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Hyperbolic tangle surgeries and nested links

JOHN HARNOIS

HAYLEY OLSON

ROLLAND TRAPP

Changes to gluing patterns for fully augmented links are shown to result in generalized
fully augmented links. The first changes considered result in 4–tangle surgeries on
hyperbolic fully augmented links that produce hyperbolic generalized fully augmented
links. These surgeries motivate the definition of nested links, and a characterization
of hyperbolic nested links is given. Finally, the geometry of nested links is compared
to that of fully augmented links.

57M25; 57M50

1 Introduction

This paper compares fully augmented links to generalized fully augmented links. Fully
augmented links (FALs) are obtained from a twist-reduced link diagram by placing
trivial components (called “crossing circles”) around each twist region, then eliminating
all full twists. For FALs, one considers traditional twist regions involving only two
strands. Generalized fully augmented links (GFALs) are obtained similarly, but allow
for more than two strands per twist region. These classes of links are appealing because
of their geometric simplicity and for the fact that, through Dehn filling, they provide
geometric insight into hyperbolic links in general.

Adams introduced the process of augmenting a link with a crossing circle in [2], where
he showed that augmenting (nontorus) alternating links always produced hyperbolic
links. A fully augmented link occurs when all twist regions are augmented. The
particularly tractable geometry of fully augmented links is outlined by Purcell in [12].
One feature is that FALs have a standard cell decomposition, described in the appendix
of Lackenby [9], which shows they can be built by gluing two identical ideal right-angled
polyhedra. This cell decomposition shows that all fully augmented link complements
contain reflection surfaces — totally geodesic surfaces which are fixed point sets of a
reflection on the link complement. Purcell also shows that the polyhedral decomposition
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is canonical (à la Epstein and Penner [5]), and further uses it to determine cusp shapes
of fully augmented links. Moreover, the concrete nature of this cell decomposition
has been used by a variety of authors to further our understanding of hyperbolic links;
see [12] for an excellent summary.

Generalized fully augmented links were considered by Purcell [10; 11] and by Futer,
Kalfagianni and Purcell [7], where they were used to study the geometry of hyperbolic
links with lots of twists. In particular, GFALs have provided bounds on volumes and
on lengths of geodesics, and they relate the geometry of a link to its diagram. Adams,
in [4], generalized his results of [2] and showed that generalized augmented alternating
links are hyperbolic.

We see that FALs and GFALs have had similar applications, so the comparison between
them warrants further attention. One similarity, as a result of Adams’ work [2; 4], is that
starting with an alternating link, fully augmenting yields a hyperbolic link in either case.
Another, as described in [11], is that both FALs and GFALs admit reflection surfaces,
the presence of which allowed Purcell to determine sufficient conditions on when Dehn
fillings produced hyperbolic manifolds. Thirdly, both FALs and GFALs have been used
to provide volume bounds for hyperbolic links; see [9; 4; 11] for example.

There are significant differences between FALs and GFALs as well. Each crossing
circle in a FAL bounds a totally geodesic 3–punctured sphere; see Adams [1]. Crossing
circles in a GFAL bound n–punctured spheres which need not be totally geodesic;
see [4; 10]. A related difference is that in a FAL, adding a half twist to a crossing circle
always preserves hyperbolicity, while the same is not true in the case of GFALs. There
are significant differences between the standard cell decomposition of a FAL and its
natural generalization to GFALs as well. In particular, the standard cell decomposition
of a FAL leads to a triangulation which allows one to apply Andreev’s theorem to prove
hyperbolicity. As noted in [12], one loses the triangulation on passing to GFALs, hence
the application of Andreev’s theorem, and the hyperbolic geometry of a GFAL is not
as clean.

In this paper, we take a closer look at the cell decomposition of FALs and their
description as the identification of two right-angled ideal polyhedra. In Section 2, we
review the necessary background and develop appropriate terminology. The right-angled
polyhedra P˙ , together with their gluing patterns, are described in detail. Section 3
considers slightly more general gluing patterns on P˙ , and Theorem 3.2 shows they
result in complete hyperbolic manifolds. The manifolds that result from these more

Algebraic & Geometric Topology, Volume 18 (2018)



Hyperbolic tangle surgeries and nested links 1575

general gluing patterns always contain reflection surfaces. In Section 4, tangles in a
FAL involving consecutive crossing circles are considered; see Figure 4. It is shown
that certain surgeries on those tangles correspond to slightly altered gluing patterns
which result in complete hyperbolic manifolds. These surgeries transform a FAL into a
GFAL built from the same, or related, polyhedra. This fact is demonstrated by using
a nonstandard cell decomposition on the GFAL. The nonstandard cell decomposition
motivates the definition of nested links in Section 5. Nested links are GFALs that are
similar to FALs in several ways. For nested links, Andreev’s theorem can be used to
prove they are hyperbolic, they can be characterized combinatorially by generalizing
Purcell’s dimer characterization of FALs in [12], and they provide the first examples of
GFALs for which certain volume bounds in [11] are sharp. We conclude by describing
one way in which nested links behave more like GFALs. We define a family of nested
links whose longitude lengths are at most 4, yet with an unbounded number of crossing
circles, a property shown to hold for GFALs in [10] but which does not hold for FALs;
see Futer and Purcell [8].

2 Cell decompositions

In this section, we describe the standard cell decomposition on fully augmented links
in detail, and we begin by introducing notation and terminology. Recall that a fully
augmented link F is obtained from a twist-reduced link diagram of a link L in the
plane P of projection. Around the twist regions place trivial components C1; : : : ;Cm ,
called crossing circles, which are perpendicular to P . Now remove all full twists from
each twist region. The result leaves one or no crossings inside each crossing circle.
The crossing circle is flat if there are no crossings (see Figure 1(a)), and twisted if there
is one (see Figure 3(a)). The components of F coming from the original link L will
be called knot circles. Each crossing circle Ci bounds a crossing disk Di which is
punctured twice by knot circles, making Di a 3–punctured sphere in MF D S3�F .

