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Divergence of CAT.0/ cube complexes and Coxeter groups

IVAN LEVCOVITZ

We provide geometric conditions on a pair of hyperplanes of a CAT.0/ cube complex
that imply divergence bounds for the cube complex. As an application, we classify all
right-angled Coxeter groups with quadratic divergence and show right-angled Coxeter
groups cannot exhibit a divergence function between quadratic and cubic. This
generalizes a theorem of Dani and Thomas that addressed the class of 2–dimensional
right-angled Coxeter groups. As another application, we provide an inductive graph-
theoretic criterion on a right-angled Coxeter group’s defining graph which allows us
to recognize arbitrary integer degree polynomial divergence for many infinite classes
of right-angled Coxeter groups. We also provide similar divergence results for some
classes of Coxeter groups that are not right-angled.

20F65; 20F55, 57M99

1 Introduction

We study the divergence of CAT.0/ cube complexes and apply our results to the class
of right-angled Coxeter groups. We also provide results regarding the divergence of
Coxeter groups which are not right-angled.

Given a metric space X and a positive number r , the divergence function Div.X; r/D
Div.X/ is the supremum over all lengths of minimal paths, which avoid a ball of
radius r , connecting two points that are distance roughly r apart. One may roughly
think of the divergence function as a measure of the best upper bound on the rate a pair
of geodesic rays can stray apart from one another. For a finitely generated group G,
Div.G/ is the divergence function applied to the Cayley graph of G endowed with the
word metric.

Groups that are ı–hyperbolic all exhibit at least exponential divergence. On the
other end of the spectrum, Zn displays linear divergence for n � 2. Gromov [18]
conjectured that spaces of nonpositive curvature should exhibit either linear or at least
exponential divergence. To the contrary, many important classes of groups, several
of which are CAT.0/, contain groups of quadratic divergence. For instance, the class
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1634 Ivan Levcovitz

of 3–manifold groups (see Gersten [17] and Kapovich and Leeb [22]), the mapping
class group of a closed surface of genus g � 2 (see Behrstock [3]), right-angled Artin
groups (see Behrstock and Charney [4]) and right-angled Coxeter groups (see Dani
and Thomas [12]) have been shown to contain groups of quadratic divergence.

More recently, CAT.0/ groups exhibiting polynomial divergence of any positive integer
degree (see Behrstock and Drut,u [5], Behrstock and Hagen [7], Dani and Thomas [12]
and Macura [24]) have been found. Additionally, there are even constructions of more
exotic infinitely presented groups (not necessarily CAT.0/) with divergence function
not a polynomial (see Gruber and Sisto [19] and Ol’shanskii, Osin and Sapir [26]).

Right-angled Artin groups have played a central role in contemporary mathematics (see
for example Wise [27] and Agol [1]). In terms of their divergence, these groups satisfy
a certain trichotomy: each right-angled Artin group either exhibits linear, quadratic or
infinite divergence with these occurrences classified by simple properties of the group’s
defining graph; see Behrstock and Charney [4]. Fundamental groups of 3–manifolds
exhibit a similar trichotomy as well; see Gersten [16].

Right-angled Coxeter groups form an important class of groups that act geometrically
on CAT.0/ cube complexes. Associated to any simplicial graph � is a right-angled
Coxeter group, W� , whose presentation consists of an order-2 generator for each
vertex of � with the relation that two generators commute if there is an edge between
the corresponding vertices of � . It is true that every right-angled Artin group is of
finite index in some right-angled Coxeter group (see Davis and Januszkiewicz [14]);
therefore, as divergence is a quasi-isometry invariant, the class of right-angled Coxeter
groups contains groups of linear, quadratic and infinite divergence as well. However,
even more is true for these groups.

For any positive integer degree, Dani and Thomas [12] surprisingly provide an example
of a 2–dimensional right-angled Coxeter group exhibiting polynomial divergence of the
given degree. This raises the question of which divergence functions are possible for
right-angled Coxeter groups. Additionally, there is the question of which properties of
right-angled Coxeter groups give rise to their broader spectrum of divergence functions
and how can these properties be recognized through these groups’ defining graphs.

The class of groups that act geometrically on a CAT.0/ cube complex is vast and in-
cludes both right-angled Artin groups and right-angled Coxeter groups. More generally,
we ask which properties of CAT.0/ cube complexes give rise to different divergence
functions.
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The rank rigidity theorem shows the existence of a rank 1 isometry in the automor-
phism group of an irreducible, essential, locally compact CAT.0/ cube complex with
cocompact automorphism group; see Caprace and Sageev [11] (the result actually holds
under more general assumptions as well). As a consequence, the divergence of these
spaces is either linear or at least quadratic; see Hagen [20].

We prove that for the case of right-angled Coxeter groups, there is an additional gap
between quadratic and cubic divergence, and we classify exactly which right-angled
Coxeter groups exhibit quadratic divergence.

Theorem 7.4 Suppose the graph � is not a nontrivial join. The right-angled Coxeter
group W� exhibits quadratic divergence if and only if � is CFS. If � is not CFS, then
the divergence of W� is at least cubic.

The CFS condition (“constructed from squares”) is a purely graph-theoretic condition
which can be computationally checked. We say a join graph is nontrivial if both graphs
in the join decomposition are not cliques. We note that the divergence of W� is linear
if and only if � is a nontrivial join; see Behrstock, Falgas-Ravry, Hagen and Susse [6].
For the case when � does not contain triangles, the above theorem is a result of Dani
and Thomas [12]. Such groups are precisely those whose Davis complex, a natural
CAT.0/ space a Coxeter group acts on, is 2–dimensional. Theorem 7.4 thus generalizes
Dani and Thomas’s result to right-angled Coxeter groups of arbitrary dimension.

An important application of Theorem 7.4 is to the theory of random right-angled
Coxeter groups. Let �.n; p.n// be a random n–vertex graph containing an edge
between a given pair of vertices with probability p.n/. A random right-angled Coxeter
group is simply the right-angled Coxeter group defined by a random graph. Behrstock,
Falgas-Ravry, Hagen and Susse [6] give a threshold theorem for when a random graph
is CFS with probability 1. Combining their result with Theorem 7.4, we obtain a
threshold function for the transition between quadratic to at least cubic divergence in
random right-angled Coxeter groups.

Theorem 1.1 (Behrstock, Falgas-Ravry, Hagen and Susse; Levcovitz) Suppose p.n/
is a probability density function bounded away from 1 and let � > 0. Let � D
�.p.n/; n/ be a random graph. If p.n/ > n�

1
2
C� , then the right-angled Coxeter group

W� asymptotically almost surely exhibits quadratic divergence. If p.n/ < n�
1
2
�� , then

W� asymptotically almost surely exhibits at least cubic divergence.
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We note that a random right-angled Coxeter group given as above asymptotically almost
surely has dimension larger than two. Thus the generality of Theorem 7.4 is needed to
obtain Theorem 1.1.

Strongly thick metric spaces of order d form an important class of spaces which can
be constructed through a d –step inductive gluing procedure, with initial pieces of
linear divergence. An important consequence is that these spaces must have divergence
bounded above by a polynomial of degree dC1; see Behrstock and Drut,u [5]. There are
not many general results in the opposite direction giving lower bounds on divergence,
and a goal of this article is to introduce criteria which imply such lower bounds. These
criteria then allow us to give the exact divergence, up to an equivalence of functions,
for many spaces.

We apply the following strategy to study the divergence in CAT.0/ cube complexes.
First, we define the hyperplane divergence function, HDiv, which, given a pair of
nonintersecting hyperplanes, gives the length of a shortest path between these hyper-
planes that avoids a ball of radius r about a basepoint. We then give conditions on a
pair of nonintersecting hyperplanes that imply a lower bound on their corresponding
hyperplane divergence function. The proofs for these lower bounds involve the use of
disk diagrams. Finally, we show how the hyperplane divergence function for a pair
of such hyperplanes actually implies a lower bound on the divergence of the entire
CAT.0/ cube complex:

Theorem 5.10 Let X be an essential, locally compact CAT.0/ cube complex with
cocompact automorphism group. Suppose HDiv.Y;Z/� F.r/ for a pair of noninter-
secting hyperplanes Y and Z in X. It then follows that Div.X/� rF.r/.

Consequently, this process reduces the problem of finding a lower bound on divergence
to finding a pair of hyperplanes with certain separation properties. Through this
strategy, we prove the following theorem, which gives lower bounds on divergence as
a consequence of the existence of certain types of pairs of nonintersecting hyperplanes
(these hypotheses on hyperplanes are defined in Section 5).

Theorems 5.3 and 6.2 Suppose X is an essential, locally compact CAT.0/ cube
complex with cocompact automorphism group. Let Y and Z be nonintersecting
hyperplanes in X.

(1) If Y and Z are k–separated, then Div.X/ is bounded below by a quadratic
function.
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(2) If Y and Z are k–chain separated, then Div.X/� 1
2
R2 log2.log2.R//.

(3) If X contains a pair of degree-d k–separated hyperplanes, then Div.X/ is
bounded below by a polynomial of degree d C 1.

(4) Suppose X has k–alternating geodesics. If Y and Z are symbolically k–chain
separated, then Div.X/ is bounded below by a cubic function.

The aforementioned characterization of quadratic divergence in right-angled Coxeter
groups is an application of (4) above. Furthermore, as an application of (3) we give
graph-theoretic criteria which imply polynomial lower bounds on divergence of right-
angled Coxeter groups.

Theorem 7.9 Suppose the graph � contains a rank n pair; then Div.W�/ is bounded
below by a polynomial of degree nC 1.

Here a rank n pair, where n is any nonnegative integer, is a pair of nonadjacent vertices
of � that satisfy a certain inductive graph-theoretic criterion. The above theorem
together with the machinery of thickness (see Behrstock, Hagen and Sisto [8] and
Levcovitz [23]), provide exact bounds on the divergence of a wide range of right-angled
Coxeter groups. The above theorem, in particular, applies to the examples given in
Dani and Thomas [12]. However, this theorem is still not sufficient to characterize
divergence in RACGs, as demonstrated by Remark 7.9.1.

