2

b2

b
ı4

ı2

ı2g�2

ı3 b1

a1

ı1

a

ag�1

bg�1
ı2g�3

Figure 16: The oriented curves in †2g�2
g . The curves ı1; : : : ; ı2g�2 are on

boundary components.

to the vanishing cycle dij , let f 2 C2 be the chain corresponding to a regular fiber,
and �i 2 C2 the chain represented by the 2–handle in a neighborhood of the section
corresponding to the boundary component ıi . It is easy to see that the cycle group Z2

is generated by the elements

Zi
1 D
zd1i �

zd4i ; Zi
2 D
zd2i �

zd5i ; Zi
3 D
zd3i �

zd6i ; Wi D d2i � d1i � d3i

for i D 1; : : : ;g� 1, and the elements

X D

g�1X
iD1

d1i ; Y D

g�1X
iD1

d3i ; f; �1; : : : ; �2g�2:

As we explain in the appendix, each 3–handle in the handle decomposition of zXg corre-
sponds to a 1–handle of †g . Take a handle decomposition of †g so that each boundary
component of †2g�2

g corresponds to a 0–handle, the ai ; bi 2H1.†
2g�1
g ;QIZ/ are rep-

resented by 1–handles, and a regular neighborhood of a path i�†
2g�1
g n

�S
i.ai[bi/

�
connecting ı1 with ıiC1 is a 1–handle. Let Ai ;Bi 2 C3 be the chains represented by
the 3–handles corresponding to ai ; bi respectively, and zi 2 C3 the chain represented
by the 3–handle corresponding to i . Using Lemma A.1, we can calculate the images
of the 3–chains under the boundary operator @3 as follows:

@3.Ai/DZi
1�Zi

2�ZiC1
1
CZiC1

2
;

@3.Bi/D�Zi
2CZi

3CZiC1
2
�ZiC1

3
;
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@3.Ag/D @3.Bg/D 0;

@3.z2j /DW1�WjC1�f C �1� �jC1;

@3.z2j�1/DW1�Wj CZ
j
1
�Z

j
2
CZ

j
3
�f C �1� �jC1

for i D 1 : : : ;g� 1 and j D 1 : : : ;g� 2, where Z
g

k
DZ1

k
for k D 1; 2; 3. Thus, the

following set is a basis of the cycle group Z2 :˚
@3.A1/; @3.B1/; : : : ; @3.Ag�2/; @3.Bg�2/; @3.z1/; : : : ; @3.z2g�3/;

Z1
1 ;Z

1
2 ;X;Y; f;W1; �1; : : : ; �2g�2

	
:

The homology group H2.XgIZ/ is isomorphic to Z6 and fZ1
1
;Z1

2
;X;Y; f;W1g is a

basis of H2.XgIZ/. Since f is represented by a regular fiber of fg , the divisibility
of fg is 1.

Combining Lemmas 5.3 and 5.6, we eventually obtain:

Theorem 5.7 For g odd, fg is a holomorphic Lefschetz pencil on T 4 associated with
a .1;g� 1/–polarization.

According to Lemma 5.6 and the observation preceding Lemma 5.3, it is natural to
expect that the following conjecture holds:

Conjecture 5.8 For g even, fg is a holomorphic Lefschetz pencil on T 4 associated
with a .1;g� 1/–polarization.

Note that in order to prove Conjecture 5.8 it is sufficient to prove that fg is holomorphic
for g such that g� 1 is prime, by Remark 5.5. If Conjectures 5.8 and 3.24 hold, we
can deduce the following from Lemma 4.7.

Conjecture 5.9 Let f W T 4 Ü CP1 be a holomorphic Lefschetz pencil. There exists
an unbranched covering qW T 4! T 4 such that f is isomorphic to the composition
fg ı q with g� 1 prime.

Note that this conjecture holds under the following assumptions:

� The genus of f is odd.

� The genus of f is greater than 5 or the divisibility of f is greater than 1.

In this case we can take q so that g is equal to 3 (see the observation following
Lemma 4.7).
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Remark 5.10 If Conjecture 5.9 holds, it is theoretically possible to obtain monodromy
factorizations of all the holomorphic Lefschetz pencils on the four-torus. In particular,
a Lefschetz pencil on the four-torus is not holomorphic if the associated monodromy
factorization is not Hurwitz equivalent to any of them (see also Remark 3.19).

5.2 Symplectic Calabi–Yau Lefschetz pencils on homotopy T 2–bundles
over T 2

We have seen explicit monodromy factorizations of the genus-3 Lefschetz pencil on
the four-torus T 4 constructed by Smith in [24], geometrically in Section 4.1 and
combinatorially in Section 5.1. Smith also mentioned that by modifying the pencil
on T 4 one can construct Lefschetz pencils on the total spaces of T 2 –bundles over T 2 ,
provided that the bundles admit sections. In this subsection we will follow Smith’s idea
in a combinatorial way; for any ˛; ˇ 2Mod.†1

1
IU / with Œ˛; ˇ�D 1, we will construct

a genus-3 Lefschetz pencil f˛;ˇ by modifying the factorization (5-3), and prove the
following theorem, which was also stated in Section 1:

Theorem 1.4 The total space of f˛;ˇ is homeomorphic to that of the torus bundle
over the torus with a section whose monodromy representation sends two elements
generating �1.T

2/ to ˛ and ˇ .