In this section, we describe the hyperbolic structure on MF in detail. We use the cell
decomposition of MF found in the appendix of [9] and in [12], and call it the standard
cell decomposition of MF . This decomposes MF into two 3–cells with boundary,
which are realized as right-angled ideal hyperbolic polyhedra. Some care is taken to
describe the gluing instructions on these polyhedra, noting the differences that arise
between flat and twisted crossing circles. None of the material in this section is new,
but the following sections build on it, so it is included here for completeness.
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Figure 1: The standard cell decomposition

Suppose F is a hyperbolic FAL with knot circles K1; : : : ;Kn and crossing circles
C1; : : : ;Cm . Initially consider the case where all the crossing circles are flat. The
standard cell decomposition of MF is constructed as follows; see [9; 12]. There are
no 0–cells, so the resulting polyhedra will be ideal. The crossing discs Di intersect
the plane P in three segments each with endpoints on F . The segments of intersection
constitute the 1–cells, and representatives are labeled a, b and c in Figure 1(a). These
1–cells, together with the link F , decompose the crossing discs Di and projection
plane P into the 2–cells. A 2–cell in P will be called a planar 2–cell, and the others
will be referred to as crossing 2–cells. See Figure 1(a), where D˙ are crossing 2–cells
and E is a planar 2–cell. The two 3–cells are the regions above and below the 2–cells,
denote them by B3

C and B3
� , respectively.

The standard cell decomposition of MF induces one on the boundary of B3
˙

, which
we denote by S2

˙
D @B3

˙
. We describe the induced decomposition on S2

C first. To see
the decomposition on S2

C , slice and flatten the top half of each crossing disk, getting
two copies of the half disk and each 1–cell in the process. Portions of the link F form
arcs in S2

C , which are removed from S2
C since they are not in MF . Since removing

an arc is topologically equivalent to removing a point, we shrink the missing arcs to
missing points. The result is a cell decomposition of S2

C , which we now summarize
while adding some additional structure; see Figure 1(b).

The 0–cells are the (missing) points, which correspond to arcs of the link F , and the
1–cells are two copies of each 1–cell in the standard cell decomposition of MF . There
is one 2–cell on S2

C for each planar 2–cell, and each crossing 2–cell contributes two
triangles to the decomposition (one for each side). Each (missing) vertex is 4–valent,
and shading the triangles from the crossing 2–cells gives a checkerboard coloring
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Figure 2: Circle packing from cell decomposition

of S2
C . Thus every edge bounds a shaded triangle on one side and an unshaded region

on the other. As in [12], we keep track of which (missing) vertices correspond to arcs
of crossing circles by coloring them. The rest are not colored, and correspond to arcs
of knot circles. Thus each triangle has one colored vertex, and each colored vertex is
adjacent to the two shaded triangles corresponding to a given crossing disk.

The cell decomposition of S2
C can be realized as a circle packing, which is a first step

toward realizing the topological space B3
C as a right-angled ideal hyperbolic polyhedron.

As in [12] and Chapter 13 of [14], construct the nerve � of the cell decomposition
of S2

C in the following way. Place a vertex in each unshaded region, and join two
vertices of � with an edge where their corresponding regions meet at a (missing) vertex
of the cell decomposition as in Figure 2. Since each shaded region is a triangle, the
resulting nerve � is a triangulation of S2

C . Invoking Andreev’s circle packing theorem,
there is a circle packing of the plane with � as its nerve. In our context, that means
that the unshaded regions can be made circular, and the (missing) vertices become
points of tangency between the circles. The edges of the cell decomposition become
arcs of the circles joining points of tangency. The shaded regions are then “triangles”
between three mutually tangent circles.

Now think of S2
C with its circular cell decomposition as the sphere of ideal points

for H3, and we wish to construct an ideal polyhedron PC whose “footprint” is the
circle-packing. The (missing) vertices of S2

C , which are points of tangency between
circles, will be the ideal vertices of PC . To describe the faces of PC , one observes that
given any 2–cell in S2

C , its vertices all lie on a circle. Indeed, any planar 2–cell in S2
C

is unshaded, so by construction, its boundary is a circle of the circle-packing. Any
crossing 2–cell is a shaded “triangular” region with exactly three vertices, which lie on
a Euclidean circle (not one of the circle packing, but shown dotted in Figure 2). Thus
given any 2–cell, its vertices are cocircular so they determine a hyperbolic plane in H3.
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The face of PC corresponding to it is the ideal polygon determined by its vertices. The
1–cells are the hyperbolic lines of intersection between adjacent polygons. The interior
of PC is all of H3 inside its faces.

To determine the dihedral angles along the edges of PC , note that the dihedral angle
between two intersecting faces of PC is the angle between their bounding circles at
infinity. In general, the polyhedron determines whether you use the external angle or
its supplement, but this will be irrelevant for us since all angles will be right angles.
The boundary of a shaded face is the Euclidean circle through the points of tangency
to three mutually tangent circles. This Euclidean circle is orthogonal to each of three
mutually tangent circles, as is easily seen by sending one vertex to infinity. Thus the
exterior angles between them, which are the dihedral angles between the faces of PC ,
are right angles.

The cell decomposition on S2
� is identical to that on S2

C with the opposite orientation. In
particular, each edge of the standard cell decomposition of MF appears twice in it, and
B3
� can be described geometrically as a right-angled ideal hyperbolic polyhedron P� .

Remark The polyhedron P� can be thought of as the hyperbolic reflection of PC .
Thus MF DS3�F decomposes into two identical right-angled ideal polyhedra, which
can be checkerboard colored so that shaded faces are triangles. Such a decomposition
will be important for the remainder of the paper.

When considering twisted crossing disks, the standard cell decomposition must be
changed slightly. One still has a vertical crossing disk, but the other 2–cells aren’t
planar. As in Figure 3(a), the 1–cells near the crossing circle Ck are a, b and c , and
we describe the 2–cells by listing their bounding arcs in order. The boundary of the
2–cell labeled W travels along the arc Ki in front of Dk , then right along the front
of c , around the top semicircle of Ck , along the back of 1–cell a, and then continues
back on the arc of Kj . Similarly, the boundary of the 2–cell Y travels along Kj in
front, then left along the front of a, around the bottom semicircle of Ck , along the
back of edge c , and continues back on the arc of Ki . Locally, the boundaries of X

and Z consist of arcs of Ki (resp. Kj ) in front of (resp. behind) Dk , together with
the 1–cell b . This describes the standard cell decomposition of MF near a twisted
crossing circle.

We now determine the cell decomposition on S2
˙

near a twisted crossing circle Ck . For
Figure 3, we consider both S2

˙
as the xy–plane in R3 together with the point at infinity
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Figure 3: The case of a twisted crossing disk

and sketch the cell decomposition when viewed from infinity (or from inside B3
˙

).
Note that the bottom half D� of Dk is visible from above the 2–cells in the front since
the 2–cell W hides the top half DC , while from behind, the top half DC is visible.
The induced cell decomposition on S2

C , after shrinking removed arcs to missing points,
is as in Figure 3(b). Notice that the shaded triangles correspond to opposite halves
of Dk , so do not get identified when gluing. A similar analysis produces the cell
decomposition on S2

� pictured in Figure 3(c).