Finally, we explore the divergence in the setting of Coxeter groups (not necessarily
right-angled). Given an edge-labeled simplicial graph � there is a corresponding
Coxeter group W� . An adaptation of our techniques allows us to prove results in this
general case. For instance, we provide the following polynomial lower bound:

Theorem 8.4 Let � be an even triangle-free Coxeter graph containing a rank n pair;
then the divergence of the Coxeter group W� is bounded below by a polynomial of
degree nC 1.

By the above theorem and the results from [8], for any positive integer degree we
can conclude there are infinite classes of Coxeter groups that are not right-angled and
which have polynomial divergence of the given degree. This shows the existence of
higher-degree polynomial divergence in the general class of Coxeter groups is abundant.

Theorem 8.4 is actually proven in a more general setting as we only need � to be
triangle-free and even for some neighborhood of a rank n pair vertex. For a precise
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statement see Theorem 8.4 of Section 8. For an edge-labeled graph � representing a
Coxeter group, we let y� denote the graph obtained by collapsing odd labeled edges
of � to a point. We prove the following:

Theorem 8.7 Let � be a Coxeter graph. If the diameter of y� is larger than 2, then
W� has at least quadratic divergence.

In particular, the above theorem shows that if W� is an even Coxeter group where �
has diameter larger than 2, then the divergence of W� is at least quadratic.

The paper is organized as follows. Section 2 provides general background material,
including a background on divergence, CAT.0/ cube complexes and Coxeter groups.
Section 3 provides necessary background on disk diagrams in CAT.0/ cube complexes.
In this section we set the notation and results regarding disk diagram structures that are
used throughout the article.

In Section 4, we introduce several notions of separation for a pair of nonintersecting
hyperplanes in a CAT.0/ cube complex. The consequences of these separation prop-
erties on the divergence of a CAT.0/ cube complex are explored in Sections 5 and 6.
The hyperplane divergence function is defined there as well.

In Section 7 we apply the results obtained for CAT.0/ cube complexes to the setting
of right-angled Coxeter groups. Finally, in Section 8, we explore the divergence of
Coxeter groups which are not necessarily right-angled.

Acknowledgements I would like to especially thank my advisor Jason Behrstock for
countless discussions and guidance in writing this paper. I would also like to thank
Mark Hagen for many useful suggestions and pointing me in the right directions in the
world of CAT.0/ cube complexes. Finally, I am also grateful to the anonymous referee
for the many helpful suggestions and corrections.

2 Background

Given a metric space X, we will always use Bp.r/ to denote the ball of radius r about
the point p 2X.

Definition 2.1 (quasi-isometry) Let X and Y be metric spaces. A (k , c )–quasi-
isometry is a not necessarily continuous map f W X ! Y such that for all a; b 2X we
have

1

k
dX .a; b/� c � dY .f .a/; f .b//� k dX .a; b/C c:
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Quasi-isometries provide a natural notion of equivalence in a coarse geometric setting.
For a detailed background on quasi-isometries and geometric group theory in general
see [10].

2.1 Divergence

Let X be a metric space. Fix constants 0 < ı � 1 and �� 0, and consider the linear
function �.r/D ır ��. Let a; b; c 2X and set k D d.c; fa; bg/. Let

div�.a; b; c; ı/

be the length of the shortest path in X from a to b which avoids the ball Bc.�.k//
and

DivX� .r; ı/

be the supremum of div�.a; b; c; ı/ over all a , b , c with d.a; b/� r . We will often
suppress ı and � from the notation and say the divergence of X is the function
Div.X/D DivX� .r; ı/.

We set f .r/� g.r/ if there exists a C such that

1

C
g
�
r

C

�
�Cr �C < f .r/ < Cg.Cr/CCr CC:

Up to this equivalence relation on functions and under mild assumptions on the metric
space, divergence is a quasi-isometry invariant. See [15, Lemma 3.4] for the relevant
hypotheses. For instance, the Cayley graph of a finitely generated group satisfies such
hypotheses.

Remark 2.1.1 Let �X be a bi-infinite geodesic with basepoint b . The divergence of
 is a function in r whose values are the supremum of div�..r/; .�r/; b; ı/. Under
the above equivalence relation on functions, this definition is well-defined regardless
of the choice of basepoint. It follows that the divergence of X is bounded below by
the divergence of  .

2.2 CAT.0/ cube complexes

A CAT.0/ cube complex, X, is a simply connected cell complex whose cells consist
of Euclidean unit cubes,

�
�
1
2
; 1
2

�d , of varying dimension d . Additionally, the link of
each vertex is a flag complex (ie any set of vertices which are pairwise connected by an
edge span a simplex). A CAT.0/ cube complex with the induced metric is a CAT.0/
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space (see [11; 27] for more detailed references). We say X is finite-dimensional if
there is an upper bound on the dimension of cubes in X.

A midcube Y �
�
�
1
2
; 1
2

�d is the restriction of a coordinate to 0. A hyperplane H�X
is a connected subspace with the property that for each cube C in X, H \ C is
a midcube or H \ C D ∅. It follows that X �H consists of exactly two distinct
components. A half-space is the closure of such a component. We denote the two
half-spaces associated to H by HC and H� . The carrier of a hyperplane, N.H/, is
the set of all cubes in X which have nontrivial intersection with H .

A CAT.0/ cube complex X is essential if all its half-spaces contain arbitrarily large
balls of X. If X is one-ended and essential, then every hyperplane is unbounded.

We will work exclusively with the combinatorial metric on the 1–skeleton of X. A
combinatorial geodesic is a geodesic in the 1–skeleton of X under this metric and
a combinatorial path is a path in the 1–skeleton of X. We often drop the word
“combinatorial” from these definitions. The following core lemmas, whose proofs are
found in [11], are used throughout this paper.

Lemma 2.2 Suppose X is a finite-dimensional CAT.0/ cube complex. Then X is
quasi-isometric to its 1–skeleton endowed with the combinatorial metric.

Lemma 2.3 Suppose X is a finite-dimensional CAT.0/ cube complex. For each k>0,
there exists a number N.k/ such that any combinatorial geodesics of length N.k/ in X
must cross a set of pairwise nonintersecting hyperplanes fH1; : : : ;Hkg.

2.3 Coxeter groups

We only give a brief background on Coxeter groups. For an extensive background we
refer the reader to [9; 13].

In this paper � will always denote a simplicial graph (usually a Coxeter graph). The
vertex set and edge set of � are denoted by V.�/ and E.�/, respectively. A clique
in � is a subgraph whose vertices are all pairwise adjacent. A k–clique is a clique
with k vertices.

For s 2 � , the link of s , Link.s/� V.�/, is the set of vertices in � connected to s by
an edge. The star of s is the set Star.s/D Link.s/[ s .

A Coxeter group is defined by the presentation

W D hs1; s2; : : : ; sn j .sisj /
m.si ;sj / D 1i;

Algebraic & Geometric Topology, Volume 18 (2018)



Divergence of CAT.0/ cube complexes and Coxeter groups 1641

where m.si ; si / D 1 and m.si ; sj / D m.sj ; si / 2 f2; 3; : : : ;1g when i ¤ j . If
m.si ; sj /D1 then no relation of the form .sisj /

m D 1 is imposed.

Given a presentation for a Coxeter group, there is a corresponding labeled Coxeter
graph � . The vertices of � are elements of S. There is an edge between si and sj
if and only if m.si ; sj / ¤1. This edge is labeled by m.si ; sj / if m.si ; sj / � 3. If
m.si ; sj /D 2, no label is placed on the corresponding edge. Conversely, given such an
edge-labeled graph � , we have the Coxeter group W� .

In the literature, there are many different conventions for associating a graph to a
Coxeter group presentation. The given convention was chosen to make the theorems in
this paper easier to state.

A right-angled Coxeter group (RACG) is a Coxeter group with generating set S where
m.s; t/2 f1; 2g for s and t distinct elements in S. An even Coxeter group is a Coxeter
group given by a Coxeter graph where each edge either has an even label or no label.

We will often want to consider subgroups of a Coxeter group W� corresponding to
subgraphs of � . The full subgraph of T � V.�/ is the graph with vertex set T with a
labeled edge .t1; t2/ if and only if .t1; t2/ is an edge of � with the same label.

Definition 2.4 (induced subgroup) Let .W; S/ be a Coxeter group. For T � S, let
WT be the subgroup of W generated by the full subgraph of T . This subgroup is
isomorphic to the Coxeter group corresponding to the subgraph of � induced by T
(see [9] for instance).

The Davis complex, †� , is a natural CAT.0/ cell complex on which the Coxeter group
W� acts geometrically. In this paper, we will only make use of the Davis complex for
right-angled Coxeter groups.

Suppose W� is a RACG. For every k–clique T � � , the induced subgroup WT is
isomorphic to the direct product of k copies of Z2 . Hence, the Cayley graph of WT
is isomorphic to a k–cube. The Davis complex †� has 1–skeleton the Cayley graph
of W� , where edges are given unit length. Additionally, for each k–clique T � � and
coset gWT , we glue a unit k–cube to gWT � †� . It is then evident that the Davis
complex for a RACG is naturally a CAT.0/ cube complex.

3 Disk diagrams in CAT.0/ cube complexes

A disk diagram D is a contractible, finite, 2–dimensional cube complex with a fixed
planar embedding P W D!R2 . The area of D is the number of 2–cells it contains.
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By compactifying R2 to S2 D R2 [1, we can extend to P W D ! S2 , giving a
cellulation of S2 . The boundary path @D of D is the attaching map of the cell in this
cellulation containing 1. Note that this is not necessarily the topological boundary.

Let X be a CAT.0/ cube complex. We say D is a disk diagram in X if D is a
disk diagram and there is a fixed continuous combinatorial map of cube complexes
F W D!X. By a lemma of van Kampen, for every null-homotopic closed combinatorial
path pW S1!X, there exists a disk diagram D in X such that @D D p .

Suppose D is a disk diagram in a CAT.0/ cube complex X and t is a 1–cell of D . A
dual curve H dual to t is a concatenation of midcubes in D which contains a midcube
in D which intersects t . The image of H under the map F W D! X lies in some
hyperplane H�X. We also have that every edge in D is dual to exactly one maximal
dual curve.

In our notation, we denote a dual curve by a capital letter and its corre-
sponding hyperplane by the corresponding script letter.