We first observe presentations for the fundamental groups of T 2 –bundles over T 2

with sections. Let pW X ! T 2 be a torus bundle over the torus which has a section
S � X , and D � T 2 a small disk. We take a meridian m and a longitude l of
the base T 2 . We denote the monodromy along m and l by ˛ and ˇ , respectively.
Since p has a section, ˛ and ˇ can be considered as elements in Mod.†1

1
IU /, where

U D fug � @†1
1

. A tubular neighborhood �S can be decomposed into a 0–handle
contained in p�1.D/, two 1–handles a; b whose cores are lifts of m and l , and a
2–handle. The preimage p�1.D/ also admits a handle decomposition with the 0–
handle of �S , two 1–handles c; d whose cores are a longitude and a meridian of a
regular fiber T , and a 2–handle (we take c for the longitude and d for the meridian
for convenience in later calculations). The total space X can be obtained from the
union p�1.D/[ �S by attaching four 2–handles, four 3–handles and a 4–handle.
Two of the 2–handles are contained in the preimage of a neighborhood of m, while the
other 2–handles are contained in the preimage of a neighborhood of l . We eventually
obtain a handle decomposition of X and the associated cell decomposition of X . We
denote the 1–cells corresponding to a; b; c; d endowed with suitable orientations by the
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same symbols. Since X has only one 0–cell, the 1–cells a; b; c; d represent elements
in �1.X /. Furthermore, c and d also represent elements in �1.T /, in particular
we can describe ˛.c/; ˛.d/; ˇ.c/; ˇ.d/ as words consisting of c and d . Analyzing
attaching maps of the 2–cells, we can easily prove the following:

Lemma 5.11 The fundamental group �1.X / has the following presentation:

�1.X /D
˝
a; b; c; d j Œa; b�; ca˛.c/�1a�1; cbˇ.c/�1b�1; Œc; d �;

da˛.d/�1a�1; dbˇ.d/�1b�1
˛
:

In order to modify the factorization (5-3) we need a key observation about a symmetrical
property of some subwords in (5-3) as mapping classes. We set X1 D td1

td2
td3

,
Y1 D td4

td5
td6

, X2 D td7
td8

td9
and Y2 D td10

td11
td12

in Mod.†4
3
IU / and consider

their actions on the curves Li ;Ri (for iD1; 2) and SL;SR on †4
3

, as depicted on
the left of Figure 17. The actions can be read off from similar actions on curves on
the surface †4

2
. Set X D tB0

0;1
tB0

1;1
tB0

2;1
and Y D tB0

0;2
tB0

1;2
tB0

2;2
in Mod.†4

2
IU / and

consider the curves Ai ;Bi (for iD1; 2) on †4
2

, as depicted on the left of Figure 17.

L2

SL SR
R2

R1L1

A2 B2

A1 B1

Figure 17: Actions of X , Y , X1 , Y1 , X2 and Y2 . Left: the curves L1 , L2 ,
SL , R1 , R2 , SR on †4

3
. Right: the curves A1 , A2 , B1 , B2 on †4

2
.

Lemma 5.12 (1) As a mapping class, each of X and Y in Mod.†4
2
IU / maps the

4–tuple of simple closed curves .A1;A2;B1;B2/ to .B1;B2;A1;A2/ on †4
2

.

(2) Each of X1 , Y1 , X2 and Y2 in Mod.†4
3
IU / maps .L1;L2;SL;R1;R2;SR/

to .R1;R2;SR;L1;L2;SL/ on †4
3

.

Proof It is simply routine work to check (1). To see (2), we recall the embed-
ding of †4

2
to †4

3
with which we dealt in Figure 14(a), (b), (c). We can identify

X;Y;Ai ;Bi with X1;Y1;Li ;Ri , respectively. Thus from (1), each of X1 and Y1

maps .L1;L2;R1;R2/ to .R1;R2;L1;L2/. Since SL and SR are the boundaries of
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the regular neighborhoods of L1[L2 and R1[R2 , respectively, X1 and Y1 also switch
SL and SR . By considering the other embedding dealt with in Figure 14(d), (e), (f), by
which we can identify X;Y;Ai ;Bi with X2;Y2;Ri ;Li , respectively, we can verify
the claims for X2 and Y2 in a similar manner.

Now we construct a monodromy factorization as a Lefschetz pencil corresponding to
a given T 2 –bundle over T 2 with an explicit monodromy factorization as a bundle.
We assume that the bundle has a section. It is known that the section has to be of
self-intersection number 0.1 Hence, the monodromy factorization has the form

Œ˛; ˇ�D t0
ı D 1

in Mod.†1
1
IU /, where ˛ and ˇ are the monodromies along the meridian a and the

longitude b of the base torus, respectively, and ı is the boundary of the one-holed
torus †1

1
.

ı ı

d d

c c

'L 'R

SL SR

L1 R1

L2 R2

ı ıd

c

d

c

'L 'R

a1

b1 a2

b2

a3

b3

lL lR

Figure 18: The embeddings 'L and 'R . Left: the correspondence between
the free loops. Right: the correspondence between the based loops. Here a1

stands for the loop lL � 'L.c/ � l
�1
L . The loops b1 , a3 and b3 are similarly

defined.