Combinatorially, then, the standard cell decompositions near a flat or twisted crossing
disk are very similar. The difference is in the gluing instructions. For flat crossing
disks, shaded triangles in the same polyhedron are identified, while for twisted crossing
disks, one glues shaded triangles from opposite polyhedra.

3 Right-angled polyhedra

In the last section, we saw that the standard cell decomposition of a fully augmented
link F produced two right-angled polyhedra P˙ , together with gluing instructions, that
describe the hyperbolic structure on MF . In this section, we allow slightly more general
gluing instructions, and prove the result of the gluings is a complete hyperbolic manifold.

Taking our cue from FALs, we let PC be an ideal, right-angled, polyhedron whose faces
can be checkerboard colored so that the shaded faces are triangular (these assumptions
imply there is an even number of them). Now let r be the reflection across the hyperbolic
plane disjoint from PC , and let P� D r.PC/. We refer to a face FC of PC and its
reflection F� D r.FC/ as corresponding faces and similarly for corresponding edges
and vertices.

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 3.1 An admissible gluing pattern A on the polyhedra P˙ is one satisfying:

(1) Corresponding unshaded faces F˙ are identified by the composition of the
reflection r followed by the reflection across the plane containing F� .

(2) Corresponding shaded triangles G˙ are not identified.

(3) If 'W G!G0 is the gluing map between shaded faces G and G0 , then r ı' ı r

identifies their corresponding faces.

We say that an admissible gluing pattern identifies corresponding faces correspondingly.
For unshaded faces, this means that corresponding unshaded faces are identified, as are
their corresponding edges (as opposed to identifying faces with a twist). Identifying
shaded faces correspondingly means that the gluing of GC determines that of G� .

We take a moment to interpret admissible gluings in the context of fully augmented links.
In that setting, cutting along the standard cell decomposition creates the polyhedra P˙ .
In an admissible gluing, requiring that unshaded faces are identified is equivalent to
gluing the planar 2–cells back together. This leaves a partially identified polyhedron
with shaded triangles, which are halves of 3–punctured spheres, in its boundary to
be glued. Requiring that corresponding shaded faces be glued correspondingly is
tantamount to randomly pairing copies of 3–punctured spheres and gluing them. Thus,
an admissible gluing starts with a fully augmented link, slices along crossing disks to
produce a manifold with lots of 3–punctured spheres in its boundary, and reglues them
in any order desired.

We show that admissible gluings produce hyperbolic manifolds.

Theorem 3.2 The manifold MA obtained by gluing the polyhedra P˙ according to
an admissible gluing pattern A is a complete hyperbolic manifold.

Proof To prove that the identifications in A result in a complete hyperbolic manifold,
we first show that the gluing pattern is proper and then deal with completeness. To see
that A is proper, note that there are no finite vertices on P˙ , so we only need to check
that the dihedral angles around edge-cycles add up to 2� .

Let a be an edge on PC . Since the dihedral angle along any edge equivalent to a

is �
2

, we must show there are four edges in the edge cycle of a. The edge a bounds an
unshaded face FC on one side and a shaded triangle GC on the other. The face FC

is glued to F� so that a is identified with its corresponding edge r.a/. The face GC
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is glued to G0 ¤ G� via the isometry ' , identifying a and '.a/. Let F 0 be the
unshaded face that shares the edge '.a/ with G0 . Since F 0 in unshaded, it is identified
with r.F 0/, producing a fourth edge identified with a. Finally, since the gluing pattern
is admissible, r.G0/ is glued to G� , completing the edge cycle for a. Thus the angle
sum around each edge is 2� .

Since an admissible gluing pattern is proper, MA is a hyperbolic manifold. To prove
that it is complete, we analyze the link of a vertex. Let v be a vertex of PC and L

the link of v in MA . Furthermore, consider v to be 1 in the upper half space model,
and let S be a horosphere centered at 1. Then �1.L/ lifts to isometries of H3 that
fix v and restrict to similarities on S . We wish to show the lift of �1.L/ restricts to
isometries of S by developing the link L in S .

Let F and F 0 be the unshaded faces of PC incident with v , and let H and H 0 be the
planes containing them, respectively. Since P� is the reflection of PC , developing
across faces F and F 0 corresponds to reflecting across H and H 0 , respectively. Thus
the copies of P� attached to PC intersect S in rectangles congruent to that of PC .
Since further copies of P˙ in the unshaded direction are reflections across planes
parallel to H and H 0 , developing PC in the unshaded direction yields Euclidean
congruent rectangles in S . In particular, the shaded dimension of the rectangles does
not change as we develop in the unshaded direction.

Now let  2 �1.L/, and let ' be the corresponding isometry. Then ' restricts to
a similarity on the horosphere S and can be realized as ' .z/ D az C b for some
constants a; b 2 C . Since the tessellation of S is rectangular, a 2 R, and ' is a
dilation followed by a translation. Develop PC to ' .PC/ first along unshaded faces,
then along shaded faces. Since developing along the unshaded faces preserves the
shaded dimension, as does developing along shaded faces, the shaded dimensions
of PC and ' .PC/ are the same. Thus the dilation must be trivial, implying '

restricts to an isometry of S , and the manifold MA is complete.

The restriction that an admissible gluing A identifies corresponding unshaded faces
correspondingly results in a totally geodesic reflection surface in MA . Manifolds
containing such surfaces have interesting properties, some of which are outlined in
[10; 11]. The process of changing the gluing pattern of a FAL to an admissible
one is similar to Wielenberg’s strategy for constructing manifolds sharing the same
fundamental polyhedron; see [15].
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There is a partial converse to Theorem 3.2. More precisely, let P˙ be ideal polyhedra
constructed as above, and suppose a gluing pattern that identifies corresponding un-
shaded faces correspondingly yields a hyperbolic manifold. Under these conditions,
the gluing instructions on shaded triangles must be admissible.

Lemma 3.3 A hyperbolic gluing pattern on P which identifies corresponding un-
shaded faces correspondingly must be an admissible gluing pattern.

Proof Let a be an edge of PC bounding unshaded face FC and shaded face GC .
Since the faces F˙ are identified, the shaded triangles G˙ cannot be, otherwise the
angle sum around a would be � . Now let G0 be the shaded triangle to which GC

is glued via ' , and let F 0 be the unshaded face sharing edge '.a/ with G0 . Note
that F 0 is glued to its corresponding face r.F 0/, which is adjacent to r.G0/. To ensure
the angle around a is 2� , we must glue r.G0/ to the shaded triangle adjacent to F� ,
which is G� . Thus the gluing is admissible.

