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The relative lattice path operad

ALEXANDRE QUESNEY

We construct a set-theoretic coloured operad RL that may be thought of as a com-
binatorial model for the Swiss cheese operad. This is the relative (or Swiss cheese)
version of the lattice path operad constructed by Batanin and Berger. By adapting
their condensation process we obtain a topological (resp. chain) operad that we show
to be weakly equivalent to the topological (resp. chain) Swiss cheese operad.

18D50; 18G30, 55P48

1 Introduction

The Swiss cheese operad SC is a 2—coloured topological operad that mixes, in its
m—dimensional part SCyy,, the m—dimensional and the (m—1)—dimensional parts of the
little cubes operad C. It was introduced by Voronov [23] as a natural way to define ac-
tions of Cyx(Cp,)—algebras on Cy(C,,—1)—algebras and has been used by Kontsevich [15]
in deformation quantization. As announced by Hoefel, Livernet and Stasheff [13], the
Swiss cheese operad SCyy, also recognizes the pair (m—fold loop space, m—fold relative
loop space). The goal of this paper is to provide a convenient combinatorial model for
(the operad of chains of) SCp,, m > 1.

In [3], Batanin and Berger introduce the notion of condensation of a coloured operad.
By applying this condensation to the lattice path operad L they obtain a model for the
(operad of chains of the) little cubes operad.

We introduce the relative lattice path operad RL. It is a coloured operad in the category
of sets that has two types of colours (closed and open). Taking a cosimplicial object
8: A — C in a cocomplete closed monoidal symmetric category C , we adapt Batanin
and Berger’s method to obtain a functor

R L—algebra — Coendy - (6)—algebra

that sends algebras over RL into algebras over the condensation operad of RL, that
is, the SC-type operad Coendr(5).
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1754 Alexandre Quesney

The operad RL has two filtrations by suboperads RL,, and RL,,, m > 1; they differ
from each other by their open/closed interacting part.

We are interested in two choices for §:
8 on 0] — ] on o C* _;Z
Otop: A =5 Set®” u) Top and éz7: A =% Set®” # Ch(2),
where Syon([n]) = Homa (—, [n]) is the Yoneda functor. In this manner, the conden-
sation of RLy, leads to a topological operad Coendr,, (01op) and to a chain operad
Coendr,, (6z), and similarly for RL},.

In the topological case, both SC-type operads Coendr,, (d1op) and Coendr ./ (S1op)
naturally act on the pair (m—fold loop space, m—fold relative loop space).

In order to relate our operads to the Swiss cheese operad, we use Berger’s method of
cellular decompositions. The Swiss cheese operad that we consider is denoted by SC,,
m > 1, and is the augmented (cubical) version of Voronov’s Swiss cheese operad SC,."
defined in [23]. We construct a cellular decomposition of SCy, that generalizes cell
decomposition of the little m—cubes operad by Berger [5]. The latter is indexed by
the extended complete graph operad K, . In contrast to the nonrelative case, there are
two ways to index the cells of SC,,. This naturally leads us to consider two different
indexing operads RK,, and RK), that may be thought of as the relative versions
of I, . One obtains:

1.1 Theorem Letm > 1. Any topological RK,—cellular operad (resp. RK),~cellular
operad) is weakly equivalent to the Swiss cheese operad SCy, .

The operad Coendx,,(8) has a decomposition by “cells” that are indexed by the poset
operad RIC,;. This is obtained by means of a map cior: RLy — RKy, satisfying
Crot (X 0; ¥) = ¢iot(X) 0 ¢ior(¥). From this (and similar considerations for RL), ), one
obtains:

1.2 Theorem Let m > 1. The operads Coendrc,,(dtop) and Coendr /. (Oop)
are weakly equivalent to the topological Swiss cheese operad SCy,. The operads
Coendrc,, (8z) and Coendr,; (3z) are weakly equivalent to the chain Swiss cheese
operad Cy(SCy,).

Note that, for each m > 1, the operad Coendr,, (6z) (resp. Coendr s (8z)) admits a
weakly equivalent suboperad RS, (resp. RS),). These two operads RS,, and RS},
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The relative lattice path operad 1755

are relative versions of the surjection operad Sy, studied by McClure and Smith [19; 20]
and Berger and Fresse [6].

With regards to future applications, we pay close attention to the operads RL, and RLY, .
They have a description by planar rooted trees with different types of vertices. The
operad RL; encodes pairs (M, Z) where M is a multiplicative nonsymmetric operad
and Z is bimodule over M-As (left action of M, right action of As) where As is the
operad of associative algebras; such a pair is naturally endowed with a morphism of
bimodules t: M — Z. The operad RL/, encodes almost similar pairs (M, Z’) where,
instead, Z’ and 1 M — Z’ are in the category of bimodules over As—M.