We consider the two symmetrical embeddings 'L and 'R of †1
1

into †4
3

as shown in
Figure 18, one of which takes the meridian d to L1 and the longitude c to L2 and the

1One way to verify this is the following. Since a T 2 –bundle over T 2 is a symplectic Calabi–Yau
manifold, its canonical class K is a torsion. Let S be a section, which can be made symplectic. By the
adjunction equality, we obtain ŒS �2 D 2 � 1� 2CK.S/D 0 .
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other of which takes d to R1 and c to R2 . Then we can regard ˛ and ˇ as elements in
Mod.†4

3
IU / via those embeddings; for instance, take 'Lı˛ı'

�1
L on the image of 'L

and extend it as the identity map on the complement †4
3
n'L.†

1
1
/. Let ˛L denote the

resulting mapping class in Mod.†4
3
IU /. Similarly we have ˛R corresponding to ˛

via 'R , and ˇL; ˇR corresponding to ˇ via 'L; 'R , respectively. Note that we can
deduce from the commutativity of ˛ and ˇ that ˛L and ˇL commute and ˛R and ˇR

commute. Obviously any other pair among ˛L , ˛R , ˇL and ˇR also commutes. Since
tc and td are generators of Mod.†1

1
IU /, the monodromies ˛ and ˇ may be written

as words in tc and td . Fix such word expressions. Then ˛L and ˇL are written as the
words in tL1

and tL2
corresponding to the fixed expressions, while ˛R and ˇR are

written as the corresponding words in tR1
and tR2

. By Lemma 5.12, the conjugation
of tLi

by any of X1 , Y1 , X2 , Y2 is tRi
, hence the conjugation of the fixed word for ˛L

by Xi or Yi is exactly the fixed word for ˛R . This simply means that the conjugation
of ˛L by Xi or Yi is ˛R . We can apply similar arguments to the conjugations of ˛R ,
ˇL and ˇR . In summary, we have the following switching property: for i D 1; 2,

Xi˛LX�1
i D ˛R; Xi˛RX�1

i D ˛L; XiˇLX�1
i D ˇR; XiˇRX�1

i D ˇL;

Yi˛LY �1
i D ˛R; Yi˛RY �1

i D ˛L; YiˇLY �1
i D ˇR; YiˇRY �1

i D ˇL:

In order to create a desired factorization, we modify the factorization (5-3) by using
˛R , ˛L , ˇR and ˇL as follows:

tı1
� � � tı4

D td1
� � � td12

DX1Y1X2Y2 D ˛R �X1Y1 �˛
�1
R ˛R �X2 �˛

�1
R ˛R �Y2 �˛

�1
R

D ˛RX1Y1˛
�1
R ˛R

.X2/ ˛R
.Y2/

DX1˛LY1˛
�1
R ˛R

.X2/ ˛R
.Y2/

DX1Y1˛R˛
�1
R ˛R

.X2/ ˛R
.Y2/

DX1Y1 ˛R
.X2/ ˛R

.Y2/

DX1 �ˇ
�1
R ˇR �Y1 �ˇ

�1
R ˇR � ˛R

.X2/ ˛R
.Y2/

DX1ˇ
�1
R ˇR

.Y1/ˇR ˛R
.X2/ ˛R

.Y2/

D ˇ�1
L X1 ˇR

.Y1/ˇR˛RX2˛
�1
R ˛R

.Y2/

DX1 ˇR
.Y1/˛RˇRX2˛

�1
R ˛R

.Y2/ˇ
�1
L

DX1 ˇR
.Y1/˛RX2ˇL˛

�1
R ˛R

.Y2/ˇ
�1
L

DX1 ˇR
.Y1/˛RX2˛

�1
R ˇL ˛R

.Y2/ˇ
�1
L

DX1 ˇR
.Y1/ ˛R

.X2/ ˇL˛R
.Y2/;
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where the D sign above means equality as a mapping class, not as a factorization. Here
we freely used the switching property explained above as well as the commutativity
among ˛L , ˛R , ˇL , ˇR (and td1

; : : : ; td4
). In other words, we have obtained the

following factorization:

(5-5) tı1
tı2

tı3
tı4
D td1

td2
td3

tˇR.d4/tˇR.d5/tˇR.d6/t˛R.d7/t˛R.d8/t˛R.d9/tˇL˛R.d10/

� tˇL˛R.d11/tˇL˛R.d12/:

Let f˛;ˇW X˛;ˇnB˛;ˇ!CP1 be the Lefschetz pencil corresponding to the monodromy
factorization (5-5). The pencil f˛;ˇ has 12 critical points and 4 base points, hence the
Euler characteristic of X˛;ˇ is 0. The signature of X˛;ˇ is also 0 since we modified
the factorization (5-3), whose corresponding pencil has the signature 0, by only using
braid relations, which do not change the signature [7].

Lemma 5.13 The fundamental group �1.X˛;ˇ/ of the total space of the Lefschetz
pencil f˛;ˇ is isomorphic to that of the total space of the T 2 –bundle over T 2 associated
with the monodromy factorization Œ˛; ˇ�D 1 in Mod.†1

1
IU /.

Proof It is a standard fact that the fundamental group �1.X / of the total space X

of a genus-g Lefschetz pencil with a monodromy factorization tcn
� � � tc1

D tı1
� � � tıp

is isomorphic to the quotient �1.†g/=hc1; : : : ; cni, where hc1; : : : ; cni is the normal
subgroup generated by the curves c1; : : : ; cn . Let us begin with the easiest case that
˛DˇD id, which is Smith’s pencil itself. We give an explicit presentation of �1.Xid;id/,
which is of course �1.T