In this section, we started with polyhedra of the type found in FAL complements and
showed that more general gluing patterns still result in complete hyperbolic manifolds.
In the remainder of the paper, we topologically interpret various admissible gluing
patterns.

4 Consecutive crossing circles

Several methods of creating new hyperbolic manifolds from old ones have been devel-
oped. Adams introduced the idea of a belt-sum of manifolds in [1] and used “walnuts”
to construct hyperbolic manifolds with isometric cusps; see [3]. Furthermore, in [13],
Ruberman has shown that mutants of hyperbolic knots are hyperbolic with the same
volume. In this section, we focus on tangles involving consecutive crossing circles and
introduce operations that maintain hyperbolicity while altering volume in a controlled
fashion. Consecutive crossing circles occur in two ways, which we call parallel or series
as indicated in Figure 4, each of which comprises a 6–tangle in a fully augmented link F .

We introduce operations that replace the 6–tangles with ones that result in generalized
fully augmented links. We refer to them as surgeries since, topologically, they result
from cutting out a certain 6–tangle and pasting in a different one. Our goal is to show
that the all the surgeries maintain hyperbolicity, and those of Figure 5 maintain volume
while those of Figure 6 increase it by 2v8 , where v8 is the volume of a regular ideal
octahedron. We proceed with formal definitions.
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(a) Parallel crossing circles (b) Series crossing circles

Figure 4: Consecutive crossing circles

F S.F/ F S.F/
(a) Parallel surgery (b) Series surgery

Figure 5: Volume-preserving surgeries

F S.F/ F S.F/
(a) Parallel surgery (b) Series surgery

Figure 6: Volume-altering surgeries
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Figure 7: Cell decomposition and circle packing for MF

Definition 4.1 Let F be a hyperbolic fully augmented link with a 6–tangle containing
consecutive crossing circles. A volume-preserving surgery on F replaces consecutive
crossing circles with the corresponding tangle as in Figure 5. The resulting link is de-
noted by S.F/. A volume-altering surgery replaces F with the link S.F/ of Figure 6.

Algebraic & Geometric Topology, Volume 18 (2018)



1584 John Harnois, Hayley Olson and Rolland Trapp

In general, volume-preserving surgeries are not mutations. Indeed, mutations preserve
the number of components of a link while some volume-preserving surgeries do not,
eg surgeries on Figure 1(a).

We begin by showing that volume-preserving surgeries are deserving of their title.

Theorem 4.2 Volume-preserving surgeries, ie those in Figure 5, preserve hyperbolicity
and volume.

Proof The proof consists of noticing that minor changes in the gluing instructions
for P˙ result in the desired surgeries. We treat the case of parallel crossing circles
first. In this case, the circle packing described in Section 2 is as in Figure 7(b) where
features with the same label are identified (the view from inside PC is shown, and that
of P� is its reflection). Now consider the gluing instructions as in Figure 8(b), which
are the same as that of Figure 7(b) outside the local region pictured. It is a routine
matter to verify that the gluings of Figure 8(b) constitute an admissible gluing, and
Theorem 3.2 implies the result is a hyperbolic manifold (use corresponding gluings
on P� ). Anticipating that it will be the complement of the surgered link S.F/, we
denote it by MS.F/ and proceed with the proof.

To show MS.F/ D S3�S.F/, we construct a cell decomposition of the complement
of S.F/ and show it results in the same polyhedra P˙ as F but with the altered gluing
instructions. The crossing circles of Figure 8(a), together with one knot circle, bound a
3–punctured sphere intersecting the projection plane P in edges a, b and f . The inner
crossing circle bounds a nested 3–punctured sphere intersecting P in edges c , d and e .
These edges constitute the 1–cells. The crossing 2–cells above P are labeled A and B

in Figure 8(a), while those under P are A0 and B0 . One readily verifies that the circle
packing corresponding to this cell decomposition is that of Figure 8, demonstrating
that MS.F/ D S3�S.F/.

Now consider the case of crossing circles in series, and observe that the circle packing
is as in Figure 9(b). If one changes the gluing instructions as shown in Figure 9(d),
note that the A faces on the same polyhedron have opposite orientation, so gluing them
would result in a nonorientable manifold. Thus one glues faces from opposite polyhedra
and checks that this is an admissible gluing, which results in a complete hyperbolic
manifold by Theorem 3.2. To see that it is MS.F/ , use the cell decomposition of
Figure 9(c). The half-twist requires altering the 2–cells as in the case of twisted
crossing circles for fully augmented links. After doing so, the polyhedra and gluing
instructions are as desired.

Algebraic & Geometric Topology, Volume 18 (2018)



Hyperbolic tangle surgeries and nested links 1585

AA'

BB'

a

b

c

d

e

f

.a/

A A

B B

a a

b b

c
c

d d

e
e

f f

.b/

Figure 8: Cell decomposition and circle packing for MS.F/
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Figure 9: Series cell decomposition and circle packing

Remark One might expect the cell decomposition of S.F/ to involve a 4–punctured
sphere, corresponding to the larger crossing circle. This approach can be used, but
the resulting polyhedra are not identical to those for F , and the 4–punctured sphere
is not totally geodesic. It is interesting to note that thinking of the crossing circles as
nested 3–punctured spheres gives a cleaner picture of the geometry. This observation
motivates the definition of nested links in Section 5.
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G
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Figure 10: Appending a regular octahedron to P

Theorem 4.3 Volume-altering surgeries, ie those in Figure 6, preserve hyperbolicity
and change the volume by 2v8 .

Proof The first step is to describe a natural way to append a regular ideal octahedron
to the polyhedra P˙ ; see Proposition 3.8 of [12] as well. Given a shaded triangle G

in a circle packing bounded by three mutually tangent circles, one can form a fourth
circle C which is tangent to each boundary arc of G . Color the interior of C white,
and leave the three triangular components of G �C shaded; see Figure 10. Thus one
shaded triangle G is replaced by an unshaded circle and three shaded triangles. Notice
that the circle C is tangent to exactly three others, and thus is a triangle as well.