Outline of the paper Section 2 is first devoted to setting our conventions and notations
on nonsymmetric, symmetric, coloured and SC-type operads. In particular, we spend
time on modules and weak modules over a nonsymmetric operad; this will finally be
used in Section 6. Afterwards, we define the (symmetric) coloured SC-operads, and
we explain how we condense them to obtain SC-type operads.

In Section 3 we consider the (cubical) Swiss cheese operad SC. For each integer m > 1,
we construct two cellular decompositions of SCyy,, one indexed by RX,, and the other
indexed by RK,.

Section 4 concerns the relative lattice path operad RL which is a coloured SC-operad.
By using the condensation process from Section 2 one obtains an SC-type operad
Coendr £ (8). We use results of Section 3 to prove Theorem 1.2. We end the section
by exhibiting a few examples of representations of RL,, and RL,,. In particular, we
show that the operads Coendg,, (01op) and Coendr,; (S1op) act on the pair (m—fold
loop space, m—fold relative loop space).

In Section 5 we exhibit the suboperads RS, and RS;,, and show that the inclusions
RSm < Coendgs,, (§z) and RS), — Coendr;, (8z) are weak equivalences.

In Section 6 we focus on the operads RL, and RL’, and their representations. We
describe RL, and RL) in terms of planar rooted trees. This provides a convenient
language for describing the representations of RL, and RLY,.

Acknowledgements I would like to warmly thank both Muriel Livernet for corrections
and suggestions on an earlier version of this paper and Eduardo Hoefel for his constant
support. I am highly indebted to the referee for numerous enlightening comments,
suggestions and corrections. I was partially supported by Bolsista da CAPES a Projeto
88881.030367/2013-01.
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1756 Alexandre Quesney
2 Preliminaries

All along the paper C = (C, ®, 1¢) denotes a cocomplete closed monoidal symmetric
category. In particular, C is endowed with an object 0 € C suchthat 0@ X =0= X ®0
forall X e C.

For two C—categories A and B (ie enriched over C ), we denote by 4 ® B the
category with the pairs (a,b) for a € A and b € B as objects and

Hom g ((a,b), (a'.b')) := Hom4(a.a’) ® Homp (b. ')

as hom-objects, where the tensor on the right-hand side is the tensor of C'.

2A Nonsymmetric operads and modules

By a nonsymmetric (non-X) operad M we mean a collection {M(n)},>o of objects
of C together with a unit 1: 1¢ — M(1) and partial composition maps

oj: M(m)@M((n) > Mm+n—1) for 1<i<m

that satisfy associativity and unit conditions (see [17, Definition 1.14]). One denotes
by As the non-X operad of associative algebras in C given by As(n) = 1¢ for
n > 0. A non-X operad M is called multiplicative if there is a morphism of operads
a: As — M. A morphism of multiplicative operads «: As — M and o’: As — M’
is a morphism of operads f: M — M’ such that foa =0o’.

In what follows, we recall the notions of left module, right module and bimodule over
a non-X operad.

2.1 Definition Let M and N be two non-X operads and let Z = {Z(m)},,>0 be a
collection of objects of C . Consider the morphisms

it Zm) QN (k) > Z(k+m—1) for 1 <i<m (right action),
AMI)QZm)®---Q Z(my) = Z(m1 +---+my) (left action).

Consider the following relations:

®id A
(1) Unit condition of the left action Z(m)=1¢ ®Z(m)n—l>M(l)®Z(m)—>Z(m)
is the identity.
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The relative lattice path operad 1757

(2) Associativity of the left action All the diagrams of the form

MEK)® @ Z(mp)

(1d®A®id)oTs (3,i+1) 1<p<i
M) M) ® Z(m =
© O 15p§+1—1 o) ®IN® & Emp)
i+I1<p<k+I—1

MEk+1-1D)® & Z(mp) Z(my+ -+ mpy—1)
1<p<k+Il-1

commute, where x :=m; +---+m;y;_y,for 1 <i <k, and 1 (3,;41) denotes the
permutation of the second factor with the 7 — 1 factors that follow.

@ ,-
(3) Unit condition of the right action Z(1m)=Z(m)®1c —= Z(m)@N(1)2 Z (m)
is the identity.

(4) Associativity and commutativity of the right action on different inputs All
the diagrams of the following forms commute:

2m) @NK) SN L ES 2im+ k-1 @N()

lid®(—°i—) lpt-i-i—l

Zm Nk +1-1) — > Zm+k +1-2)

2m) @ NE) N 2 ES Zm+k—1) @ N()

lptofzs lpt-i-i—l

Zm+l-1)QNKE) — > Zm+k +1-2)

(5) Associativity of the right and left actions All the diagrams of the form

(d®id® ' ®p®id® ") M(k)® @ Z(mp)

MEk)® @ Z(mp) N () OT(s2.k+1).k+2 1<p<s
1=p=k RZN)® ® Z(mp)
s<p=<k
X®1dl l)\

Pi+my+-+mg_|—s+1
Z(my+-+m) N () ! : Z(my 44 m+1-1)

commute, where x =my +1—1.
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1758 Alexandre Quesney

We establish the following terminology:

e (Z,A) is called a left module over M if A satisfies (1) and (2).
e (Z,p) is called a right module over N if the p; satisfy (3) and (4).
e (Z,A,p) is called a bimodule over M-N if A and p; satisfy (1)—(5)

2.2 Example A non-X operad M is canonically a bimodule over itself (ie over
M-M).

Given two non-X operads M and N, the category of bimodules over M-\ is denoted
by BiMod (s ; the morphisms commute with each of the actions. A bimodule over
M-M is simply called a bimodule over M.