4/DZ4 , by deriving from the monodromy factorization (5-3).
Starting from the standard generators a1; b1; : : : ; a3; b3 of �1.†3/ as depicted on the
right of Figure 18, we get a presentation of �1.Xid;id/ with the same generators and
the following defining relations:

Œa1; b1�Œa2; b2�Œa3; b3�D 1;(R–0)

a1Œb1; a1�a
�1
3 D 1;(R–d1)

a1a1b�1
1 a�1

1 b3a�1
3 D 1;(R–d2)

a1b�1
1 a�1

1 b3 D 1;(R–d3)

a1a2b2a�1
2 a�1

3 b�1
2 Œa3; b3�D 1;(R–d4)

a1b�1
1 a2b2a�1

2 b3a�1
3 b�1

2 Œa3; b3�D 1;(R–d5)

b1Œb3; a3�b2b�1
3 a2b�1

2 a�1
2 D 1;(R–d6)
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a1a2Œa3; b3�a
�1
3 a�1

2 D 1;(R–d7)

a1b�1
1 a2a3b3a�1

3 a�1
3 a�1

2 D 1;(R–d8)

b1a2a3b�1
3 a�1

3 a�1
2 D 1;(R–d9)

a1a2b�1
2 Œa3; b3�a

�1
3 b2a�1

2 D 1;(R–d10)

a1b�1
1 a2b�1

2 a3b3a�1
3 a�1

3 b2a�1
2 D 1;(R–d11)

b1a2b�1
2 a3b�1

3 a�1
3 b2a�1

2 D 1:(R–d12)

Here each relation (R–di ) comes from the vanishing cycle di . By substituting (R–d3 )
into (R–d2 ) we obtain the relation a1Da3 , with which (R–d1 ) implies that Œb1; a1�D1.
Then (R–d3 ) gives that b1 D b3 . Now we know that Œa1; b1� D Œa3; b3� D 1, hence
(R–0) reduces to Œa2; b2�D 1. Note that we so far have the set of the relations a1D a3 ,
b1 D b3 , Œa1; b1� D Œa2; b2� D 1, and that this is indeed equivalent to the set of the
relations (R–0), (R–d1 ), (R–d2 ), (R–d3 ). With those new relations in mind, the
relation (R–d4 ) becomes Œa1; b2�D 1, the relation (R–d6 ) becomes Œb1; b2�D 1, the
relation (R–d7 ) becomes Œa1; a2�D 1 and the relation (R–d9 ) becomes Œb1; a2�D 1.
None of the other defining relations gives a new relation among ai and bj . Therefore,
by renaming aD a2 , b D b2 , c D a1 D a3 , d D b1 D b3 , it follows that �1.Xid;id/ is
the free abelian group generated by a, b , c and d .

We can modify the presentation of �1.Xid;id/ to obtain a presentation of �1.X˛;ˇ/

with generators a1; b1; : : : ; a3; b3 and with defining relations (R–0), (R–d1 ), (R–d2 ),
(R–d3 ) and the following ones:

a1a2b2a�1
2 ˇR.a3/

�1b�1
2 ŒˇR.a3/; ˇR.b3/�D 1;(R–ˇR.d4/)

a1b�1
1 a2b2a�1

2 ˇR.b3/ˇR.a3/
�1b�1

2 ŒˇR.a3/; ˇR.b3/�D 1;(R–ˇR.d5/)

b1ŒˇR.b3/; ˇR.a3/�b2ˇR.b3/
�1a2b�1

2 a�1
2 D 1;(R–ˇR.d6/)

a1a2Œ˛R.a3/; ˛R.b3/�˛R.a3/
�1a�1

2 D 1;(R–˛R.d7/)

a1b�1
1 a2˛R.a3/˛R.b3/˛R.a3/

�1˛R.a3/
�1a�1

2 D 1;(R–˛R.d8/)

b1a2˛R.a3/˛R.b3/
�1˛R.a3/

�1a�1
2 D 1;(R–˛R.d9/)

ˇL.a1/a2b�1
2 Œ˛R.a3/; ˛R.b3/�˛R.a3/

�1b2a�1
2 D 1;(R–ˇL˛R.d10/)

ˇL.a1/ˇL.b1/
�1a2b�1

2 ˛R.a3/˛R.b3/˛R.a3/
�1(R–ˇL˛R.d11/)

�˛R.a3/
�1b2a�1

2 D 1;

ˇL.b1/a2b�1
2 ˛R.a3/˛R.b3/

�1˛R.a3/
�1b2a�1

2 D 1:(R–ˇL˛R.d12/)
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Again the relation (R–�) corresponds to each vanishing cycle. As we discussed
above, the relations (R–0), (R–d1 ), (R–d2 ), (R–d3 ) imply that a1 D a3 , b1 D b3 and
Œa1; b1�D Œa2; b2�D1. We regard �1.†1/ as the quotient �1.†

1
1
/=hıiDhc; di=hŒc; d �i

and then construct a homomorphism 'L�W �1.†1/! �1.X˛;ˇ/ as follows: for an
element g 2 �1.†