Andreev’s theorem implies this cell decomposition of S2 can be realized as a right-
angled ideal polyhedron which we label P 0C . We now demonstrate that P 0C is obtained
by appending a regular ideal octahedron O to PC by gluing one face to the shaded
triangle G . After performing such a gluing, we refer to the face of O glued to G also
by G , and we wish to show its circle packing is that of P 0C . Faces of O adjacent
to G make right angles with it on the other side of G from PC . Therefore, they are
coplanar with the unshaded faces of PC that are adjacent to G , and the circle packing
of P 0C outside of G is the same as that of PC . This accounts for four faces of O (the
gluing triangle G and the three triangles that extend unshaded faces of PC ). The four
remaining faces are the three shaded triangles and one unshaded circle of P 0C inside the
face G . Thus P 0C is PC with a regular ideal octahedron added. Adding one to r.G/

on P� results in P 0� .

The polyhedra P 0
˙

are obtained from P˙ by appending a regular ideal octahedron, and
we now show that specific admissible gluing patterns on P 0

˙
yield the complements of

the surgered manifolds in Figure 6. We treat the case of the series surgery in Figure 6(b)
first. Append an octahedron to the interior copy of the shaded triangle B in PC with
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Figure 11: Gluings corresponding to volume-increasing surgeries
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Figure 12: Cell decompositions of volume-increasing surgeries

circle packing pictured in Figure 9(b), and append its reflection to P� . The gluing
patterns on P 0C shown in Figure 11 can be reflected to give corresponding gluing patterns
on P 0� . This implies that the additional corresponding unshaded triangles are glued
correspondingly. Moreover, gluings outside the local region remain unchanged, so the
pictured gluing pattern is seen to be admissible. Theorem 3.2 implies the gluing results
in a complete hyperbolic manifold. The case of the parallel volume-altering surgery is
pictured in Figure 11(b), and should be compared to Figure 7(b). The corresponding
gluing instructions on P 0� are the reflections of those pictured, interchanging A and A0 ,
and the gluing is admissible resulting in a hyperbolic manifold.

To see that it is MS.F/ , slide the 4–punctured sphere over the left 3–punctured
sphere, and think of them as built from nested 3–punctured spheres as in the proof
of Theorem 4.2; see Figure 12. The resulting cell decomposition on S2

C is shown in
Figure 12, and the circle packing for this cell decomposition is readily seen to be that
of P 0

˙
with the gluing instructions of Figure 11.
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We now study fully augmented links by composing these surgeries. In particular, we
show in Corollary 4.5 that all octahedral fully augmented links can be obtained from
the Borromean rings by a sequence of surgeries. We first recall some tools from [12].
Starting with a triangulation of S2

C (the nerve of the circle packing), Purcell colors
edges so that each triangle has exactly one colored edge. The colored edges correspond
to vertices on P˙ , and the restriction that each face has exactly one colored edge means
each shaded triangle on P˙ has exactly one colored vertex. Identifying two triangles
which share a colored vertex results in a fully augmented link with flat crossing circles.
Purcell shows that the fully augmented link is octahedral if and only if the triangulation
you begin with is a central subdivision of K4 . It is natural, then, to compare fully
augmented links whose corresponding triangulations of S2

C are related by a single
central subdivision.

Theorem 4.4 Let F and F 0 be fully augmented links whose corresponding colored
triangulations are related by a single central subdivision. Then they are related by
composing a volume-increasing surgery with a volume-preserving one.

Proof Let T be a colored triangulation of S2
C , and let T 0 be obtained from T by

a central subdivision on a single face T . Extend the coloring of T to one for T 0 in
the only way possible. The corresponding changes in circle packing are illustrated in
Figure 10, where the face G corresponds to the triangle T being subdivided. When one
subdivides the triangle T corresponding to the copy of A in the middle of Figure 13(a),
one obtains the new gluing patterns pictured in Figure 13(b). We demonstrate that this
gluing change is the composition of two surgeries.

There are two cases to consider, depending on which vertex of the shaded triangle C

in Figure 13(a) is colored. If the top vertex is colored, then the crossing circles
corresponding to the colored vertices are parallel, and the volume-increasing surgery
of Figure 11(b) yields the gluing of Figure 14(b) with the appropriate change of labels.
The top right portion of the gluing in Figure 14(b) is that of Figure 9(d) (replacing A

and B of Figure 9(d) with D and C , respectively), so changing the gluing pattern
to that of Figure 9(b) corresponds to a volume-preserving series surgery. The gluing
pattern resulting from this change is that shown in Figure 13(b). Thus if the top vertex
of C is colored, the central subdivision is realized by a parallel volume-increasing
surgery followed by a series volume-preserving surgery. A similar analysis shows that
if the bottom vertex of C is colored, the central subdivision is realized by a series
volume-increasing surgery followed by a parallel volume-preserving surgery.
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Figure 13: Gluings corresponding to central subdivision
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Figure 14: Geometrically composing surgeries

Corollary 4.5 All octahedral fully augmented links can be obtained from the Bor-
romean rings by a sequence of surgeries.

Proof Purcell has shown that the nerve of any octahedral fully augmented link is a
central subdivision of the complete graph on four vertices. By Theorem 4.4, it can
be obtained from the link corresponding to a colored K4 by a sequence of surgeries.
Since any coloring of K4 results in the Borromean rings, we are done.

5 Nested links

In Section 4, we introduced surgeries on fully augmented links which resulted in
links containing 4–punctured spheres. Thus these are examples of generalized fully
augmented links whose geometric structure is similar to that of fully augmented links.
Their geometry is best understood when the 4–punctured sphere is replaced with two
3–punctured spheres that share a puncture, ie that are nested. In this section, we
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generalize the notion of nesting 3–punctured spheres to define a particular class of
generalized fully augmented links which we call, appropriately, nested links. Crossing
circles in nested links can bound n–punctured spheres, making them generalized fully
augmented links whose geometry is closely related to that of fully augmented links.

We begin by defining nested links, and then use the dual �� to the nerve � of the circle
packing to characterize them in much the same way that Purcell used �� to characterize
hyperbolic fully augmented links. The main result of this section is Theorem 5.4, which
determines the correspondence between certain spanning forests of �� and hyperbolic
nested links. Nested links then form a subclass of generalized fully augmented links
whose geometry is very well understood.

Definition 5.1 Let F be a generalized fully augmented link. A nesting of a collection
C D fC1; : : : ;Cmg of crossing circles is an isotopy of F such that:

(1) It fixes the knot circles of F , except near twisted Ci which carry their twist
along.

(2) The collection C is made coplanar by the isotopy, with an outermost circle which
we denote by C1 .

(3) The interior of C1 decomposes into a collection of 3–punctured spheres by
removing C2; : : : ;Cm and all knot circle punctures.