2.3 Definition Let Z’ be a left (resp. right, bi) module over M’. A morphism
of non-X operads f: M — M’ endows Z’ with a structure of left (resp. right, bi)
module over M by pulling back the actions maps along f'; we denote the resulting
left (resp. right, bi) module over M by f*Z2’. Explicitly, A/ 2" = 1 o (f ® id®¥)
and pif = pio(id® f).

Moreover, if Z is a left (resp. right, bi) module over M, then a morphism g: Z — Z’
is said f—equivariant if it is a morphism of left (resp. right, bi) modules over M,
g Z— f*Z.

2.4 Example A left module over a multiplicative operad is, by pullback, a left module

over As.

In [22, Definition 4.1], the notion of weak bimodule over a non-X operad M (in Top)
is introduced. In our framework, it refers to a right module over M together with a
weak left action

AP M(k)® Z(m) — Z(k+m—1) for 1 <i <k
that satisfies natural associativity and unit conditions, ie (1) above and (a)—(c) below:

(a) Associativity of the weak left action Diagrams of the following form commute
forall | <i<kand1<j<I:

w

ME)® M) ® Z0m) s M) ® 20+ m—1)

l (—0;—)®id l A

Mk +1-1)® Z(m) — Zk+1+m—2)
Jj+i—1
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(b) Associativity of the right and left actions Diagrams of the following form
commute forall 1 <i <k and 1 <¢ <m:

M) ® Z(m) @ M) 2% M) ® Z(m+1—1)

Jsres i

(c) Compatibility between the actions and the operad composition Diagrams of
the following form commute for all 1 <¢ <i <k:

((—or—)®id)ots 3

M) ® Z(m) & M(l) Mk +1—1)® Z(m)
gou) [
Z(k +m—1)® M(l) P Zk+m+1-2)

and those of the following form commute forall 1 <i <t <k:

((—o;—)®id)ots 3

M(K) ® Z(m) & M(l) Mk +1—1)® Z(m)
A}”@idl lx;v
Zk +m—1)® M(0) prem! Zk+m+1-2)

2.5 Example A non-X¥ operad M is a weak bimodule over itself.

2.6 Example Consider a bimodule Z over M and suppose it comes together with a
bimodule map ¢: M — Z; recall that n: 1¢ — M(1) denotes the unit. Precomposing
the left action A of Z by tn at all but one input provides maps

AP = o (id® (® T @id® (1))@ ) M(k)® Z(m) — Z(k +m—1)

that endow Z with a weak bimodule structure over M. Moreover, for this structure,
¢ is a morphism of weak bimodules.

As observed in [22, Lemma 4.2], one of the interesting features of the weak bimodules
is the following.

2.7 Lemma The structure of a cosimplicial object is equivalent to the structure of a
weak bimodule over As.
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1760 Alexandre Quesney

2B Coloured operads

Coloured (symmetric) operads are also known as small symmetric multicategories;,
see [16, Definition 2.2.21]. For our purposes one uses left actions for the symmetric
groups X, so that a coloured operad with set of colours Col (or a Col-coloured
operad) consists of the following:

e for each k > 0 and each (k+1)-tuple (eq,...,ex;e) of colours ¢;, e € Col, an
object O(eq,...,er;e) in C;

e for each colour e, a unit 1¢ — O(e;e);

e foreach 1 <i =<k, (ey,...,ex;e)and (f1,..., f1;e;), substitution maps
0j: O(er,....ex:€) ®O(f1, ..., fiei)
= O, s €i—1, flse-es J1,€Cit1, ... €k €);
e foreach o € Xy, amap ox: Oey, ..., ek €) > Oeg—1(1)s - - - €a—1(k)s €)-

Substitution maps are required to satisfy the natural unit, associativity and equivariance
axioms.

2.8 Example A symmetric operad P is a 1—coloured operad with

Plk) =P(k, ..., % %).
k

For a coloured operad O, the category of its unary operations is called its underlying
category and is denoted by O, : the objects of O, are the colours; the morphisms
are Oy(e, f):= O(e; f) for e, f € Col. The operadic structure of O is encoded as
functors
O(—,....,——): (OM®* @0, —>C, k=>0.
———
k

Recall that an O-algebra X is a family {X(e)}ececo of objects X(e) € C equipped
with morphisms

2-1) O(ery....ep;e)QX(e1)®---Q X(ex) > X(e), eq,...,ex,ecCol,

subject to the natural unit, associative and equivariance axioms.