An end of a dual curve H in D is a point of intersection of H with @D . Maximal
dual curves either have no ends or two ends. The carrier N.H/ of H is the set of
2–cubes in D containing H.

Suppose we have oriented combinatorial paths p1 , p2 , . . . , pn in a disk diagram D

and that pi \ piC1 ¤ ∅ for 1 � i < n. We then define a new oriented path p D
p1 �p2 � � � � �pn by beginning at the first point of p1 , followed by p1 until its first
intersection with p2 , followed by pi until its first intersection with piC1 . In this
definition, we further assume the orientations are chosen such that this construction
is possible (ie we can always follow pi along its orientation until its intersection
with piC1 ). Furthermore, different choices of path orientations could produce different
paths. We note that this construction is only used in Lemmas 5.7 and 5.8, and the
relevant path orientations there are given.

Many of the ideas in this section originated in [21; 27]. For our purposes, we require
some modified definitions and lemmas to those in the mentioned works. For complete-
ness we include proofs of these modified claims, even though many of the arguments
are very similar.

To every closed loop formed by a concatenation of combinatorial paths and hyperplanes,
we wish to associate a disk diagram with boundary path this loop. This notion is formally
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defined below. If such a diagram is chosen appropriately, the dual curves associated to
it behave nicely. We call such nicely behaved diagrams combed and define them later
in this section.

Definition 3.1 (hyperplane-path sequence) In the following definition, we work
modulo nC 1 (ie nC 1D 0). Let xAD fA0; A1; : : : ; Ang be a sequence such that for
each i , Ai is either a hyperplane or an oriented combinatorial path in a CAT.0/ cube
complex X. Furthermore, for 0 � i � n, if Ai and AiC1 are both hyperplanes then
they intersect. If Ai and AiC1 are both combinatorial paths, then the endpoint of Ai is
the initial point of AiC1 . If Ai is a hyperplane and AiC1 is a path, then the beginning
point of AiC1 lies on N.Ai /. Similarly, if Ai is a path and AiC1 is a hyperplane,
then the endpoint of Ai lies on N.AiC1/. We call xA a hyperplane-path sequence.

Given a hyperplane-path sequence xA D fA0; : : : ; Ang, let P D fP0; : : : ; Png be a
sequence of combinatorial paths where Pi D Ai if Ai is a combinatorial path and
Pi is a combinatorial geodesic in N.Ai / if Ai is a hyperplane. Furthermore, assume
P DP0�P1�� � ��Pn defines a loop. A disk diagram D is supported by xA if @DDP
for some choice of P. Often this choice is given and we say D is supported by xA with
boundary path P . For an example of a disk diagram supported by a hyperplane path
sequence see Figure 3.

Remark 3.1.1 Diagrams supported by a hyperplane-path sequence are a special case
of diagrams with fixed carriers defined in [21]. The difference is that consecutive
hyperplanes in a hyperplane-path sequence must intersect, where in [21] they either
intersect or osculate. Most of this section can be modified to allow for osculating
hyperplanes; however, there was no need for such sequences in this paper.

Definition 3.2 (nongons, bigons, monogons and oscugons) A nongon is a dual curve
of length greater than one which begins and ends on the same dual 1–cell. A bigon
is a pair of dual curves which intersect at their first and last containing squares. A
monogon is a dual curve which intersects itself in its first and last square. An oscugon is
a dual curve which starts at the dual 1–cell e1 and ends at the dual 1–cell e2 such that
e1 ¤ e2 , e1\ e2 ¤∅ and e1 and e2 are not contained in a common square. A disk
diagram without pathologies is one that does not contain a nongon, bigon, monogon or
oscugon.

The following is proved in [27, Corollary 2.4]:
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Lemma 3.3 [27] Suppose D is a disk diagram in a CAT.0/ cube complex X; then
D does not contain monogons.

We now wish to discuss the idea of boundary combinatorics in a disk diagram D .
Suppose D and D0 are two disk diagrams in a CAT.0/ cube complex X. Let p � @D
and p0 � @D0 be subcomplexes. We say p and p0 are equal boundary complexes if
the canonical maps p!X and p0!X are the same combinatorial maps.

Suppose p � @D and p0 � @D0 are equal boundary complexes, and let i W p! p0 be
the canonical isomorphism between them. We say p and p0 have equal boundary
combinatorics if given any pair of edges e1; e2 2 p dual to a common dual curve in D ,
it follows that i.e1/ and i.e2/ are dual to a common dual curve in D0.

In particular, D and D0 have equal boundary if @D and @D0 are equal combinatorial
complexes. Additionally, D and D0 have equal boundary combinatorics if @D and @D0

have equal boundary combinatorics.

The following is also proved in [27, Lemma 2.3]:

Lemma 3.4 [27] Let D be a disk diagram in a CAT.0/ cube complex X. There
exists a disk diagram D0 in X with no pathologies and equal boundary combinatorics
to D .

Definition 3.5 (combed diagram) Let D be a disk diagram supported by a hyperplane-
path sequence xAD fA0; : : : ; Ang with boundary path P D fP0; : : : ; Png. We say D
is combed if the following properties hold:

(1) D has no pathologies.

(2) If Ai is a hyperplane, no two dual curves dual to Pi intersect. In particular, no
dual curve has both ends on Pi .

(3) If Ai and AiC1 are both hyperplanes, no dual curve dual to Pi intersects PiC1 .

The arguments in the next two lemmas are essentially the same as those in the proof of
[21, Lemma 2.11]. However, for our purposes, we often require a statement regarding
the boundary combinatorics of a given disk diagram. To be self-contained and to
guarantee the arguments are valid in our context, we provide them here.

Lemma 3.6 Suppose D is a disk diagram supported by a hyperplane-path sequence
xA D fA0; : : : ; Ang with boundary path P D fP0; : : : ; Png, satisfying properties (1)
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and (2) of combed diagrams (Definition 3.5). There exists a combed diagram D0

with boundary path P 0 D fP 00; : : : ; P
0
ng, where P 0i is a connected subsegment of Pi .

Furthermore, P 0 has boundary combinatorics equal to those of its image in P.

Proof Suppose some dual curve C intersects both Pi and PiC1 . Let v be the vertex
where Pi meets PiC1 . Let e1 be the edge in Pi which intersects v and e2 the edge
in PiC1 which intersects v .

By property (2) of combed diagrams, every dual curve to Pi between v and C intersects
PiC1 as well. It follows that the dual curve, K , to e1 intersects e2 . Let Q be the
combinatorial path in N.K/�K that forms a loop based at v . Note that Q cannot
contain any edge of @D . If e1 ¤ e2 , then any dual curve to Q must intersect Q twice,
forming a bigon. However, as D does not contain bigons, it follows that e1 D e2 .
Hence, we obtain a new diagram from D by simply deleting the edge e1 . By repeating
this process we obtain the desired diagram D0.

Lemma 3.7 Let D be a disk diagram in a CAT.0/ cube complex X supported by a
hyperplane-path sequence xAD fA0; : : : ; Ang with boundary path P D fP0; : : : ; Png.
Suppose AD Ai is a hyperplane for some i . There exists a disk diagram D0 also sup-
ported by xADfA0; : : : ;Ang with boundary path P 0DfP0; : : : ;Pi�1;P 0i ;PiC1; : : : ;Png
such that @D�Pi has the same boundary combinatorics as @D0�P 0i . Additionally, no
two dual curves dual to P 0i in D0 intersect.

Proof By Lemma 3.4 we may assume D has no pathologies. Set P DPi and suppose
two dual curves C1 and C2 to P intersect.

A dual curve cannot have two ends on P. For, otherwise, P would cross the same
hyperplane twice, contradicting P being geodesic. In particular, C1 ¤ C2 . Let e1 be
the edge on P dual to C1 and e2 the edge on P dual to C2 . If dP .e1; e2/D d > 0,
it follows that there is another dual curve C3 to P between e1 and e2 , which must
then either intersect C1 or intersect C2 (C3 cannot have both ends on P ). Proceeding
this way, we can then assume that e1 and e2 are distinct adjacent edges.

Let S be a square where C1 and C2 intersect. There are two cases. First suppose
that S does not contain e1 and e2 as edges. As C1 intersects C2 , it follows that e1
and e2 must both lie in another square of X, say S 0. For, if this were not the case, the
hyperplanes associated to the dual curves C1 and C2 would both cross and osculate
(ie have dual adjacent edges that are not in a common square). However, this is not
possible in a CAT.0/ cube complex (see [27, Section 6b]).
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As the link of vertices in X are flag complexes, it follows that S 0 � N.A/. We
can then form a new disk diagram, D0, by attaching S 0 to D along the edges e1
and e2 . This modifies the path P into a new path P 0 that is still geodesic and is still
in N.A/. In D0, the dual curves C1 and C2 now form a bigon. By [27, Lemma 2.3],
there is a another disk diagram D00, with the same boundary combinatorics as D0

and no pathologies, such that Area.D00/ � Area.D0/� 2 D Area.D/� 1. We have
thus produced a diagram, D00, with the desired boundary combinatorics that is of area
strictly smaller than D .

For the second case, suppose e1 and e2 are edges of S. Label the other edges of S as
e3 and e4 . Let H1 and H2 be hyperplanes which pass through e1 and e2 , respectively.
If ADH1 , then it follows that e1; e2; e3 �N.A/. Hence, S �N.A/. Alternatively,
suppose H1 , H2 and A are distinct. Since the link of vertices in X are flag complexes,
it follows that S is in a 3–cube which is contained in N.A/. Either way, S �N.A/.

Let P 0 be the path in D which is the same as P with e1 and e2 replaced by e3 and e4 .
P 0 is still geodesic. Furthermore, P 0 � N.A/. Let D0 � D be the disk diagram
obtained as a subdiagram of D by replacing P by P 0. It follows that D0 is a diagram
of smaller area than D . Furthermore, the boundary combinatorics of @D�P are not
affected.

In both cases we are able to produce a smaller-area disk diagram with the desired
boundary combinatorics. Therefore, by iterating this process we are guaranteed to
eventually have a diagram satisfying the conclusion of the lemma.

The following lemma guarantees the existence of a combed diagram.

Lemma 3.8 Let D be a disk diagram supported by a hyperplane-path sequence xA.
There exists a combed disk diagram D0 also supported by xA.