After the isotopy, the collection C is called nested.

Figure 12 illustrates a flat and a twisted nested collection with two crossing circles, and
Figure 15 depicts more general cases. We refer to a nested collection as flat or twisted,
as we did individual crossing circles, but with nested collections more complicated
twisting can occur. Indeed, every crossing circle in C is the boundary of a 3–punctured
sphere immediately interior to it, and each of those can either be flat or twisted. Our
convention is that if a given crossing disc is twisted, the knot circles from one interior
puncture cross those from the other, but those within a given puncture do not cross
each other. Thus, in Figure 15(b), the crossing disks A and C are twisted while B

and D are flat.

We make one final convention about twisting near a nested collection of crossing circles.
If one starts with a generalized fully augmented link with lots of twisted crossing circles,
then the isotopy to a given nesting can introduce full twists. We assume those are
removed and only half-twists or no twists remain. This is analogous to the construction
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Figure 15: Flat and twisted nested crossing circles

Figure 16: Nested annuli for the cell decomposition

for fully augmented links and is reasonable since the complements of the two links are
homeomorphic.

Definition 5.2 A generalized fully augmented link is a nested link N if the crossing
circles can be partitioned into collections which can be simultaneously nested.

The surgered links S.F/ of Section 4 are examples of nested links. Note that the volume-
altering surgeries result in links with at least two different nestings, obtained by pairing
the 4–punctured sphere with the different 3–punctured spheres in the local tangle.

Given a hyperbolic nested link N , one constructs the nested cell decomposition in
much the same way as Section 2 describes the standard cell decomposition for fully
augmented links. The crossing 2–cells for each nested collection all lie in the nesting
plane, and the 1–cells are the intersection of these with the projection plane. The
“planar” 2–cells are also constructed as for fully augmented links, with some care taken
to account for the nesting. If a nested collection is flat, the planar 2–cells are indeed
planar. If a nested collection is twisted, the planar 2–cells must follow the twisting.
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More precisely, think of each crossing circle as the waist of an annulus, so the nesting
of crossing circles yields nested annuli as in Figure 16. Outside these annuli, planar
2–cells really are planar. Between these annuli, one inserts 2–cells in the same manner
as for flat or twisted crossing circles in Section 2. Taking care to have the 2–cells
always attach to the intersection of the annuli with the projection plane P ensures that
they extend through all nested annuli, and this results in a cell decomposition of the
link complement.

Observe that the corresponding cell decomposition on S2
˙

has the same properties
as that of a fully augmented link. Since each nested collection decomposes into 3–
punctured spheres which are cut in half by the 1–cells, they yield triangles in the
cell decomposition. Shading those triangles results in checkerboard colorings of the
cell decompositions on S2

˙
. The graph � whose vertices correspond to unshaded

regions and whose edges correspond to vertices of the cell decomposition of S2
˙

is
a triangulation, and Andreev’s theorem leads to polyhedra P˙ as in Section 2. The
dual �� of � will be useful in characterizing nested links.

We now wish to demonstrate how to associate nested links with spanning forests of ��

which admit certain symmetries. Recall that vertices of �� correspond to shaded
triangles in the cell decomposition, while edges correspond to vertices of the cell
decomposition of S2

C . Since � is a triangulation of S2, the dual �� is a trivalent
graph. In [12], Purcell shows that given such a graph, a choice of a spanning forest in
which each component is an edge corresponds to a fully augmented link (Purcell calls
this a dimer in [12, Section 2]). Indeed, the edges in the spanning forest correspond
to the colored vertices of the cell decomposition of S2 which, in turn, correspond to
crossing circles in F . The endpoints of an edge in the spanning forest correspond to
shaded triangles of the cell decomposition which will be glued. Identifying shaded
triangles from the same polyhedron, both in PC and P� , results in a flat crossing
circle, while gluing ones in opposite polyhedra result in a twisted crossing circle. In
the case of fully augmented links, either choice results in a hyperbolic manifold.

We wish to generalize Purcell’s construction to nested links by finding the appropriate
generalization of a choice of dimer on �� . A spanning forest comprised entirely of
edges admits many symmetries. In particular, each edge of the forest has an involution
that interchanges the endpoints. The appropriate generalization of a dimer turns out
to be spanning forests in which each tree admits an involution. We introduce some
terminology.
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An edge-preserving involution fe on a tree T is an involution of T which interchanges
the endpoints of e . Clearly, not all trees admit edge-preserving involutions. An edge-
symmetric spanning forest fTj ; fj g is one in which an edge-preserving involution fj

is associated with each tree Tj of the forest. We now investigate the correspondence
between edge-symmetric spanning forests of �� and hyperbolic nested links. As a first
step, we have:

Lemma 5.3 A complete hyperbolic manifold can be associated with a spanning forest
of �� that is edge-symmetric.

Proof According to Theorem 3.2, we must show how to determine an admissible
gluing pattern from an edge-symmetric spanning forest fTj ; fj g. Recall that for an
admissible gluing on polyhedra P˙ , corresponding unshaded faces are identified, and
we must pair up noncorresponding shaded triangles. Since vertices of �� correspond to
shaded triangles on P˙ , we can use the involutions fj to pair shaded triangles. More
precisely, let v; fj .v/ 2 Tj correspond to the shaded triangles G and G0 , respectively.
Then G and G0 are not corresponding triangles since they are on the same polyhedron,
so G can be paired with either G0 or its reflection r.G0/.

The tree Tj together with the involution fj determine the gluing, and there are two
cases to consider depending on whether v is a leaf of Tj or not. We require that edges
paired under the involution fj correspond to vertices of G and G0 which are glued
by the isometry. If v is a leaf of Tj which is the endpoint of edge e , then G can be
paired with either G0 or r.G0/. To glue G and G0 , choose the orientation-preserving
isometry ' that glues the vertex of PC corresponding to e to the vertex corresponding
to fj .e/ and such that '.PC/ is on the opposite side of G0 from PC . To identify G

and r.G0/, choose ' so that it identifies vertices on P˙ corresponding to edges e

and r.fj .e// and so that '.PC/ and P� are on opposite sides of r.G0/. When every
vertex is a leaf, these choices correspond to flat or twisted crossing circles, respectively.