2.9 Definition Let C be a monoidal model category; see [14]. A morphism of
Col-coloured operads © — (' is a weak equivalence if and only if each of its compo-
nents O(ny,...,ng;n) —> O (ny,...,ng;n) is a weak equivalence. Two Col—coloured
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operads O and O’ are said weakly equivalent if there is a zig-zag of weak equivalences
of Col—coloured operads O < - — (',

2.10 Remark The weak equivalence as described above is part of the model category
structure on the category of Col—coloured operads as established in [7, Section 3]
whenever C satisfies properties of [7, Theorem 2.1].

2C SC-operads and coloured SC-operads

The SC-type operads (see [1]) are a special type of 2—coloured operads whose struc-
ture mimics that of the Swiss cheese operad introduced in [23]. Explicitly, by an
SC-type operad (or SC-operad), one means a {cl, op}—coloured operad O such that
O(ct,...,cnscl) =0 if there exists a 1 <i < n such that ¢; = op. The colour ¢l is
called the closed colour; the colour op is called the open colour.

Let us define the coloured version of the SC-type operads.

2.11 Definition Let Col be a set (of colours). A coloured SC-operad is a Col-coloured
operad O that satisfies the following hypotheses:

(H1) Col = Col U Col,y.

(H2) The collection of the O(eq,...,ex;e) for e¢j,e € Coly and k£ > 0 forms a
suboperad of O.

(H3) The collection of the O(ey,...,ej;e) for e¢;,e € Col,, and j > 0 forms a
suboperad of O.
(H4) Of(ey,...,ej;e) =0¢€ C for any e € Col if there exists 1 <i < j such that

ej € Colgp, where j > 1.

The suboperad in (H2) is called the closed part of O; the suboperad in (H3) is called
the open part of O. For ¢ € {cl; op}, a colour of Col. is called colour of type ¢ or ¢

colour.

2.12 Example An SC-type operad is a Col—coloured SC-operad with Coly = {c[}
and Col,p = {op}.
The underlying category O,, of a coloured SC-operad contains two particular categories:

e O is the subcategory of O, with objects the colours in Col,; and morphisms
the Oy (e, f) for e, f € Col;

o O is the subcategory of @, with objects the colours in Colyp and morphisms
the Oy(e, f) for e, f € Colgy.
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1762 Alexandre Quesney

Also, from the hypothesis on O, an O-algebra X can be seen as a pair (X, Xop)
where X is the subfamily {Xc(e)}eecol, and X,y is the subfamily {X,p(e)}eecol,, -

2D SC functor-operads

Here one defines the SC analogues to the functor-operads and their algebras. The notion
of functor-operad is introduced in [21] and generalizes the notion of operad; see also [3].

Let us fix two C—categories A and B, and let k > 0.

For a collection of C—functors {§4,,... 4,454, A1® Q@ Ax = Ap1}4;e{4,B}

and for o € X, we denote by ézl . A1 ®--® Ay — A+ the functor

3 VE S
o —

EAI,,,,’Ak;Ak+1 (X17 ey Xk) - SA(T_I(1),...,Aﬁ_1(k);Ak+1 (Xo'*l(l)’ s ngl(k))'
A collection of C—functors {§4, .. A;;ds4,: A1 ® @ A —> Apy1}4,e(4,B} 18
called twisted symmetric if there exist C—natural transformations

. o
Po, Ay, AiiAsesr éAls---,Ak;A/H-l - EAI,...,Ak;AkH

for 0 € Zy such that ¢g, 55, 4,,.... 4134141 = Po1, Ay Ais iy 1) 2 Poa, Ao A Aje i
and such that ¢ig 4,,...,4,; is the identity transformation where id denotes the
neutral element of Xy .

A1

2.13 Definition An SC functor-operad § =1{£4,, .. 4,;454 1 }k,4; OVer (A, B) is the
data, for each k£ > 0, of a twisted symmetric collection

éA],...,Ak;Ak+1: Al ® ®Ak —> Ak+1

indexed by the (k+1)-tuples (Ay,..., Ax; Ag41) of categories in {A, B} such that
Ap+1 = B whenever there exists 1 <i < k such that 4; = B . Such a collection is
required to be endowed with natural transformations

LA iy e[k iy s AR - EAy s Aj; Ajgr © (§A1.1,---,A1,i1 A & ® %-Ak,l,myAk.ik Ar)

—> &4, s A iy Ak +1

foriy,...,ix =0, where [A],p =(Ag4,1,..., Agp; Aa). These natural transformations
have to satisfy the following three conditions:

(1) For Age{A,B}, the functor & 4.4, is the identity, and

Edpyridis Ok =k =&k 0 (Euyia, ® @ Euya,),
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where we let Ek denote £4,, .. 4,;4,,- and where the equalities are obtained via
(AL A A )i A1 30D L4140, (AkiAr)iA 4 » TESPECEivEly.