1
1
/ we define 'L�.Œg�/ to be lL �'L.g/ � l

�1
L

, where Œg� 2 �1.†1/D

�1.†
1
1
/=hıi is an element represented by g . The map 'L� is well-defined since

lL �'L.c/ � l
�1
L
D a1 , lL �'L.d/ � l

�1
L
D b1 and Œa1; b1�D 1. Similarly we can define

another homomorphism 'R�W �1.†1/!�1.X˛;ˇ/ as Œg� 7! lR �'R.g/ �l
�1
R

. However,
'L� and 'R� in fact coincide since 'L�.c/ D a1 D a3 D 'R�.c/ and 'L�.d/ D

b1D b3D 'R�.d/. It follows that ˛L.a1/D 'L�.˛.c//D 'R�.˛.c//D ˛R.a3/, and
similarly ˛L.b1/D ˛R.b3/, ˇL.a1/D ˇR.a3/ and ˇL.b1/D ˇR.b3/. Therefore we
can identify c with a1 D a3 and d with b1 D b3 in a way that ˛.c/ D ˛L.a1/ D

˛R.a3/ as a word in c D a1 D a3 and d D b1 D b3 , and ˛.d/D ˛L.b1/D ˛R.b3/,
and so on. We also rename a D a2 and b D b2 . Then the relation (R–ˇR.d4/)
becomes cbˇ.c/�1b�1 D 1, the relation (R–ˇR.d6/) becomes dbˇ.d/�1b�1 D 1,
the relation (R–˛R.d7/) becomes ca˛.c/�1a�1 D 1 and the relation (R–˛R.d9/)
becomes da˛.d/�1a�1 D 1. No other defining relations give a new relation. In
conclusion, �1.X˛;ˇ/ is isomorphic to the group described in Lemma 5.11, hence to
the fundamental group of the T 2 –bundle over T 2 associated with the monodromy
factorization Œ˛; ˇ�D 1, as desired.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 The fundamental group of a T 2 –bundle over T 2 cannot be
isomorphic to that of a rational or ruled surface. The theorem by Baykur–Hayano [3,
Theorem 4.1] implies that the Lefschetz pencil f˛;ˇ is symplectic Calabi–Yau. Fur-
thermore, we can deduce from [9, Corollary 3.3] that a symplectic Calabi–Yau four-
manifold M is homeomorphic to the total space X of a T 2 –bundle X ! T 2 with
a section if and only if �1.M / is isomorphic to �1.X /. By Lemma 5.13 we can
conclude that X˛;ˇ is homeomorphic to the total space of T 2 –bundle over T 2 with a
section whose monodromy representation sends two elements generating �1.T

2/ to ˛
and ˇ .

We end this subsection with the following conjecture:

Conjecture 5.14 The pencil f˛;ˇ is isomorphic to that constructed by Smith [24]. In
particular, the total space X˛;ˇ is diffeomorphic to that of a T 2 –bundle over T 2 .
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Appendix: Homology groups of Lefschetz pencils from
monodromy factorizations

Let f W X n B ! CP1 be a genus-g Lefschetz pencil and tcn
� � � tc1

D tı1
� � � tıp a

monodromy factorization of f . As in the proof of Lemma 5.13, the fundamental
group �1.X / is calculated from the vanishing cycles c1; : : : ; cn . In particular, we
can easily calculate H1.X IZ/, which is isomorphic to the abelianization of �1.X /.
Since the Euler characteristic of X is equal to 4� 4gC n�p , we can deduce from
the universal coefficient theorem that H2.X IZ/ is isomorphic to Zr ˚T .H1.X IZ//,
where r D 2� 4gC n�pC 2 rank.H1.X IZ// and T .H1.X IZ// is the torsion part
of H1.X IZ/. However, the above observation does not give any information on the
fiber class of f , especially the divisibility of f . In this appendix, we will explain
how to obtain the divisibility of f by calculating the second homology of X from a
handlebody structure associated with f .

Let zX be the blow-up of X at the points in B and zf the Lefschetz fibration on zX
derived from f . The manifold zX can be decomposed as

(A-1) zX DD2
�†g [ (2–handles)[D2

�†g;

where the two copies of D2�†g are tubular neighborhoods of regular fibers and each
2–handle corresponds to a Lefschetz singularity of zf and are attached along a vanishing
cycle with framing .�1/ with respect to the fiber framing (see [14]). We denote the
2–handle in the above decomposition corresponding to the vanishing cycle ci by hi

L
.

The two copies of D2 �†g above can be further decomposed as follows:

� The former D2 �†g can be decomposed into a 0–handle, 2g 1–handles and a
2–handle, which we denote by hF .

� The latter D2�†g can be decomposed into p 2–handles, 2gCp�1 3–handles
and a 4–handle, where the cores of the 2–handles are contained in the exceptional
spheres arising in the blow-up. We denote the 2–handles in this decomposition
by h1

S
; : : : ; h

p
S

.

The decompositions above give rise to a handlebody structure of zX , in particular we can
obtain a chain complex CDf.Ci ; @i/gi such that Ci is a free abelian group generated by
the i –handles above. The homology group Hi.C/ is isomorphic to Hi. zX IZ/, with the
fiber class of zf (resp. the exceptional classes) represented by hF (resp. h1

S
; : : : ; h

p
S

).

The group C1 can be identified with H1.†gIZ/ in the obvious way. Under this
identification, @2W C2 ! C1 sends hi

L
to the homology class of the corresponding

Algebraic & Geometric Topology, Volume 18 (2018)



1568 Noriyuki Hamada and Kenta Hayano

vanishing cycle. Since both hF and h
j
S

are contained in Z2 D ker @2 , we obtain
a generating set fz1; : : : ; zm; hF ; h

1
S
; : : : ; h

p
S
g of Z2 such that each zi is a linear

combination of h1
L
; : : : ; hn

L
.