If v is not a leaf, then there are at least two edges e1; e2 2 Tj incident with v . Let ' be
the orientation-preserving isometry from G to G0 which glues vertices corresponding
to edges e1; e2 to those of fj .e1/; fj .e2/. Then '.PC/ is either on the same or
opposite side of G0 from PC . If '.PC/ and PC are on opposite sides, then use '
to glue G to G0 . If they are on the same side, then glue G to r.G0/ using the
orientation-preserving isometry taking vertices corresponding to edges e1; e2 to those
of r.fj .e1//; r.fj .e2// (this can be realized by rH 0 ır ı' , where H 0 is the hyperbolic
plane containing r.G0/). Note that in this last case where G is glued to r.G0/, the
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analogous reasoning on G0 will glue it to r.G/ so that corresponding triangles are
glued correspondingly.

For pairs of triangles on PC that get identified, glue their corresponding faces on P�

with the corresponding isometry. These choices determine an admissible gluing, which
yields a complete hyperbolic manifold by Theorem 3.2.

Thus, according to Lemma 5.3, edge-symmetric spanning forests give rise to hyperbolic
manifolds. Moreover, the proof also shows that the ambiguity is analogous to that of
fully augmented links. More precisely, for each leaf of the forest, one can choose flat or
twisted crossing circles. The remaining gluing instructions are completely determined
by the given edge-symmetric spanning forest.

We now clarify the correspondence between edge-symmetric spanning forests and nested
links. More precisely, we show that hyperbolic nested links give rise to edge-symmetric
spanning forests in �� and, conversely, the hyperbolic manifolds of Lemma 5.3 are
complements of nested links in S3.

Theorem 5.4 Each hyperbolic nested link F gives rise to an edge-symmetric span-
ning forest of �� . Conversely, each edge-symmetric spanning forest of �� yields a
hyperbolic nested link.

Proof Let F be a hyperbolic nested link; we wish to associate with it an edge-
symmetric spanning forest. We begin by demonstrating that each nested collection
C D fC1; : : : ;Cng determines an edge-preserving involution on a tree in �� . Consider
the situation for S2

C , as that for S2
� is analogous. Isotope the knot circles near C so

that any twisting occurs on one side of the nesting plane and the knot circles on the
other side are in the projection plane P . On the flat side of the nesting plane, place a
vertex in the top half of each crossing disc and connect the two vertices if their discs
share a boundary component. The result is a tree, which is half of our desired tree.
On the twisted side of the nesting plane, place a vertex in the top half of each flat
crossing disc and the bottom half of each twisted crossing disc. Again, connect the
vertices if their discs share a boundary component Ci , but if the vertices are on opposite
sides, let the edge go through the intersection of Ci and P which misses the twisted
2–cells; see Figure 17. This forms a tree on the other side of the nesting plane which
is isomorphic to the first. Connecting the vertices on opposite sides of the outermost
3–punctured sphere yields a single tree T that admits an edge-preserving involution.
The involution interchanges vertices on opposite sides of the same 3–punctured spheres,
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Figure 17: Nested crossing circles induce fTj ; fj g .

and it interchanges edges through opposite sides of the same crossing circles. This is
edge-preserving because it preserves the edge corresponding to the outermost crossing
circle while interchanging its vertices. The image of T on S2

C is thus a subtree of ��

which admits an edge-preserving involution.

Now let fTj ; fj g be the collection of subtrees of �� corresponding to all nested
collections Cj of crossing circles in F . We claim fTj ; fj g is a spanning forest. Indeed,
since each shaded triangle of S2

C is in exactly one of the collections Cj , the trees Tj

are disjoint and span.

We now focus on the converse statement, that edge-symmetric spanning forests yield
hyperbolic nested links. Lemma 5.3 shows that edge-symmetric spanning forests
yield complete hyperbolic manifolds. It remains to show that these manifolds are
complements of nested links in S3.

Let fTj ; fj g be an edge-symmetric spanning forest of �� , and consider a fixed tree T
of the forest. Let T1 be one component of T obtained by deleting the edge e 2 T which
is preserved by f . We let T1 represent the flat side of a nested collection C . Let v be
the endpoint of e contained in T1 , and construct an outermost circle C1 corresponding
to v . For each edge in T1 adjacent to v , construct a crossing circle interior to C1 , and
for each edge of ��� T1 adjacent to v , construct a knot circle puncture interior to C1 .
Make sure the constructed crossing circles and punctures are on the same sides (left
or right) as the edges they correspond to. Repeat this process for all vertices in T1 to
obtain a collection C of nested crossing circles and a flat side of knot circles.

Now use the gluing pattern determined by Lemma 5.3 to determine the twisting of the
knot circles on the other side of C . Start with flat knot circles, begin from the outermost
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crossing circle, and work your way in. For each flat crossing circle, leave the strands of
knot circles in the same order. For each twisted crossing circle with immediate interior
crossing circles C1 and C2 , introduce a half-twist between strands from C1 and C2

while leaving strands within them flat.

Repeat the above procedure for each tree in fTj ; fj g to obtain collections Cj of nested
crossing circles with knot strands that need to be glued. By construction, each end
of a knot strand corresponds to an edge of ��� T1 . Connect ends of knot strands
that correspond to the same edge. This can be done without introducing any further
crossings since �� is in S2

C . The result is a nested hyperbolic link whose corresponding
forest, given by the first statement in this theorem, is the original fTj ; fj g.

In [12] and [4], the authors point out that generalized fully augmented links usually have
more complicated geometric structures. In particular, the standard cell decompositions
are not totally geodesic and do not usually result in nerves that are triangulations. Using
the nested cell decomposition, we find that nested links are a class of generalized fully
augmented links which admit totally geodesic cell decompositions whose nerves are
triangulations. This is one way in which nested links are GFALs which are similar
to FALs.

Another similarity between nested links and FALs is that they provide examples of
links for which certain volume bounds are sharp. In [11], Purcell bounds the volume
of a GFAL in terms of the number of twist regions in a link diagram, generalizing the
analogous bound found in [6] for FALs. In particular, it is shown that

vol.S3
�F/� 2v8.tw.D/� 1/;

where F is a GFAL obtained from a link L with diagram D , tw.D/ is the number of
twists in D , and v8 is the volume of a regular ideal octahedron. Purcell notes in [11]
that this bound is sharp for FALs, but comments that it appears “far from sharp” for
GFALs. We show that, in fact, this bound is sharp for octahedral nested links, and thus
for GFALs as well.

Theorem 5.5 If F is an octahedral nested link, then

vol.S3
�F/D 2v8.tw.D/� 1/:

Proof Since F is octahedral and its complement decomposes into two identical
polyhedra, we know its volume is a multiple of 2v8 . We must show that it is the
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desired multiple. As F comes from fully augmenting a link diagram D , we see that
tw.D/ D c , where c is the number of crossing circles in F . The proof will follow
from relating the number of vertices in �� to both the number of octahedra and the
number of crossing circles.