(2) The natural transformations [ 4], iyl ALy are associative.

A1

(3) All diagrams of the form
gAlam:Ak;Ak—HO(SAl.l:maAljléAl®'”®§Ak,1w-7Ak,ik;Ak) - éAl,la--wAk,ik;Ak—l—l

¢o°(¢01 ®'"®¢0k+j) ¢o(al ..... Ofj)

. QEK 0(015.,0k+j)
SA]: A A+ (SAH, Al,i1§A1® ®5Ak,ly-~~aAk.ik§Ak)—) SAI,I,...,Ak,;k;AkH

commute, where the horizontal maps are 147, iyl AV A1

2.14 Definition Let & ={£4,, . 4,4, k>0 be an SC functor-operad over (4, B).
A &-algebra X is a pair (X4, Xp) € A ® B equipped with morphisms in Ag 41,

Ay, Agidigr: SA Ay (Xay o Xa ) > Xay oy, k=0,
subject to the following conditions:
(D g, =1lx,,
(2) 04y, AjiApy OPo =04y, Aj;Ayy, > Torall o € Xy,

(3) All the diagrams of the following form commute:

EkO(E[A]L,-l (Xl,i1)®"'®§[A]kjk (Xk,ik)) - %_Al,lsmsAk,ik;Ak-&-l(XAl,l ""’XAk,ik)
lgk(a[/‘]l,il®"'®O‘[A]k.ik) FAy Ay Ay
gk(XAl""’XAk+1) XAk_H

Where Xab:XAal’-- XAab’gk:éAl, ,Ak,Ak+1’[A]a,b:(Aa,lv"' ab’ Cl)’
and the top horizontal map is u[4), sl Al Akt
2.15 Remark An SC functor-operad over (4, B) is a particular example of an
internal symmetric operad in End 4 g (the endomorphism SC-type operad of (4, B)
in Cat). The notion of internal symmetric operad was introduced in [2, Definition 9.3].

Algebraic & Geometric Topology, Volume 18 (2018)



1764 Alexandre Quesney

2E Condensation

In this section, we explain how we extend the condensation process described in
[3, Section 1] to the case of coloured SC-operads.

Let O be a coloured SC-operad and let § = (8, 8op) be a pair of functors §.: Of — C
and §op: O} — C. We will define the condensation operad of ©, denoted by
Coendp(§), and an associated functor

O-algebra — Coendp (§)—algebra.
The operad Coendp(3) is obtained by condensing each type of colours into one colour,

so that it is an SC-type operad. It is obtained in two steps.

From O to the SC functor-operad & (©O) Recall that, by hypotheses (H2) and (H3)
from Definition 2.11, both O¢' and OFF are C—categories. Moreover, the category C oy
(resp. C OZP) of C—functors from Of (resp. from O) to C is a C—category. For
k>0 and (cq,...,ck;cr+1) atuple of elements in {cl; op} satisfying

(2-2) Crk4+1 = op if there exists 1 <i < k such that ¢; = op,
one lets 4; :=C o and one defines the C —functor
EOD)ey,.ccrsenprs A1 @@ A — Ay
as the coend
E(O)ey,ecriens Keys - Xey ) ()
= 0= =) Bt g gt Xet (2) @+ ® Xy ().

k
We have an SC analogue to [3, Proposition 1.8] or [9]:

2.16 Proposition The functors £(O).,
such that the category of O-algebras and the category of &((O)—algebras are isomorphic.

cxsens €xtend to an SC functor-operad & (O)

.....

Proof A straightforward verification, along the lines of [9], shows that the family of
the .5,?((9)61,,"501{;6,“rl forms an SC functor-operad.

Via the hypotheses (H2) and (H3) from Definition 2.11, an O-algebra X can be seen as
a pair (X, Xop), where X and X, are functors X: (’);[ — C and X,p: oFr - C,
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respectively. Therefore, the maps (2-1) induce the following maps for ej; € Col:

Ecl,...,ck;ckH (O)(XCI L) Xck)(ek—i-l) =

.....

They form the maps ac,,....cisen1 - §(ODey,eericrin Xeys - on X)) = Xy, for
k > 0. We conclude that X is a £(O)-algebra because of the unit, associativity and
equivariance properties of maps (2-1). The isomorphism follows from the universal
property of the coend. a

From & (O) to the coendomorphism operad Coendn(8) The operad Coendy ()
is the coendomorphism operad of the SC functor-operad £(O). Explicitly,

Coendow)(cl seees Chs ck+1) = Homcogk-i-l (86k+1 P é(o)cl ..... CicsCle+-1 (501 seees 861\»))
for (c1,...,ck; cx+1) satistying (2-2). The composition maps
Coendp(8)(cy, ..., ck:cx4+1) ® Coendp(8)(ci,1s...,€1,5,:C1) R+
® Coendo(8)(¢k, 15 - - - » Ch,ige s Ck)
—> Coendo(8)(c1,1, - -+ s Chyiges Ch+1)
are given by sending maps f ® g1 ® --- ® g to the composite