The decomposition of the latter D2 �†g in (A-1) is induced from the handle decom-
position of †g , which consists of p 0–handles, 2gCp�1 1–handles and a 2–handle.
Indeed, we can regard an i –handle of this D2�†g as the product of D2 and an .i�2/–
handle of †g . Let †p

g be the surface obtained by removing the p 0–handles of †g . We
take points q1; : : : ; qp 2 @†

p
g so that the map �0.fq1; : : : ; qpg/! �0.@†

p
g / induced

by the inclusion is bijective. Let ıi be the simple closed curve in †p
g parallel to the

boundary component containing qi . We take a disk D� Int.†p
g /, a point q 2 @D and a

path ˛�†p
g n Int.D/ connecting q1 and q . Let †pC1

g be the surface †p
g n Int.D/ and

Q the set fq1; : : : ; qp; qg. It is easy to see that the homology group H1.†
pC1
g ;QIZ/

is isomorphic to Z2gC2p and is generated by elements represented by the cores of
1–handles of †g , ı1; : : : ; ıp and ˛ . We can define an intersection pairing

%W H1.†
pC1
g ;QIZ/�H1.†

pC1
g IZ/! Z

which assigns .˛; ˇ/ 2H1.†
pC1
g ;QIZ/�H1.†

pC1
g IZ/ to the algebraic intersection

between a union of oriented paths in ….†pC1
g ;Q/ representing ˛ and a closed curve

representing ˇ , where ….†pC1
g ;Q/ is the set of paths whose edges are points in Q.

Lemma A.1 Let � be a 3–handle in the latter D2�†g in (A-1) and �0 the 1–handle
of †g corresponding to �. Suppose that �0 is attached to two 0–handles corresponding
to hi

S
and h

j
S

. We inductively take kl 2 Z and �l 2H1.†
pC1
g ;QIZ/ as follows:

� �0 D �
0 ,

� kl D %.�l�1; cl/ and �l D �l�1� klcl ,

where we identify two regular fibers in the former and latter D2 �†g via the attaching
map. Then the element �n is equal to �0C ıi � ıj �kF Œ@D� for some kF 2 Z, and the
following equality holds:

@3.�/D

nX
lD1

klh
l
LC kF hF C hi

S � h
j
S
:

Proof Note first that the coefficients of @3.�/ are equal to the algebraic intersections
between the attaching sphere of � and the belt spheres of the corresponding 2–handles.
The attaching sphere of � is the union of
� the product of D2 and the edges of the core of �0 , and

� the product of @D2 and the core of �0 .
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The former part intersects the belt spheres of hi
S

and h
j
S

geometrically once (and the
signs of these intersections are opposite). It is easy to see that the latter part intersects
the belt sphere of hl

L
algebraically kl times. Let Mod.†pC1

g / be the set of isotopy
classes of self-diffeomorphisms of †pC1

g which are not necessarily the identity map on
the boundary. The product tcn

� � � tc1
in Mod.†pC1

g / is a diffeomorphism obtained by
pushing the disk D . We can verify that the path tcn

� � � tc1
.the core of �0/ goes through

the center of D algebraically kF times when we move it to �0 by an isotopy of †p
g .

This observation implies that the product of @D2 and the core of �0 intersects the belt
sphere of hF algebraically kF times.

Let f˛1; : : : ; ˛2gCp�1g be a generating set of C3 . Using Lemma A.1 we can obtain the
representation matrix A0 of @3 with respect to the generating sets f˛1; : : : ; ˛2gCp�1g

and fz1; : : : ; zm; hF ; h
1
S
: : : ; h

p
S
g:

.@3.˛1/; : : : ; @3.˛2gCp�1//D .z1; : : : ; zm; hF ; h
1
S ; : : : ; h

p
S
/A0:

Furthermore, applying fundamental operations to A0 we can find another generating
set f˛0

1
; : : : ; ˛0

2gCp�1
g of C3 and elements z0

1
; : : : ; z0

mC1
of Z2 such that:

� z0i is a linear combination of z1; : : : ; zm; hF .

� fz0
1
; : : : ; z0

mC1
; h1

S
; : : : ; h

p
S
g is a generating set of C2 .

� The first mC 1 rows of the representation matrix A1 of @3 with respect to
f˛0

1
; : : : ; ˛0

2gCp�1
g and fz0

1
; : : : ; z0

mC1
; h1

S
; : : : ; h

p
S
g has nonzero entries only

on its diagonal part.

� Let e1; : : : ; emC1 be each of the first mC1 diagonal entries of A1 . There exists
a positive integer k such that el D 0 for any l > k and ei jeiC1 for any i < k .

Lemma A.2 For any i � k and j �mC 2, all the entries in the j th column of A1

are equal to 0 and the .j ; i/–entry of A1 is divisible by ei .