Proof The lemma follows by applying Lemma 3.4 to D to get a disk diagram with
no pathologies. We then repeatedly apply Lemma 3.7 to the resulting diagram to obtain
a diagram satisfying properties (1) and (2) of combed diagrams. Finally, we apply
Lemma 3.6 to obtain a combed diagram.

Given a maximal dual curve C in a disk diagram D , we want to construct a new combed
diagram with the hyperplane C in its support. Furthermore, we want the appropriate
boundary combinatorics of D preserved in this new diagram. The following technical
lemma guarantees the existence of such a diagram.
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Lemma 3.9 Let D be a combed disk diagram in a CAT.0/ cube complex X supported
by a hyperplane-path sequence xA D fA0; : : : ; Ang and with boundary path P D

fP0; : : : ; Png.

Suppose C is a maximal dual curve from Pi to Pj with i < j and let C �X be the
hyperplane associated to C . Let P be a combinatorial path in N.C/ from Pi to Pj .
Let P 0i be the subsegment of Pi between Pi�1 and P, and let P 0j be the subsegment
of Pj between P and PjC1 . Let A0i and A0j be the corresponding supports of P 0i
and P 0j , respectively (A0i DAi if Ai is a hyperplane and Ai D P 0i otherwise).

Let P 0 be any combinatorial geodesic in N.C/ connecting the endpoints of P. There
exists a combed disk diagram D0 supported by

xA0 D fA0; : : : ; Ai�1; A
0
i ; C; A

0
j ; AjC1; : : : ; Ang

with boundary path

P 0 D fP0; : : : ; Pi�1; P
0
i ; P

0; P 0j ; PjC1 : : : ; Png

such that @D0�P 0 has the same boundary combinatorics as the corresponding subset
of @D .

Proof Let D1 be a combed diagram with boundary path fP 0; P g. Let D2 be
the subdiagram of D with boundary path fP0; : : : ; P 0i ; P; P

0
j ; : : : ; Png. Note that

D2 is still combed. We may form a new disk diagram D3 by gluing D1 to D2

along P, which is supported by fA0; : : : ; A0i ; C; A
0
j ; : : : ; Ang with boundary path

fP0; : : : ; P
0
i ; P

0; P 0j ; : : : Png.

By Lemma 3.4, we may assume D3 has no pathologies and @D3�P 0 has the same
combinatorics as the corresponding subset of @D .

All that is left to prove is that properties (2) and (3) of combed diagrams (Definition 3.5)
hold. Property (3) clearly still holds for dual curves which do not intersect P 0. Assume
Ai is a hyperplane. Since D is combed, no dual curve to P 0i in D2 intersects P. Since
the combinatorics of D2 are preserved in D3 , this is still the case in D3 . In particular,
no dual curve to P 0i intersects P 0 in D3 . Therefore, property (3) holds in D3 .

Assume property (2) is false in D3 . We then have two intersecting dual curves, C1
and C2 , that are dual to the same boundary path in D3 with hyperplane support. By
the preservation of boundary combinatorics and the fact that D3 is combed, it follows
that each of these curves must have an endpoint on P 0. We can then modify D3 using
Lemma 3.7 to obtain a new diagram D0 satisfying the claim.
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4 Hyperplane separation properties

For the remainder of the paper, X will denote a CAT.0/ cube complex.
Furthermore, Y and Z will always denote a pair of nonintersecting
unbounded hyperplanes in X.

We will discuss different definitions for separation properties of a given pair of non-
intersecting hyperplanes. In the next section we will explore the relationship between
these separation properties and the divergence of X.

Definition 4.1 [4] Y and Z are strongly separated if no hyperplane intersects them
both.

A minimal geodesic g between hyperplanes Y and Z is a combinatorial geodesic with
endpoints on N.Y/ and N.Z/ such that jgj is minimal over all such geodesics. The
following lemma shows minimal geodesics between strongly separated hyperplanes
have the same endpoints.

Lemma 4.2 Suppose Y and Z are strongly separated hyperplanes. Let g1 and g2

be minimal geodesics between Y and Z . It follows that N.Y/\ g1 D N.Y/\ g2 .
Consequently, g1 and g2 have the same endpoints.

Proof Let N.Y/ \ g1 D v1 and N.Y/ \ g2 D v2 . Suppose, for a contradiction,
that v1 ¤ v2 . Let h be a combinatorial geodesic from v1 to v2 in N.Y/ and let H
be a hyperplane intersecting h. H cannot intersect Z since Y and Z are strongly
separated. It follows H must either intersect g1 or g2 . This is a contradiction (see [27,
Remark 3.12]).

The following definition gives a slight generalization of strongly separated hyperplanes.

Definition 4.3 Y and Z are k–separated if at most k hyperplanes intersect both Y
and Z . In particular, a pair of strongly separated hyperplanes are 0–separated.

The following two lemmas describe how minimal geodesics and hyperplanes intersect-
ing a pair of k–separated hyperplanes behave nicely.

Lemma 4.4 Suppose Y and Z are k–separated; then d.H1 \ Y;H2 \ Y/ � k for
every pair of hyperplanes H1 , H2 which intersect both Y and Z . Furthermore, either
Y and Z are strongly separated, or every minimal geodesic g connecting Y to Z lies
in the carrier of a hyperplane which intersects both Y and Z .
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Proof Suppose hyperplanes H1 and H2 each intersect both Y and Z . For a con-
tradiction, suppose that d.H1 \Y;H2 \Y/ > k . Let D be a combed disk diagram
supported by fY;H1;Z;H2g. Every dual curve to Y must intersect Z . However, there
are more than k such dual curves and hence more than k hyperplanes intersecting both
Y and Z . This contradicts Y and Z being k–separated.

To prove the lemma’s second claim, suppose g is a minimal geodesic from Y to Z ,
and assume that Y and Z are not strongly separated. Suppose H is a hyperplane
intersecting both Y and Z and let D be a combed diagram supported by the hyperplane-
path sequence fY; g;Z;Hg with boundary path fY; g;Z;H g. Every dual curve to H
must intersect g . Since g is geodesic, jgj D jH j and it follows that no dual curve
to Y can intersect g . So every dual curve to Y intersects Z . It follows that D is an
Euclidean rectangle. Hence, there is a dual curve C from Y to Z which has g as
part of its boundary path. So, g is contained in the carrier of the hyperplane C which
intersects both Y and Z .

Definition 4.5 If infinitely many hyperplanes intersect both Y and Z then we say Y
and Z are 1–connected.

A pair of nonintersecting hyperplanes are k–chain connected (formally defined below)
if there is an appropriate sequence of sets of hyperplanes connecting them. Hyperplanes
that are not k–chain connected, k–chain separated hyperplanes provide a generalization
of the notion of k–separated hyperplanes.

Definition 4.6 (k–chain connected) Y and Z are k–chain connected if there exists
a sequence of length-k sequences of hyperplanes

S1 D fH11;H
1
2; : : : ;H

1
kg;

S2 D fH21;H
2
2; : : : ;H

2
kg;

:::

Sm D fHm1 ;H
m
2 ; : : : ;H

m
k g

satisfying the following properties:

(I) For each i , hyperplanes in Si pairwise do not intersect.

(II) For each i < m, each hyperplane in Si intersects each hyperplane in SiC1 .

(III) Every hyperplane in S1 intersects Y and every hyperplane in Sm intersects Z .

Definition 4.7 Y and Z are k–chain separated if they are not k–chain connected.
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H11
H12

H13

H21
H22

H23
H31

H32
H33

Figure 1: Hyperplanes Y and Z that are 3–chain connected

Definition 4.8 The hyperplanes H and H0 are of the same type if they are in the
same orbit of Aut.X/. The hyperplanes H and H0 are of nonintersecting type if
gH\H0 D∅ for all g 2 Aut.X/.

Definition 4.9 Let QD fH1; : : : ;Hmg be a sequence of hyperplanes. Define

Type.Q/D .T1; : : : ; Tm/;

where Ti is the hyperplane type (orbit class) of Hi . Note that the tuple Type.Q/ is
ordered.

The next set of definitions provide a further strengthening of the notion of k–chain
separated hyperplanes which allows us to prove stronger divergence bounds in the next
section. The following definitions were created with the key example of right-angled
Coxeter groups in mind.

Definition 4.10 (symbolically k–chain connected) Y and Z are symbolically k–
chain connected if there exists a sequence of length-k sequences of hyperplanes

S1 D fH11;H
1
2; : : : ;H

1
kg;

S2 D fH21;H
2
2; : : : ;H

2
kg;

:::

Sm D fHm1 ;H
m
2 ; : : : ;H

m
k g
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H21
H22

H31H32
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H42

Figure 2: Hyperplanes Y and Z are symbolically 2–chain connected. The
hyperplane colors signify their type.

satisfying the following five properties:

(I) For each i �m and j < k , H i
j and H i

jC1 are of nonintersecting type.

(II) For each 1 < i �m, every hyperplane in Si intersects Hi�11 .

(III) For each i <m and j �k , there exists an integer c.i; j / such that i <c.i; j /�m
and Hij intersects every hyperplane in Sc.i;j / . Additionally, for all j; j 0 � k
and for all i < m, Type.Sc.i;j //D Type.Sc.i;j 0//.

(IV) Every hyperplane in S1 intersects Y and every hyperplane in Sm intersects Z .

(V) Let g be a minimal geodesic from Y to Z . For all i � m and j � k , g and
Hij�1 lie in different half-spaces of Hij .

Remark 4.10.1 By Lemma 4.4, property (V) in the definition above necessarily
implies that m> 1. Furthermore, it follows that if property (V) is true for a minimal
geodesic from Y to Z , then it is true for all minimal geodesics from Y to Z .

Definition 4.11 (symbolically k–chain separated) Two nonintersecting hyperplanes
are symbolically k–chain separated if they are not symbolically k–chain connected
and are not k–chain connected.
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5 Divergence in CAT.0/ cube complexes

We now define the hyperplane divergence function, HDiv, which measures the length
of a shortest path between two hyperplanes which avoids a ball centered on one of the
hyperplanes. Later in this section, we obtain lower bounds on the Div function from
lower bounds on the HDiv function.

Definition 5.1 Let g be a minimal geodesic from Y to Z and set p D Y \ g .
HDivg.Y;Z/.r/ is the length of a shortest path from Y to Z which avoids the
ball Bp.r/.