S
ey > 5O)ey,crscrr Beys -5 8¢p)

S(O)Cl eI (g] a“'agk)

S(O)Cl,lamack,ika—l—l (801,1 LICICICE] (Sck;ik)'

The action of X; on Coendp(§) is given by postcomposing with the natural transfor-
mations

¢a,cl,...,ck (8(:1, cees 8ck): g(o)cl,...,ck;ck_:,.l (5c1, cees 8ck)
g 5(0)66_1(1) ..... Ccr—l(k);ck‘H (Sca—l(l)’ ] 500_1(k))'
Given an O-algebra X = (X, X,p), we set

Tots,, Xor:= Hoch.‘} (8cr, Xor)  and Tots,, Xop := Homco;p (Bop> Xop)-
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Since X is a £(O)-algebra by Proposition 2.16 and since Coendp(§) is the co-
endomorphism operad of £(0), it follows that the pair (Tots, X, Tots,, Xop) is
a Coendp(6)—algebra: the action maps

(2-3) Coendg(p) Gty ChiChr1) ® T0t5c1 X, ®Q® Tot(gck Xep

—> TOt(SCk—f—l Xck—‘rl

are given by sending maps f ® g1 ® --- ® gy to the composite

f
Sck-i-l - g(o)cl""ack;ck—i-l (8(:1 ey 8()1()

S(O)Cl~~"'(7k:ck+l (gl 9"'9gk)

E(O)CI ..... Ck§ck+1(XL’1’~~-aXck)

aCl ,...,Ck;Ck+1

X

Chl+1°

Unit, associative and equivariance properties of the maps (2-3) are deduced from the
SC functor-operad properties of £(O).

3 Cellular decompositions of the Swiss cheese operad

The little cubes operad C has a cellular decomposition indexed by the extended complete
graph operad K; see [5] and [8, Section 4.1]. We extend this result to the Swiss cheese
operads SC,;, m > 1, which provides a recognition principle for SC-type operads. In
particular, we construct a poset operad RK,, that indexes the cells (SCp,)@ of SCy,.
This leads to a zig-zag of weak equivalences of operads

SCm <= hocolimgerk,, (SCm) @ <> BRK

between the Swiss cheese operad SCj,; and the operad of the geometric realization of
the nerve of RK,,. There is a second way to index the cells (SC )@ this is done by
another poset operad RK),, providing a similar zig-zag.

3A The Swiss cheese operad

The Swiss cheese operad that we use is the cubical version of the one defined in [15].

Let m > 1. Let Sym: R™ — R™ be the reflection Sym(xy,...,Xm)=(X1,...,—Xm),
and let Half{ be the upper half space

Halfy = {(x1,....xm) € R™ | x > 0}.
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The standard cube Cy in R is Cy = [—1, 1]*™. A cube C in the standard cube is of
the form C =[xy, y1]x[x2, ya] X+ X[Xm, ym] With =1 <x; < yj <1 for 1 < j <m.

3.1 Definition For n > 0 and c¢;,c € {cl,op} we define a topological X,—space
SCm(cy, ..., cn;c) as the empty set if ¢ = ¢l and there exists 1 <i < n such that
c; = op; for the other cases, it is defined as follows:

e The space of the little m—cubes operad C (n) defined in [18] for ¢ = cl.
e The empty set if n =0.
e The one-point space if n = 1.

e Inthecase s+¢=n>2 with s, > 0 such that s colours ¢; are ¢l and ¢ colours
¢; are op, the space of configuration of 25 + ¢ disjoint cubes (Cy, ..., Cog4/)
in the standard cube Cy € R such that Sym(C;) = Cj45 for 1 <i <s and
Sym(C;) = C; for 2s + 1 <i <25+t and such that all the cubes (Cy, ..., Cys)
are in the upper half space.

3.2 Remark Because of the symmetry conditions imposed by Sym, we may think of
SCm(cy, ..., cn;0p) as the configuration space of cubes (Cy, ..., Cy) and semicubes
(Cs+1, ..., Cs4r) lying in the standard semicube Halfy N Cy.

Similarly to the little 1—cubes operad C m) | the composition maps

0;: SCrm(ct, ... cn;¢) X SCr(dy, ..., dr;ci)

—)Scm(()],...,Ci_l,dl,...,dr,Ci+1,...,Cn;C)

are defined as substitutions of cubes. We denote the resulting SC-type operad by SC;, .

3B The SC extended complete graph operad

We define the SC (or relative) extended complete graph operad RK. It is an SC-type
operad in the category of posets. We provide two filtrations by suboperads {R/Cp,; }m>1
and {RK},}m>1. Their closed parts are isomorphic to K, and their open parts are
isomorphic to K,,—1, where {K;,},»>1 denotes the extended complete graph operad
defined in [8, Section 4.1].
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3B1 Definition of RIC Given n colours ¢; € {cl, op}, we denote by {¢1,...,Cn}
the set with

o e—d
3-1) c,~={l. s
i if ¢; = op.