Proof Let aij be the .i; j /–entry of A1 . The cycle
P

i�mC2 aij hi�m�1
S

is a boundary
for any j �mC 2. Since the handle hl

S
represents the exceptional class, the classes

Œh1
S
�; : : : ; Œh

p
S
� are linearly independent in H2. zX /. Thus, aij D 0 if j �mC 2. Since

the cycle eiz
0
i C

P
j�mC2 ajih

j�m�1
S

is a boundary when i � k , the class ei Œz
0
i � is

equal in H2.C/ to �
P

j�mC2 aji Œh
j�m�1
S

�. Since Œhj�m�1
S

� is the exceptional class,
the divisibility of

P
j�mC2 aji Œh

j�m�1
S

� in H2. zX / is equal to gcd.fajigj�mC2/. On
the other hand, the divisibility of ei Œz

0
i � is divisible by ei . Thus, ei jaji for any i � k

and j �mC 2.
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Lemma A.2 implies that we can find cycles z00
1
; : : : ; z00

mC1
such that

� fz00
1
; : : : ; z00

mC1
; h1

S
; : : : ; h

p
S
g is a generating set of C2 ,

� the representation matrix A2 of @3 with respect to f˛0
1
; : : : ; ˛0

2gCp�1
g and

fz00
1
; : : : ; z00

mC1
; h1

S
; : : : ; h

p
S
g has nonzero entries only on its diagonal part,

� the first k diagonal entries of A2 are e1; : : : ; ek and the other entries are 0.

In particular, the second homology group H2. zX IZ/ is isomorphic to the group�L
i Z=eiZ

�
˚ ZmC1�k ˚ Zp , where the former two components are generated

by z00
1
; : : : ; z00

mC1
, while the last component is generated by h1

S
; : : : ; h

p
S

. Further-
more, the natural homomorphism H2. zX IZ/ ! H2.X IZ/ coincides with the pro-
jection .˚iZ=eiZ/ ˚ ZmC1�k ˚ Zp ! .˚iZ=eiZ/ ˚ ZmC1�k . The fiber class
of zf is represented by hF , which we can represent as a linear combination of
z00

1
; : : : ; z00

mC1
; h1

S
; : : : ; h

p
S

. Thus, the fiber class of f is the image of ŒhF � under
the projection H2. zX IZ/!H2.X IZ/.

In summary, the procedure above not only gives an isomorphism between H2.X IZ/ and
an abelian group, but also determines which element in the abelian group corresponds
to the fiber class of f . In particular we can calculate the divisibility of f . Moreover, in
order to apply this procedure in practice we need only (possibly tedious) linear-algebraic
calculations, which we can do using a computer.
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Jun Li for fruitful discussions and helpful comments on an earlier draft of this paper.
Hayano was supported by JSPS KAKENHI (26800027 and 17K14194).

References
[1] R I Baykur, Small symplectic Calabi–Yau surfaces and exotic 4–manifolds via genus-3

pencils, preprint (2015) arXiv

[2] R I Baykur, K Hayano, Hurwitz equivalence for Lefschetz fibrations and their multi-
sections, from “Real and complex singularities” (A C Nabarro, J J Nuño Ballesteros, R
Oset Sinha, M A S Ruas, editors), Contemp. Math. 675, Amer. Math. Soc., Providence,
RI (2016) 1–24 MR

[3] R I Baykur, K Hayano, Multisections of Lefschetz fibrations and topology of symplec-
tic 4–manifolds, Geom. Topol. 20 (2016) 2335–2395 MR

[4] R I Baykur, M Korkmaz, Small Lefschetz fibrations and exotic 4–manifolds, Math.
Ann. 367 (2017) 1333–1361 MR

Algebraic & Geometric Topology, Volume 18 (2018)

http://msp.org/idx/arx/1511.05951
http://msp.org/idx/mr/3578715
https://doi.org/10.2140/gt.2016.20.2335
https://doi.org/10.2140/gt.2016.20.2335
http://msp.org/idx/mr/3548468
https://doi.org/10.1007/s00208-016-1466-2
http://msp.org/idx/mr/3623227


Topology of holomorphic Lefschetz pencils on the four-torus 1571

[5] E M Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series)
46, Kluwer, Dordrecht (1989) MR

[6] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53
(1999) 205–236 MR

[7] H Endo, S Nagami, Signature of relations in mapping class groups and nonholomor-
phic Lefschetz fibrations, Trans. Amer. Math. Soc. 357 (2005) 3179–3199 MR

[8] R Fintushel, R J Stern, Constructions of smooth 4–manifolds, Doc. Math. Extra Vol.
ICM II (1998) 443–452 MR

[9] S Friedl, S Vidussi, On the topology of symplectic Calabi–Yau 4–manifolds, J. Topol.
6 (2013) 945–954 MR

[10] R E Gompf, Toward a topological characterization of symplectic manifolds, J. Sym-
plectic Geom. 2 (2004) 177–206 MR

[11] R E Gompf, A I Stipsicz, 4–Manifolds and Kirby calculus, Graduate Studies in Math-
ematics 20, Amer. Math. Soc., Providence, RI (1999) MR

[12] N Hamada, Sections of the Matsumoto–Cadavid–Korkmaz Lefschetz fibration, preprint
(2016) arXiv

[13] N Hamada, R Kobayashi, N Monden, Nonholomorphic Lefschetz fibrations with
.�1/–sections, preprint (2016) arXiv

[14] A Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J.
Math. 89 (1980) 89–104 MR

[15] M Korkmaz, Noncomplex smooth 4–manifolds with Lefschetz fibrations, Internat.
Math. Res. Notices (2001) 115–128 MR

[16] K Lamotke, The topology of complex projective varieties after S Lefschetz, Topology
20 (1981) 15–51 MR

[17] H Lange, C Birkenhake, Complex abelian varieties, Grundl. Math. Wissen. 302,
Springer (1992) MR

[18] T-J Li, Quaternionic bundles and Betti numbers of symplectic 4–manifolds with Ko-
daira dimension zero, Int. Math. Res. Not. 2006 (2006) art. id. 37385 MR