Remark 5.1.1 If X is one-ended then HDivg.Y;Z/.r/ always takes finite values. Ad-
ditionally, if Y and Z are k–separated and g1 and g2 are different minimal geodesics
from Y to Z , then by Lemmas 4.2 and 4.4 we have that HDivg1

.Y;Z/.r � k/ �
HDivg2

.Y;Z/.r/ � HDivg1
.Y;Z/.r C k/. Hence, up to the usual equivalence on

divergence functions, for k–separated hyperplanes it is often not relevant which minimal
geodesic is used.

This section is devoted to proving the following two theorems which provide a connec-
tion between the hyperplane separation properties defined in the previous section and
divergence in X. Theorem 5.2 gives bounds on HDiv.Y;Z/, and Theorem 5.3 gives
bounds on Div.X/.

Theorem 5.2 The following are true:

(1) Suppose X is finite-dimensional and locally compact. Then Y and Z are 1–
connected if and only if HDiv.Y;Z/ is constant.

(2) If Y and Z are k–separated, then HDiv.Y;Z/ is at least linear.

(3) If Y and Z are k–chain separated and X is finite-dimensional, then

HDiv.Y;Z/.R/� 1
2
R log2.log2R/:

Theorem 5.3 Suppose X is essential, locally compact and with cocompact automor-
phism group.

(1) If Y and Z are k–separated, then Div.X/ is bounded below by a quadratic
function.

(2) If Y and Z are k–chain separated, then Div.X/� 1
2
R2 log2.log2.R//.
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(3) Suppose X has k–alternating geodesics (Definition 5.4). If Y and Z are sym-
bolically k–chain separated, then HDiv.Y;Z/ is bounded below by a quadratic
function and Div.X/ is bounded below by a cubic function.

Definition 5.4 X has k–alternating geodesics if there exists a constant M such that
every geodesic of length M in X crosses a set of hyperplanes fH1; : : : ;Hkg such that
Hi and HiC1 are of nonintersecting type for all i < k .

Lemma 5.5 Suppose X is finite-dimensional, locally compact and that Y and Z are
1–connected. There exists a constant c such that for all r and choices of geodesic g ,
HDivg.Y;Z/.r/D c .

Proof Fix a hyperplane H1 intersecting both Y and Z , and let H2 be another
hyperplane intersecting both Y and Z at a distance at least r from H1 . Let D be
a combed disk diagram supported by fY;H1;Z;H2g. Every dual curve to H1 must
intersect H2 and every dual curve to Y must intersect Z . Hence, D is an Euclidean
strip of dimension r � d.Y;Z/ and the lemma follows.

Lemma 5.6 Suppose Y and Z are k–separated. There exists a constant c such that
HDiv.Y;Z/.r/� r C c .

Proof Let g be any minimal geodesic from Y to Z and p D g \ Y . Let ˛ be a
path from Y to Z which avoids the ball Bp.r/. Let D be a combed disk diagram
supported by fY; ˛;Z; g�1g. At most d D jgj dual curves to Y can intersect g and at
most k dual curves to Y can intersect Z . Hence, at least r � d � k dual curves to Y
intersect ˛ . Therefore, j˛j � r � d � k .

Lemma 5.7 Suppose X is finite-dimensional and Y and Z are k–chain separated.
Set d D dX .Y;Z/. There exists a constant R0.d; k/ such that HDiv.Y;Z/ �
1
2
R log2.log2R/ for R >R0 .

Proof By Lemma 2.3, let K > 0 be the constant, only depending on k and X, such
that a geodesic of length K in X must intersect at least k pairwise nonintersecting
hyperplanes. Let g be a minimal geodesic from Y to Z and set pD g\Y . Fix R> 0
and let r D log2.log2R/. Let ˛ be a combinatorial path from Y to Z which avoids
the ball Bp.R/.
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Y DH0 Z
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H2 H3

˛

D3

˛3

Figure 3: Graphic for the proof Lemma 5.7. The disk diagram D3 is sup-
ported by the hyperplane-path sequence fH0;H1;H2;H3; ˛3;Z; g�1g .

Set H0 D Y . Let D0 be a combed disk diagram with boundary supported by the
hyperplane-path sequence xA0 D fH0; ˛;Z; g�1g and with boundary path P 0 D

fH0; ˛;Z; g
�1g. Orient H0 from g to ˛ . For i 2 Z�0 set ci D 2iC1r.K C d/,

where d D jgj.

For n � r , define inductively Hn as the .cn�1/st dual curve to Hn�1 in Dn�1 and
assume Hn intersects ˛ . Orient Hn from Hn�1 to ˛ . Define ˛n as the subpath of ˛
from Hn to Z and ˇn as the subpath of ˛ from Hn�1 to Hn . Define Dn as the
combed diagram with boundary supported by

xAn D fH0;H1; : : : ;Hn; ˛n;Z; g�1g

and with boundary path

P n D fH0;H1; : : : ;Hn; ˛n; Z; g
�1
g

obtained from Dn�1 by Lemma 3.9. For j � n, define the paths in Dn

Tj DHjC1 �HjC2 � � � � �Hn �˛n (set Tn D ˛n/;

Bj DZ
�1
�g�1 �H0 �H1 � � � � �Hj�1;

B 0j D g
�1
�H0 �H1 � � � � �Hj�1:

We will show through induction the following are true for all n� r :

(A) Dn is well defined. In particular, Hn intersects ˛ .
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(B) For j < n, there are rK dual curves to Hj in Dn that intersect Tj .

(C) For n > 0, jˇnj �R� cn

Given the diagram Dn�1 , in order to define Dn we must first show Hn�1 has at
least cn�1 dual curves emanating from it in Dn�1 . Since Dn only needs to be defined
for n� r , we can do this by showing jHr j> 0 in Dr . Because ˛ avoids the R–ball
about p , we have

jHr j �R�

r�1X
jD0

cj DR�

r�1X
jD0

2jC1r.KC d/DR� 2r.KC d/

r�1X
jD0

2j :

Using the formula for a geometric series,

jHr j �R� 2r.KC d/.2
r
� 1/DR� .2.KC d/ log2.log2R//.2 log2R� 1/:

There then exists a constant m1.k; d/ such that for R >m1 , we have that jHr j � 0.
Thus, when R >m1 , Hn � cn for n < r .

We now turn to the base case, n D 0. Hypothesis (A) follows immediately. Let Q
denote the set of dual curves to H0 . At most d of these can intersect g . Additionally,
we cannot have K dual curves in Q intersect Z . For, if they did, this would imply
Y and Z are k–chain connected, a contradiction. We then have that R�K � d dual
curves to H0 intersect ˛ D T0 �D0 .

The following inequalities imply that R�K � d > rK :

R > c0 D 2r.KC d/ > rKCKC d:

Hypothesis (B) is then true, settling the base case.

For the general case, assume nC 1 � r and that hypotheses (A), (B) and (C) are
satisfied for any n0 < nC 1. Let Q D fQ1;Q2; : : : ;Qmg be the set of dual curves
in Dn emanating from Hn ordered by the orientation on Hn . It follows that at most
C D

Pn�2
jD0 cj C d dual curves in Q can intersect B 0n (the sum does not go to n� 1

since the diagram is combed). Using the formula for a geometric series, we have

C D cn�1� 2r.KC d/C d � cn�1:

Additionally, we cannot have K curves in Q intersect Z . For, then, there is a subset
of k of these dual curves, S1 D fH 1

1 ; : : : ;H
1
k
g � Q , corresponding to pairwise

nonintersecting hyperplanes, which intersect Z . By induction hypothesis (B), k dual
curves to Hn�1 , S2 D fH 2

1 ;H
2
2 ; : : : ;H

2
k
g, corresponding to pairwise nonintersecting

Algebraic & Geometric Topology, Volume 18 (2018)



1656 Ivan Levcovitz

hyperplanes, intersect every curve in S1 . Now, H 1
k
�H 2

k
is a path from Hn�1 to Z .

By the induction hypothesis (B) and the pigeonhole principle, k dual curves emanating
from Hn�2 , S3 D fH 3

1 ; : : : ;H
3
k
g, intersect either H 1

k
or H 2

k
. Hence, every curve in

S3 intersects every curve in S1 or S2 . Proceeding this way we can show Y is k–chain
connected to Z , a contradiction.

It follows that for j � cn�1CKCd �CCKCd , Qj must intersect ˛ . In particular,
HnC1DQcn

must intersect ˛ . Hence, using Lemma 3.9 we can define DnC1 , proving
hypothesis (A).

Note that, for j such that cn�1CK C d � j � cn , Qj must intersect ˛ . A direct
calculation gives that there are at least rK of such curves. Because of this, and the
boundary combinatorics preservation property of Lemma 3.9, hypothesis (B) is satisfied
in DnC1 .

We are left to prove hypothesis (C). Note that, for j > cn , Qj intersects ˇnC1 in Dn .
By using the fact that ˛ avoids Bp.R/, we have

jˇnC1j �R�

nX
jD0

cj DR� 2r.KC d/

nX
jD0

2j

DR� 2r.KC d/.2nC1� 1/

DR� cnC1C 2r.KC d/ > R� cnC1:

This proves induction hypothesis (C) and completes the induction.

We have thus divided ˛ into a set of disjoint subpaths fˇig for each of which we have
a lower bound. This allows us to compute a lower bound for the length of ˛ :

j˛j �

rX
iD1

jˇi j D

rX
iD1

.R� ci /

D rR�

r�1X
iD0

ciC1

D rR� 4r.KC d/

r�1X
iD0

2i

D rR� 4r.KC d/.2r � 1/

DR log2.log2.R//� 4.KC d/ log2.log2R/.log2R� 1/:
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There then exists a constant m2.k; d/ such that, for R >m2 ,

j˛j � 1
2
R log2.log2.R//:

We are now in a position to prove Theorem 5.2.

Proof of Theorem 5.2 The theorem follows from the above three lemmas.

The proof of the following lemma is similar to that of Lemma 5.7. However, to get the
quadratic bound on the HDiv function the proof requires a different counting technique.