Let V denote the number of vertices in �� ; we first relate V to c . In the nested
cell decomposition of a nested link, each crossing circle bounds a 3–punctured sphere
interior to it, which is realized as four shaded triangles on P˙ , two on each. Since
shaded triangles correspond to vertices of �� , we see that the number of crossing
circles is half the number of vertices in �� , so c D 1

2
V .

Now recall that the nerve � of an octahedral FAL is a central subdivision of the
complete graph on four vertices; see [12]. Nested links share the same P˙ as FALs, so
the same is true of nested octahedral links. Each central subdivision appends another
regular ideal octahedron to each of P˙ and adds two triangles to the triangulation
of S2

C . Thus each central subdivision adds two vertices to �� . We can now relate
the number of octahedra in PC to V . One octahedron has four shaded triangles, so
1
2
V � 1 is the number of octahedra in PC . Each central subdivision adds two vertices

to �� and one octahedron to PC , so the number of octahedra in PC remains 1
2
V � 1.

Finally, since F is made from gluing P˙ , there are twice as many octahedra in its
complement, and we have

vol.S3
�F/D 2v8

�
1
2
V � 1

�
D 2v8.c � 1/D 2v8.tw.D/� 1/:

Although nested links seem to behave more like FALs than GFALs, they are indeed
GFALs. We conclude by introducing a family of nested links sharing a property with
GFALs. Futer and Purcell [8] show that the length of longitudes of knot circles in
hyperbolic FALs are bounded below by a linear function of the number of crossing
circles. Purcell [10] shows that no such bound exists for GFALs. She does this by
producing a family of GFALs with an unbounded number of crossing circles, but
longitude length at most 4. We introduce a family of octahedral nested links with the
same property, for which the proof of hyperbolicity is more elementary than that of the
examples in [10]. Thus in this context, nested links behave more like GFALs than FALs.

Let Ln be the family of nested links described as follows. The knot circles are the
closure of a half twisted n–braid, and the first crossing circle is the braid axis considered
as a planar circle bounding an n–punctured disk. The crossing circles C2; : : : ;Cn�1
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Figure 18: The link L5

are coplanar with C1 and consecutively enclose one fewer braid strand until Cn�1

encircles the first two strands; see Figure 18 for the link L5 .

Lemma 5.6 The link Ln is hyperbolic.

Proof Figure 18(a) depicts the nested cell decomposition of S3�L5 . The 1–cells are
the horizontal edges, and the crossing 2–cells are the triangles A through D0 . The
planar 2–cells are half-twisted bands together with two disks corresponding to the
innermost and unbounded regions of the projection plane. Figure 18(b) depicts the
induced cell decomposition on S2

C before the knot circles have been shrunk to vertices
but after shrinking the crossing circles. Figure 18(c) is the circle packing coming
from the cell decomposition after shrinking the knot circles. The decomposition for
general Ln is analogous, the only difference being more circles between the inner
and outer ones. Note that this gives the same P˙ as a fully augmented 2–bridge
link, just with different gluing instructions, and is therefore octahedral (see [10] for
augmented 2–bridge link complement descriptions). Moreover, since the gluing pattern
is admissible, Theorem 3.2 implies Ln is hyperbolic.

Theorem 5.7 For n > 3, in the link Ln , meridians of the knot circles have length 4

while longitudes are at most 4
p

5.

Proof There are two cases to consider, whether the knot circle goes once or twice
through the nested crossing circles. The first case only occurs on the middle strand
when n is odd, and we consider it now.
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Let K be the center knot circle, and consider the torus neighborhood pictured in
Figure 19(a). The torus intersects the crossing 2–cells in two arcs, labeled m˙ in
Figure 19(a), which comprise a meridian of K . Because of the half-twist, the planar
2–cells intersect the torus in two arcs, labeled a and b , which together with m˙

decompose the torus into two squares. One square is in PC and the other in P� .
A preferred longitude l of K crosses the square in PC diagonally from the beginning
of arc a to the end of arc b .

This cell decomposition of the torus lifts to the universal cover of S3�Ln . Assuming that
infinity corresponds to the cusp K , the cell decomposition lifts to that of Figure 19(b),
where the copies of P˙ have been identified along the unshaded face containing the
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arc b . In the universal cover, copies of P� are obtained by reflecting PC across
unshaded faces, so ideal vertices corresponding to K lie directly beneath the arcs
labeled m˙ . Therefore, the most we can expand a horoball neighborhood about K is
to the opposite side of a shaded face. Furthermore, this is the only obstruction since
there is only one vertex corresponding to K in each of P˙ (in Figure 18(c), it is the
vertex that faces C and C 0 share). If we assume this maximal expansion occurs at
height 1, then the side of each square in Figure 19(b) has length 2. Thus the length
of l is 2

p
2 and the length of m is 4.

If the knot circle K goes twice around, then there are four vertices that correspond
to it in P˙ , two on each. For example, in Figure 18(c), the vertex shared by faces A

and D0 and that between A0 and D correspond to one knot circle, while those shared
by faces B , D0 and B0 , D correspond to another. Thus the cell decomposition of a
torus neighborhood of K lifts to four squares as in Figure 20(b), two in copies of PC

and two in copies of P� . Because of the half-twist in the cell decomposition of Ln ,
the edges of the squares coming from the unshaded faces form a curve p in S3�Ln

that has linking number 2 with K (the curve p is the concatenation of the two arcs a

and b in Figure 20(a)). Additionally, the edges corresponding to shaded triangles form
a meridian m. Thus a preferred longitude (linking number zero with K ) is the curve
l D�2mCp .

To calculate the length of l we consider a maximal cusp around K . As in the previous
case, the most we can expand a horoball neighborhood about K is to the opposite side
of a shaded face. In PC , the two vertices corresponding to K are in different octahedra
(for n> 3), so this maximal expansion can be achieved. If we assume this occurs at
height 1, then the side of one small square has length 2. The length of l D�2mCp

is then 4
p

5 and the length of m is 4.

In the case where nD 3, the knot circle K that goes twice around has meridian and
longitude lengths 2

p
2 and 2

p
10, respectively. This is because the vertices in PC

corresponding to K are opposite in the same octahedron (rather than distinct ones).
If one assumes the squares of Figure 20 to have length 2, then the horoballs touch at
height

p
2, so the lengths of curves must be adjusted.
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