A colouring and an orientation (@, o) on the complete graph on {cy,...,cy} is, for
each 1 <i < j <n, astrict positive natural number j; ; € N0 and an orientation o;_;
(that is, ¢; — ¢j or ¢; <— Cj). A monochromatic acyclic orientation of a complete
graph is a colouring and an orientation such that there exist no oriented cycles with the
same colour, ie there are no configurations of the form ¢;, — ¢;, — - — ¢, — ¢,
with (i, i = Wis,is = *+* = Wig_y,i = Mig,i;- A marked monochromatic acyclic
orientation (i, 0)¢ is a monochromatic acyclic orientation (u,o) together with a
colour ¢ € {cl, op}.

If there exists an i such that ¢; = op, then we define RK(cy, ..., cy;cl) as the empty
set. Otherwise, RKX(cy,...,cn:c) is the set of the marked monochromatic acyclic
orientations (i, )¢ of the complete graph on {¢1,...,cy}.

The poset structure is given by
(1,0)" < (W,0) = (wi,j,01,;) = (i j,0; ;) or pi; <p;; forall i <j.

Given a permutation o € ¥, and an element (u, 7)€ € RK(cy, ..., cy; ), the resulting
element 0 - (i, 7)€ € RK(Co—1(1)s - - - » Co—1(n)> €) 1 given by permuting the numbers i
by o leaving the underline, the orientation, and the colouring unchanged. For example,
the edges i — j of (u, )¢ with colours p; ; become the edges o (i) — o(j) with
the same colours p;, ;. o

The compositions

)/RK: RE(ct, ... cnic) XRE(C1,15 - nCl iy €1) X X RE(Cpy1s - -5 Cry's Cn)

= RE(C1,1+- -+ CnjyiC)

send a tuple (a;ay,...,0,) of RK(ci,...,cnic) X+ X RE(Cp,1, .-, Cnik,:Cn) tO
an element in RK(cy,1,...,¢pk,:c) obtained as follows. The subcomplete graph
with the vertices in the same block {c; i,....¢;;} is oriented and coloured as «; €
RE(cin, .-, Cik;:ci); the edges with vertices in two different blocks are oriented and
coloured as the edges between the corresponding vertices in « € RK(cy, ..., cu;C).
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For example,

TS
0 0 = >
ricf 1 A 2 2 o AN
V O—)—Ovo—)—ov.—<—0—3
2 3 5 2
154

3B2 Filtrations of RIC We define two different filtrations of R by suboperads
(RKm)m=1 and (RIC;n)mZI-

For m > 1, the suboperad R, C RK is defined as follows. The closed part is
REm(cl, ... clicl) ={(n,0)" € RK(cl, ... cl;cl) | wij <m forall i < j}.
The nonclosed part is defined, for an (n+1)-tuple of colours (cy, ..., cy; 0p), by

REm(ct, ... cnsop) ={(n,0)® € RK(cy, ... cns0p) | pi,j < mj,
where
m if ¢; =c¢j =cl,
—~ m—1 if ¢; =c; = op,
m = e . . .
m—1 if i —jori<],
m if i —jori<«|j.
The second suboperad RK,, C RK is obtained by exchanging the last two conditions
on u;,; above. Explicitly,

RE,(cl, ... clicl) = RICu(cl, ... cl;cl)

and
RE,, (c1,. .. cnsop) ={(,0)® € RK(cy, ... cni0p) | pi,j <’}
where
m if ¢; =c¢j =cl,
Ny m—1 if¢; =c; = op,
m = o . . .
m ifi > jori<j,

m—1 ifi—jori<j.
3.3 Remark For m =1 the conditions where ; ; < m — 1 cannot be satisfied. It

follows that RKi(cy.....cn:0p) and RK' (cy, ..., cqio0p) are empty whenever the
tuple (cy,...,cy) has more than one open colour.
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3C Cellular decompositions of the Swiss cheese operad

The idea of cellular decomposition of operads comes from [5]. It consists of cellular
decompositions of each space that are compatible with the operad structure.

Recall from [3, Section 3.1] that, given a topological space X and a poset A, an
A—cellulation of X is a functor ®: A — Top such that

(1) colimgeq O() = X';
(2) foreach a € A, the canonical map colimg, ®(8)— O(a) is a closed cofibration;

(3) for each « € A, the “cell” ®(w) is contractible.

Such an A—cellulation provides a zig-zag of weak equivalences
(3-2) X = colimgey ®(a) < hocolimye 4 O(a) — hocolimye 4(*) = BA,

where B.A denotes the realization of the nerve of the category .A. Moreover, if X
and A are operads and if the cellular decomposition of X is compatible with its
operadic structure, then all the objects in (3-2) are operads and the weak equivalences
are morphisms of operads. It is straightforward to check that this holds for SC-type
operads for which the notion of a compatible cellular decomposition is as follows.