[19] T-J Li, The space of symplectic structures on closed 4–manifolds, from “Third Interna-
tional Congress of Chinese Mathematicians, I” (K-S Lau, Z-P Xin, S-T Yau, editors),
AMS/IP Stud. Adv. Math. 42, Amer. Math. Soc., Providence, RI (2008) 259–277 MR

[20] Y Matsumoto, Lefschetz fibrations of genus two — a topological approach, from
“Topology and Teichmüller spaces” (S Kojima, Y Matsumoto, K Saito, M Seppälä,
editors), World Scientific, River Edge, NJ (1996) 123–148 MR

[21] N Monden, Lefschetz fibrations with small slope, Pacific J. Math. 267 (2014) 243–256
MR

Algebraic & Geometric Topology, Volume 18 (2018)

https://doi.org/10.1007/978-94-009-2366-9
http://msp.org/idx/mr/1111477
http://projecteuclid.org/euclid.jdg/1214425535
http://msp.org/idx/mr/1802722
https://doi.org/10.1090/S0002-9947-04-03643-8
https://doi.org/10.1090/S0002-9947-04-03643-8
http://msp.org/idx/mr/2135741
https://www.emis.de/journals/DMJDMV/xvol-icm/06/06.html
http://msp.org/idx/mr/1648094
https://doi.org/10.1112/jtopol/jtt020
http://msp.org/idx/mr/3145145
http://projecteuclid.org/euclid.jsg/1094072003
http://msp.org/idx/mr/2108373
https://doi.org/10.1090/gsm/020
http://msp.org/idx/mr/1707327
http://msp.org/idx/arx/1610.08458
http://msp.org/idx/arx/1609.02420
http://projecteuclid.org/euclid.pjm/1102779371
http://msp.org/idx/mr/596919
https://doi.org/10.1155/S107379280100006X
http://msp.org/idx/mr/1810689
https://doi.org/10.1016/0040-9383(81)90013-6
http://msp.org/idx/mr/592569
https://doi.org/10.1007/978-3-662-02788-2
http://msp.org/idx/mr/1217487
https://doi.org/10.1155/IMRN/2006/37385
https://doi.org/10.1155/IMRN/2006/37385
http://msp.org/idx/mr/2264722
http://bookstore.ams.org/amsip-42-1/
http://msp.org/idx/mr/2409637
http://dx.doi.org/10.1142/9789814503921_0008
http://msp.org/idx/mr/1659687
https://doi.org/10.2140/pjm.2014.267.243
http://msp.org/idx/mr/3163482


1572 Noriyuki Hamada and Kenta Hayano

[22] B Ozbagci, A I Stipsicz, Noncomplex smooth 4–manifolds with genus-2 Lefschetz
fibrations, Proc. Amer. Math. Soc. 128 (2000) 3125–3128 MR

[23] I Smith, Lefschetz pencils and divisors in moduli space, Geom. Topol. 5 (2001) 579–608
MR

[24] I Smith, Torus fibrations on symplectic four-manifolds, Turkish J. Math. 25 (2001)
69–95 MR

[25] W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc.
55 (1976) 467–468 MR

[26] C Voisin, Hodge theory and complex algebraic geometry, II, Cambridge Studies in
Advanced Mathematics 77, Cambridge Univ. Press (2003) MR

Department of Mathematics and Statistics, University of Massachusetts
Amherst, MA, United States

Department of Mathematics, Keio University, Yagami Campus
Yokohama, Japan

hamada@math.umass.edu, k-hayano@math.keio.ac.jp

http://www.math.keio.ac.jp/~k-hayano/index_en.html

Received: 23 January 2017 Revised: 4 September 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1090/S0002-9939-00-05390-9
https://doi.org/10.1090/S0002-9939-00-05390-9
http://msp.org/idx/mr/1670411
https://doi.org/10.2140/gt.2001.5.579
http://msp.org/idx/mr/1833754
http://journals.tubitak.gov.tr/math/issues/mat-01-25-1/mat-25-1-4-0103-4.pdf
http://msp.org/idx/mr/1829080
https://doi.org/10.2307/2041749
http://msp.org/idx/mr/0402764
https://doi.org/10.1017/CBO9780511615177
http://msp.org/idx/mr/1997577
mailto:hamada@math.umass.edu
mailto:k-hayano@math.keio.ac.jp
http://www.math.keio.ac.jp/~k-hayano/index_en.html
http://msp.org
http://msp.org

	1. Introduction
	2. Preliminaries
	2.1. Lefschetz pencils and fibrations
	2.2. Monodromy factorizations of Lefschetz fibrations/pencils
	2.3. Moduli spaces of polarized abelian surfaces

	3. Uniqueness of holomorphic Lefschetz pencils on the four-torus
	3.1. A condition for pencils to be Lefschetz
	3.2. Existence of paths connecting two Lefschetz pencils
	3.3. The condition (*) for a pair (d1,d2)

	4. Examples of Lefschetz pencils on the four-torus
	4.1. Genus-3 holomorphic pencils due to Smith
	4.2. Holomorphic Lefschetz pencils with higher genera

	5. Combinatorial approach and its applications
	5.1. Smith's pencil and its generalization
	5.2. Symplectic Calabi–Yau Lefschetz pencils on homotopy T2–bundles over T2

	Appendix: Homology groups of Lefschetz pencils from  monodromy factorizations
	References