Lemma 5.8 Suppose X is essential, locally compact, has k–alternating geodesics and
that Aut.X/ acts cocompactly. Let Y and Z be symbolically k–chain separated. Set
d D dX .Y;Z/. There exists a constant R0.d; k/ such that, for R >R0 , HDiv.Y;Z/
is bounded below by a quadratic function.

Proof Fix R > 0. Let g be a minimal geodesic from Y to Z , p D g\Y and ˛ a
Bp.R/–avoiding combinatorial path from Y to Z . Let M be the k–alternating constant
from Definition 5.4. Set c1 DM C d . Let c2 be the number of different hyperplane
types in X (this is finite since Aut.X/ acts cocompactly). Set c D c1.c2/kC 2d . Set
r DR=.6c/ and set H0 D Y . Let D0 be a combed diagram with boundary supported
by xA0 D fY; ˛;Z; g�1g and with boundary path P 0 D fH0; ˛;Z; g�1g. Orient H0
from g to ˛ .

Assume we have a combed disk diagram Dn supported by

xAn D fH0;H1; : : : ;Hn; ˛n;Z; g�1g

and with boundary path

P n D fH0;H1; : : : ;Hn; ˛n; Z; g
�1
g;

where ˛n is a subpath of ˛ from Hn to Z . Assume Hn is oriented from Hn�1 to ˛n .
Define ˇn as the subpath of ˛ from Hn�1 to Hn .

Let Q D fQ1;Q2; : : : ;Qlg be the set of dual curves to Hn labeled sequentially by
the orientation on Hn . Define �n to be the largest integer such that Q�n

does not
intersect ˛ . Set mn D �nC c , and let HnC1 D Qmn

. For j � n, define the paths,
in Dn ,

Tj DHjC1 �HjC2 � � � � �Hn �˛n (set Tn D ˛n/;

Bj DZ
�1
�g�1 �H0 �H1 � � � � �Hj�1;

B 0j D g
�1
�H0 �H1 � � � � �Hj�1 � Bj :

Algebraic & Geometric Topology, Volume 18 (2018)



1658 Ivan Levcovitz

We assume by induction the following are true for n < r :

(A) Dn is well defined.

(B) In Dn , for j < n, exactly c dual curves to Hj intersect Tj and exactly �j dual
curves to Hj intersect Bj .

(C) For n > 0, jˇnj � jHn�1j � �n�1� c .

For the case when nD 0, (A) follows immediately and (B) and (C) are trivial. We now
turn to the case nD 1. Note that in D0 , at most d dual curves can intersect g and
M dual curves can intersect Z (since Y and Z are symbolically k–chain separated).
Hence, �0 � d CM, and Qm0

does intersect ˛ . Therefore, by using Lemma 3.9, we
can define D1 . It is also clear that (B) holds in D1 . Furthermore, in D0 , it is clear
that for j > m0 , Qj intersects B1 . Hence, (C) is true as well. This shows the base
cases nD 0 and nD 1 are true.

We now turn to the general case. Suppose the lemma is true for all integers n0 such
that n0 � n < r . Consider the diagram Dn , and let QD fQ1; : : : ;Qlg be the set of
dual curves to Hn labeled sequentially by the orientation on Hn .

We will first show:

Subclaim 5.9 We cannot have c1 curves in Q intersect Z .

Proof We say two hyperplanes are almost symbolically k–chain connected if they
satisfy every condition of Definition 4.10 except maybe condition (V) . Suppose for a
contradiction the claim is not true. It follows that Hn is almost symbolically k–chain
connected to Z . Assume, for some i � n, that Hi and Z are almost symbolically
k–chain connected by sequences

S1 D fP11 ;P
1
2 ; : : : ;P

1
kg;

S2 D fP21 ;P
2
2 ; : : : ;P

2
kg;

:::

Sm D fPm1 ;P
m
2 ; : : : ;P

m
k g:

Additionally, we want this structure to be seen in the disk diagram Dn . So assume, for
every Pji , there is a corresponding dual curve P ji in Dn . Also assume every dual curve
corresponding to a hyperplane in S1 intersects Hi , every dual curve corresponding to
a hyperplane in Sm intersects Z , and P 11 �P

2
1 � � � � �P

m
1 is well defined as a path

in Dn from Hi to Z .
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By the induction hypothesis, there are c dual curves to Hi�1 which intersect Tj . Let
p be one such curve. Since Dn is combed, p cannot intersect TjC1 . Hence, p must
intersect P 11 � P

2
1 � � � � � P

m
1 and, consequently, p must intersect P j1 for some j .

However, since the curves in Sj are pairwise disjoint, p must intersect every curve
in Sj .

There are only ck2 different possibilities for the tuple Type.Sj /. Hence, by the pigeon-
hole principle, there must be k dual curves to Hn�1 , S D fP1; : : : ; Pkg, such that the
hyperplanes corresponding to the sequence

S D fP1; P2; : : : ; Pkg;

Sj D fP
1
1 ; P

1
2 ; : : : ; P

1
k g;

SjC1 D fP
2
1 ; P

2
2 ; : : : ; P

2
k g;

:::

Sm D fP
m
1 ; P

m
2 ; : : : ; P

m
k g

almost symbolically k–chain connect Hn�1 to Z .

Proceeding in this manner, this would imply Y is symbolically k–chain connected
to Z , a contradiction. This finishes the proof of the subclaim.

We next want to show that mn is well defined. By induction hypothesis (B) and the
subclaim, at most C D .n� 2/c C d C c curves in Q can intersect Bn . Note that
1
6
RD rc � ncC c � C C c . Hence, for mn to be well defined, it is enough to know

that jHnj � 1
6
R .

The sum
Pn�1
jD0 �j is a count of how many dual curves have both endpoints on Bn . At

most .n�1/c such curves have endpoints on Hi and Hj for some i < j < n. At most
d such curves have endpoints on g . Furthermore, by the subclaim at most .n� 1/c1
such curves have endpoints on Hi and Z for some i < n. Hence,

n�1X
jD0

�j � .n� 1/cC d C .n� 1/c1 � 2nc:

Since ˛ does not intersect Bp.R/, we have that

jHnj �R�

n�1X
iD0

jHi j DR�

n�1X
iD0

.�i C c/DR�nc�

n�1X
iD0

�i �R�3nc�R�3rcD
R

2
:

Thus, mn is well defined.
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We are left to prove induction hypothesis (C). For j >mn , Qj intersects ˇnC1 . Thus,

jˇnj � jHn�1j � �n�1� c:

This finishes the induction.

We have broken ˛ into a union of r subpaths f ǰ g for which we have a lower bound.
We can then calculate a lower bound for ˛ :

j˛j �

r�1X
iD0

jˇiC1j �

r�1X
iD0

jHi j � �i � c

�

r�1X
iD0

�
R

2
� �i � c

�

�
rR

2
�

r�1X
iD0

.�i /� rc

�
rR

2
� 3rc D

R2

12c
�
R

2
:

The following theorem allows us to deduce stronger lower bounds for Div.X/ through
the existence of just two hyperplanes with strong enough separation properties. The
proof of the theorem involves constructing an infinite sequence of nested hyperplanes.
This is done primarily through the machinery developed in [11].

Theorem 5.10 Let X be essential, locally compact and with cocompact automorphism
group. Suppose HDiv.Y;Z/� F.r/ for a pair of nonintersecting hyperplanes Y and
Z in X. It then follows that Div.X/� rF.r/.

Proof Let YC and ZC be half-spaces associated to Y and Z such that YC ¨ ZC .

By the double skewering lemma in [11], there exists a  2G such that ZC ¨ YC .
Note that HDiv.Z;Z/�F.r/ since Y separates Z from Z . By Lemma 2.3 in [11],
 is hyperbolic and its axis, l , intersects Y and Z ( skewers both Y and Z ).

Now, we have a chain of equally spaced pairs of hyperplanes fnZ; n�1Zg along l
(isometry moves hyperplanes through l ). Hence, the divergence of the geodesic l is at
least rF.r/.

Proof of Theorem 5.3 The statements in Theorem 5.3 are now an easy consequence
of Lemma 5.8 and Theorems 5.2 and 5.10.
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Remark 5.10.1 Theorems 5.10, 5.3 and 6.3 all hold under the different assumption
that X is essential and finite-dimensional and Aut.X/ has no fixed point at infinity. This
is true since the double skewering lemma from [11] also holds under these assumptions.

6 Higher-degree polynomial divergence in CAT.0/ cube
complexes

We define when a pair of hyperplanes are degree-d k–separated. We show the
divergence of two degree-d k–separated hyperplanes is bounded below by a polynomial
of degree d .

Definition 6.1 Hyperplanes H1 and H2 are degree-1 k–separated if H1 and H2 are
k–separated. H1 and H2 are degree-d k–separated if they are k–separated and, for
either i D 1 or i D 2, every geodesic of length k contained in N.Hi / intersects a pair
of degree-.d�1/ k–separated hyperplanes.

The main theorem of this section is the following:

Theorem 6.2 Suppose X is finite-dimensional. If Y and Z are degree-d k–separated
hyperplanes, then HDiv.Y;Z/ is bounded below by a polynomial of degree d .

By combining Theorems 5.10 and 6.2, we immediately get the following:

Theorem 6.3 Let X be an essential, locally compact CAT.0/ cube complex with
cocompact automorphism group. If X contains a pair of degree-d k–separated
hyperplanes, then Div.X/ is bounded below by a polynomial of degree d C 1.

Proof of Theorem 6.2 The base case, d D 1, follows from Theorem 5.2(2). For
the general case, assume the claim is true for degree-.d�1/ k–separated hyperplanes.
Suppose Y and Z are degree-d k–separated. Let g be a minimal geodesic from Y
to Z and let p D g\Y . Fix R > 0, and let ˛ be a path from Y to Z that avoids the
ball Bp.R/. Let D be a combed disk diagram supported by fY; ˛;Z; g�1g.

Orient Y � D from g to ˛ , and let A D fH1;H2; : : : ;Hng be dual curves to Y
sequentially ordered by the orientation on Y . Since ˛ does not intersect Bp.R/,
we have that n � r . Since D is combed and Y and Z are k–separated, it follows
that for i > jgj C k , Hi intersects ˛ . By Definition 6.1, there is a subsequence
B D fK1; K2; : : : ; Kmg � A such that:

Algebraic & Geometric Topology, Volume 18 (2018)



1662 Ivan Levcovitz

(1) Ki intersects ˛ .

(2) For i odd, Ki and KiC1 are degree-.d�1/ k–separated.

(3) m� .r � k� jgj/=k .

(4) d.Ki ; p/� ki CjgjC k .

For i odd, let ˛i be the segment of ˛ from Ki to KiC1 . Note that ˛i is a path from Ki
to KiC1 which avoids the ball BKi\Y.r � ki � jgj � k/. By the induction hypothesis
and Lemma 4.4, j˛i j � .r � ki � jgj � k/d�1 . Since we have linearly many segments
f˛ig whose length is bounded below by a degree-.d�1/ polynomial, it follows that
the length of ˛ is bounded below by a degree-d polynomial.

7 Right-angled Coxeter group divergence

In the next two subsections, we wish to apply the theorems from previous sections to
the case of right-angled Coxeter groups (RACGs for short).

Let � be the graph associated to a RACG, W� . Let �c be the graph complement of �
and let I be the set of isolated vertices in �c , ie I D fv 2 V.�c/ j Link.v/D∅g.

I forms a clique in � , and � is the graph join of the induced subgraph corresponding
to I with the induced subgraph corresponding to � � I. Consequently, W.��I/ is of
finite index in W� . Divergence is a quasi-isometry invariant, hence divergence results
for W.��I/ apply to W� .

We will from now on assume, without loss of generality, that �c has no
isolated vertices for all RACGs considered.

The Davis complex for W� under this assumption is essential.

The following definition is a construction used in [12].

Definition 7.1 (� –complete word) Given a graph � which is not a join, let w0 D
s1 : : : sk be a word with the property that for every generator s 2 � , there exists an i
such that si D s . Furthermore, m.si ; siC1/D1 for all 1� i < k and m.s1; sk/D1.
Since � is not a join, it is always possible to define w0 , although w0 is not unique.
We call such a word a � –complete word and always denote it by w0 .

We use the definition of a CFS graph used in [6; 12] (defined below). An induced
square of a graph � is an embedded 4–cycle.
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Definition 7.2 Given a graph � , define �.�/ as the graph whose vertices are induced
squares of � . Two vertices in �.�/ are adjacent if and only if the corresponding
induced squares in � have two nonadjacent vertices in common. For a set of induced
squares S ��.�/, define the support of S to be all vertices in � which are contained
in some square in S. We say � is CFS if �.�/ contains a component whose support
is V.�/.

Remark 7.2.1 In [6], the graph join of a CFS graph with a clique graph is still CFS.
With the assumption that �c has no isolated vertices, such a graph is not possible
and so we omit this from the definition. We note again, however, that the RACG
corresponding to a graph that is a join with a clique is commensurable with the RACG
corresponding to the graph. So the results in this section still hold in full generality.

7.1 Characterization of linear divergence

The authors of [6] characterize which right-angled Coxeter groups exhibit linear diver-
gence and the triangle-free case is done in [12]. For completeness and as a warm up
for the quadratic case, we provide another proof here of this characterization.

Theorem 7.3 If � is a join then Div.W�/ is linear. Otherwise, Div.W�/ is at least
quadratic.

Proof Suppose � is a join. It follows that W� DW�1
�W�2

. By the assumption that
�c has no isolated vertices, both W�1

and W�2
are infinite. Hence, Div.W�/ is linear.

Now suppose � is not a join. Let w0 D s1s2 : : : sk be a � –complete word. Let Y be
the hyperplane dual to the letter s1 in w0 and Z the hyperplane dual to the letter sk
in w0 in the Davis complex of W� . Since m.s1; sk/D1, it follows that Y and Z do
not intersect. Similarly, any hyperplane dual to the letter sj in w0 for 1 < j < k does
not intersect Y or Z .

We will show Y and Z are strongly separated. Suppose, for a contradiction, some
hyperplane H intersects both Y and Z . Let H be of type s 2 V.�/. It follows that for
every j such that 1� j � k , the hyperplane through the letter sj in w0 intersects H .
Hence, for every t 2 � , m.t; s/ D 2. But this implies that s is isolated in �c , a
contradiction.

Since Y and Z are strongly separated, by Theorem 5.3 Div.W�/ is at least quadratic.
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7.2 Characterization of quadratic divergence

We use results from Section 5 to characterize quadratic divergence in RACGs and show
there is a gap between quadratic and cubic divergence in RACGs.

Theorem 7.4 Suppose � is not CFS and is not a join; then W� has divergence greater
than or equal to a cubic polynomial.

The proof of the theorem will be given at the end of this subsection. We state the
following corollaries, which immediately follow.

Corollary 7.4.1 W� has quadratic divergence if and only if � is CFS and is not a
join.

Proof If � is CFS and is not a join, it follows from [6] that it has quadratic divergence.
The other direction follows from Theorem 7.4.

Corollary 7.4.2 If W� is strongly thick of order 2, then W� has cubic divergence.

Proof By [6], W� has at most cubic divergence. Hence, by Theorem 7.4, W� has
exactly cubic divergence.

The following lemma guarantees the existence of symbolically k–chain separated
hyperplanes when � is not CFS.

Lemma 7.5 Let M be the maximal clique size in � . Let w0 D s1s2 : : : sk be a � –
complete word and consider its image in the Davis complex X. Let Y be the hyperplane
dual to w0 which intersects s1 and Z the hyperplane dual to w0 intersecting sk . If Y
and Z are symbolically 2–chain connected, then � is CFS.

Proof Assume Y and Z are symbolically 2–chain connected by sequences

S1 D fH1;K1g;

S2 D fH2;K2g;
:::

Sm D fHm;Kmg:

Let aD fa1; a2; : : : ; amg and b D fb1; b2; : : : ; bmg be the letters in � corresponding
to the hyperplanes fH1; : : : ;Hmg and fK1; : : : ;Kmg, respectively. It follows that a[b
forms a CFS subgraph, �, of � .
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Any hyperplane intersecting w0 cannot intersect Y or Z . Thus any such hyperplane
separates Y from Z . Consequently, each hyperplane intersecting w0 must intersect
Hi and Ki for some i . Let L.w0/ be the set of generators in the word w0 , namely
L.w0/ D fs1; s2; : : : ; skg. It follows that for each s 2 L.w0/, there exists a j such
that s commutes with both hj ; kj 2�.

Given s 2L.w0/, assume s … a[b as a vertex of � , and assume s does not commute
with every generator in a[b . Let t 2 a[b be such that m.s; t/D1, t 2 far ; brg for
some r , and m.s; aj /Dm.s; bj /D 2 for some j with jr � j j D 1. This is possible
by the above paragraph. It follows fs; t; aj ; bj g forms an induced square which shares
two nonadjacent vertices with a square in �.

On the other hand, suppose si 2L.w0/ commutes with every generator in A[B . The
generator siC1 (if i D k set siC1 D s1 ) commutes with aj and bj for some j . We
then have that fsi ; siC1; aj ; bj g forms an induced square that shares two nonadjacent
vertices with a square in �.

We have thus shown every generator in L.w0/ is either contained in � or contained in
an induced square C that shares two nonadjacent vertices with a square in �. Since
L.w0/ contains every generator in � , we have shown that � is CFS.

Lemma 7.6 The Davis complex for W� has 2–alternating geodesics.

Proof Choose M to be one larger than the maximal clique size in � . Let g D
s1s2 : : : sM be a geodesic of length M with si 2 � . By Tits’ solution to the word
problem (see [13]), it follows that m.si ; sj /D1 for some 1� i <j �k . It follows that
the hyperplane intersecting si and the hyperplane intersecting sj are of nonintersecting
type.

Proof of Theorem 7.4 Theorem 7.4 now follows from the above two lemmas and
Theorem 5.3.

7.3 Higher-degree polynomial divergence in RACGs

In this section, we apply results from Section 6 to give graph-theoretic criteria which
imply lower bounds on the divergence of a RACG. Together with the machinery of
thickness (see [8; 23, Corollary 6.3.1]), which provides upper bounds on divergence,
these results allow one to compute the exact divergence of many RACGs.
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Definition 7.7 Given distinct vertices s; t 2 � , .s; t/ is a noncommuting pair if s is
not adjacent to t in � .

Definition 7.8 A noncommuting pair .s; t/ is rank 1 if s and t are not contained in
some induced square of � . Additionally, .s; t/ is rank n if either every noncommuting
pair .s1; s2/ with s1; s2 2 Link.s/ is rank n� 1 or every noncommuting pair .t1; t2/
with t1; t2 2 Link.t/ is rank n� 1.

0

1

2

7

9

5

3

6

8

4

Figure 4: The noncommuting pairs .4; 6/ , .4; 5/ , .4; 9/ , .5; 9) and .6; 9/
for the example graph above are rank 1 . It then follows that the noncom-
muting pair .7; 8/ is rank 2 . Taking this one step further, we see that the
noncommuting pair .9; 0/ is rank 3 . By Theorem 7.9, the RACG associated
to the above graph has divergence bound below by a polynomial of degree 4 .
Furthermore, it can easily be checked using techniques from [8] that this
RACG is thick of order 3 and so the divergence of this group is exactly a
quartic polynomial.

Theorem 7.9 Suppose � contains a rank n pair .s; t/; then Div.W�/ is bounded
below by a polynomial of degree nC 1.

Proof Let M be the maximal clique size in � . We claim that hyperplanes of type s
and t must be degree-n M –separated, in the sense of Definition 6.1. If this claim is
shown, the theorem follows from Theorem 6.3.

We first prove the base case when nD 1. Suppose, for a contradiction, Y and Z are
of type s and t , respectively, and that M C 1 hyperplanes intersect both Y and Z . It
follows from Lemma 7.6 that two such hyperplanes, H and H0, are of type a; b 2 � ,
respectively, where .a; b/ is a noncommuting pair. However, it then follows that
fs; a; b; tg is an induced square in � , contradicting .s; t/ being rank 1.

For the general case, suppose .s; t/ is rank n and Y and Z are hyperplanes of type s
and t , respectively. Without loss of generality, assume every noncommuting pair
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.s1; s2/ with s1; s2 2 Link.s/ are rank n�1. By the induction hypothesis, hyperplanes
of type s1 and type s2 are degree-.n�1/ M –separated.

Consider any geodesic g � N.Y/ of length M C 1. By Lemma 7.6, g crosses two
hyperplanes of noncommuting type, say of type s1 and type s2 . By the above paragraph,
.s1; s2/ must be degree-.n�1/ M � 1–separated. The claim then follows.

Remark 7.9.1 It is not true that the largest rank of a pair of vertices of a graph
determines the corresponding RACG’s divergence. The graph � in Figure 5 is not a
join and is not CFS. Therefore, the divergence of W� is at least cubic by Theorem 7.4.
In fact, by applying [23, Corollary 6.3.1] to obtain an upper bound, the divergence is
determined to be exactly cubic. Furthermore, every nonadjacent pair of vertices in �
is either rank 0 or rank 1. It follows we can only obtain a quadratic lower bound on
the divergence of W� through Theorem 7.9.

Figure 5: A graph that is not a join, is not CFS and only contains rank 0 and
rank 1 pairs of vertices

8 Coxeter groups

This section explores lower bounds for divergence in Coxeter groups (not necessarily
right-angled). We use similar arguments to those used in Section 6. We do not make
use of a cube complex in this section. Instead, we use the construction of bands in
van Kampen diagrams which behave similarly to dual curves in CAT.0/ cube complex
disk diagrams. We refer the reader to [25, Chapter 4] for a background on van Kampen
diagrams and to [2] for their application to Coxeter groups.

A characterization of thick Coxeter groups is given in [8, Proposition A.2] by a class
of edge-labeled graphs that can be constructed by an inductive procedure. Furthermore,
the authors’ proof of this proposition provides an upper bound on thickness, and hence
divergence, at each step of the inductive construction. One can then carefully apply the
results in this section, together with the work in [8], and obtain the exact divergence
for a large class of Coxeter groups.

In this section, we assume all Coxeter diagrams have at least one edge. Otherwise, W�
is virtually trivial or virtually free and exhibits either trivial or infinite divergence.
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8.1 Higher-degree polynomial divergence

Definition 8.1 Let � be a labeled graph. The vertex v 2 V.�/ is r –locally triangle-
free if for all u 2 V.�/ such that d�.u; v/ < r , u is not in a triangle. We say v is
r –locally even if for all u 2 V.�/ such that d�.u; v/ < r , each edge adjacent to u is
even-labeled or not labeled.

Definition 8.2 For � a Coxeter diagram, let L� be the largest integer edge label in � .
If � contains no labeled edges, set L� D 2.

The following lemma allows us to choose boundedly spaced generators in a minimal
expression for a word w 2 WStar.v/ such that these generators are not v and do not
sequentially coincide.

Lemma 8.3 Let � be a Coxeter diagram. For any v 2 � and any minimal expression
w D s1s2 : : : sn with si 2 Star.v/ for a word w 2WStar.v/ , there exists a subsequence
fsi1 ; si2 ; : : : ; simg such that:

(1) sij ¤ v for all j .

(2) i1 � 2.

(3) ijC1� ij � L� .

(4) sij C1
¤ sij as vertices of � .

(5) m� n=.L� C 1/.

Proof Since w is minimal length, there cannot be two v letters appearing consecutively.
Hence, either the first or second letter is not v . Set si1 to be this letter. Now note that
for any letter s 2 Link.v/ and n > L� , we cannot have the expression svsv : : : sv or
svsv : : : svs of length n appearing in w , for this would contradict w being reduced.
Hence, there is some letter, si2 not equal to si1 or v with i2� i1 � L� . We can keep
repeating this process, and the lemma follows.

Let D be a van Kampen diagram for a Coxeter group. Each 2–cell in D has an even
number of edges along its boundary path. For a given cell and a given edge along the
cell’s boundary path, there is a corresponding opposite edge. Furthermore, each edge in
D is contained in exactly one cell if it is a boundary edge of D and in exactly two cells
if it is not. Two edges e and e0 in D are opposite-connected if there is a sequence of
edges e D e1 , e2 , . . . , en D e0 such that ei is opposite to eiC1 in some 2–cell of D .
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A band associated to an edge e in D is the set of all edges opposite-connected to e
and cells adjacent to these edges.

The construction of bands is utilized in [2, Section 1.4]. There it is also shown that
bands do not self-intersect and cannot intersect geodesics twice.

For u; v 2 V.�/, an odd path from u to v is a path in � which only contains edges
with odd labels. Let Ov consist of vertices u 2 V.�/ for which there is an odd path
from u to v . By definition, v 2Ov .

Let e be an edge in D labeled by some v 2 V.�/. It is easy to check the band
corresponding to e only contains edges labeled by elements in Ov .

Recall that Definition 7.8 of a rank n pair is still valid for Coxeter groups that are not
right-angled.

Theorem 8.4 Let � be a Coxeter graph. Suppose .u; v/ is a rank n pair. Without loss
of generality, we assume that for all distinct u1; u2 2 Link.u/, .u1; u2/ is a rank n�1
pair in � . Further assume that u is n–locally triangle-free and .nC1/–locally even
and that v is 1–locally even. It follows that the divergence of the bi-infinite geodesic
: : : uvuv : : : is bounded below by a polynomial of degree nC 1.

The following corollary is immediate:

Corollary 8.4.1 Let W� be an even Coxeter group such that � contains no triangles.
If .u; v/ is a rank n pair in � , then Div.W�/ is bounded below by a polynomial of
degree nC 1.

To prove the above theorem, we will first need the following technical lemma:

Lemma 8.5 Let .u; v/ be as in Theorem 8.4. Let g 2WStar.u/ and h 2WStar.v/ and
p 2W� be words written in a minimal length expression. Suppose jpj � L� , jgj � r
and jphj � r . Let ˛ be a shortest path from g to ph in the Cayley graph of W�
which does not intersect Bid.r/. It follows that j˛j is bounded below by a polynomial
of degree n.

Proof The proof will follow by induction on n. We begin with the base case where
the rank of .u; v/ is n D 1. Suppose g is given by the following expression in
generators: g D s1s2 : : : sl . Note that l � r . Let D be a van Kampen with boundary
path g˛h�1p�1 .
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Let T D fsi1 ; si2 ; : : : ; simg be a subsequence of fs1; s2; : : : ; slg as in Lemma 8.3, and
B D fB1; B2; : : : ; Bmg bands in D corresponding to each letter in T . Since u is
2–locally even, each band Bj only contains edges labeled by sij . Furthermore, since
u is 1–locally triangle-free, u is not contained in a triangle. It follows that Bi and Bj
do not intersect for i ¤ j .

At most L� bands can intersect p . Additionally, u and v are rank 1, and so are not
in a common square of � . It follows that Bj intersects ˛ for j > L� . Hence, j˛j is
linear in r , proving the base case.

Now assume the theorem is true for n� 1 and that .u; v/ is of rank n. The proof
proceeds almost the same way as the base case. Consider all the same notation as the
base case. For i such that L� C 1 < i < m, let ˛i be the segment of ˛ between Bi
and BiC1 , and let pi be the segment of g from Bi to BiC1 . Let gi be the word along
Bi from pi to ˛i , and let hi be the word along BiC1 from pi to ˛i . By the induction
hypothesis, j˛i j is bounded below by a polynomial of degree n� 1 in r � i . Hence,
j˛j is bounded below by a polynomial of degree n.

Proof of Theorem 8.4 Let ˛ be (a Bid.r/–avoiding path from .uv/r to .vu/r in
the Cayley graph of W� . Let D be a van Kampen diagram with boundary path
.uv/r˛.vu/�r . Since .u; v/ is a noncommuting pair in � , no pair of bands emanating
from the words .uv/r or from .vu/r along the boundary path of D can intersect.
Hence, each of these bands must intersect ˛ .

Write .uv/r as u1v1u2v2 : : : urvr . Let Ui and Vi be bands corresponding to ui

and vi , respectively. Let Di be the minimal connected subdiagram of D which
includes Ui and Vi . Let ˛i be the segment of ˛ contained in Di . By Lemma 8.5,
j˛i j is bounded below by a polynomial of degree n in r � i . Hence, j˛j is bounded
below by a polynomial of degree nC 1.

8.2 Quadratic divergence lower bound

Definition 8.6 Given an edge-labeled Coxeter graph � , let y� be the graph resulting
from collapsing odd labeled edges in � to a point. For v 2 � , we denote its image in
y� by �.v/. Each vertex yv 2 y� is labeled by a list, ��1.yv/. Each edge in y� is labeled
by the same integer as the corresponding edge in � . Note that this new graph can have
multiple edges between two vertices.
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Theorem 8.7 Let � be a Coxeter graph. If the diameter of y� is larger than 2, then
W� has at least quadratic divergence.

Proof Suppose dy�.yu; yv/> 2 for some yu; yv 2 y� . Choose u2��1.yu/ and v 2��1.yv/.
It follows that m.u; v/D1. We will show that the bi-infinite geodesic : : : uvuv : : :
exhibits at least quadratic divergence.

Let ˛ be a shortest Bid.2r/–avoiding path from .uv/r to .vu/r . Let D be a van Kam-
pen diagram with boundary path .uv/r˛.vu/�r . Write .uv/r D u1v1u2v2 : : : urvr .
Let Ui denote the band emanating from ui and Vi the band emanating from vi . Note
that Ui cannot intersect Vj for any i and j . For, then, there would be an odd path
in � from u to some u0, and an odd path from v to some v0, so that m.u0; v0/¤1.
However, this would imply dy�.yu; yv/� 1, a contradiction.

Fix i . Let Di denote the minimal connected subdiagram of D containing both Ui
and Vi , and let ˛i be the subsegment of ˛ contained in Di . Let g D s1 : : : sm be
the word along the boundary path of Ui from ui to ˛i . It follows that m � r � i .
Furthermore, si 2 AD fStar.t/ j t 2 ��1.yu/g. Note that dy�.yu; Ot /� 1 for t 2 A. Let
Sj be the band in Di emanating from sj . It follows that Sj cannot intersect Vi . For,
then, dy�.yu; yv/� 2. Hence, Sj intersects ˛i for each j . It follows that j˛i j is at least
linear in r � i . Hence, j˛j is at least quadratic in r .

Corollary 8.7.1 Let W� be an even Coxeter group. If diam.�/ > 2, then Div.W�/
is at least quadratic.
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