3.4 Definition Let .4 be a poset SC-type operad. A topological SC-type operad O is
called an A-—cellular operad if, for each (n+1)—tuple of colours (cy,...,cy;c), there
is an A(cy, ..., cp; c)—cellulation of O(cy,...,cn5c),

Ocy,....cnzct Alcr, ..., cnic) — Top,
subject to the following two compatibilities:
(1) Compatibility with the X ,-action
Comt (1yreesComt (i€ (O 0) = 0+ Ocy e (@)
forall 0 € ¥, and o € A(cy,...,cnic).

(2) Compatibility with the operadic composition
VO(@)CI,...,cn;c(O‘) X ®c1,1,...,c1,k] i1 (arg) x--- X ®cn,1 ..... Cn.knsCn (O‘n))
g ®Cl.1 ..... Cn,k,.,;C(yA(a;al’"'aal’l))

for all variables ¢, ¢;, ¢; j, o and o;, where y© and y# denote the composition
maps of O and A, respectively.
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In what follows, one shows that Berger’s cellular decomposition of the little m2—cubes
operad (see [5, Theorem 1.16] and [8]) extends to SCy, .

3.5 Theorem Let m > 1. The Swiss cheese operad SCy, has the structure of an
RKm—cellular operad as well as the structure of an RK,,—cellular operad.

Proof We start by the RK,—cellular decomposition; we explain at the end of the
proof how to proceed for the other decomposition.
We use the description of SC,, via cubes and semicubes given in Remark 3.2. The

integer m > 1 is fixed.

3.6 Notation For C; either a cube or a semicube and C, either a cube or a semicube,
we write C;0,C; if they are separated by a hyperplane H; orthogonal to the i th
coordinate axis for some i < u such that whenever there is no separating hyperplane Hj
for i <, the left element Cj lies in the negative side of H,, and C; lies in the positive
side of Hy, .

For o = (u,0)¢ € RK,, (c1,...,ck;¢), we define SCpy(cy, ..., Ck; ¢)@ to be the cell
{(Cr1,....CR) €SCm(cts ... cp;0) | CiOy, ; Cj if ¢ —¢; and C;0y, ; C; if ¢; < ;3.
For example, consider the configurations

H, H,

X = , Y= and Z = H,

[ 1] [ 1] [ 1]

in SC,(op, cl; 0p), and the elements

P 1 oF P

= es ﬂ=:_1€. and y= ¢ > &
that form RK (op, cl; op). The cell SC;(op, cl; op)@ is made of configurations of
type X; the cell SC;(op, cl; op)(ﬂ) is made of configurations of type Y ; and the cell
SCy(op, cl; op)¥) is made of configurations of types X, Y and Z, where those of
type Z intersect with configurations of type X or ¥ whenever C; and C, are separated
by 2 hyperplanes H; and H,;.
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As a remark, note that in SC,,, whenever C; is a semicube and C, is a cube, if Hy,
exists, then C; lies in the negative side of H,, (eg Z). From this one can see that,
with this definition of the cells, the condition w; ;j <m —1 if i — j given in the
definition of RK}, is necessary for ensuring the contractibility of the cells. Indeed, if
one removes the above condition, then there exists

that indexes the space SCpm (o, cl; 0p)@m) | which is homotopic to the (71—2)-sphere
(for m = 2, one has SC»(0p, cl; 0p)¥2) = SC5 (op, cl; 0p) @ LISC, (op, cl; op) ).

Our definition recovers that of Berger when considering the open part and the closed
part of SC;, separately. The main input of our construction, then, resides in the
interaction between cubes and semicubes. At first sight it could appear useless to
consider separating hyperplanes between cubes and semicubes since contractibility is
not hindered by their relative positions (for example, SC,(op, cl; op) is contractible).
However it is important to do so for the operadic composition of the cells. This is
because, in a configuration of cubes and semicubes, if one substitutes a semicube, then
a cube may appear; the position of such a cube has to be compared with that of the
other cubes. For instance, consider the following substitution:

H1 Hl

H | | G | = M| | n
1 1 102

Then in the resulting configuration (the right-hand side standard semicube), knowing

the position of 2 relative to 3 and 4 requires the knowledge of the position of 1 relative
to 2 and 3 in the first term (the left-hand side standard semicube).

In what concerns the contractibility of the cells, both closed and open cells are known
as being contractible; the same argument as [5, Theorem 1.16] shows that open/closed
cells also are.

The fact that colimyerk/, (c;,....cx;¢) SCm(C1s ooy Ck; )@ =~ 8Cp(cy, ... cxic) es-
sentially follows from the following two facts:
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(1) If x € SCp(cy, ..., ck;c) then there exists an a € RK), (1, ..., ck;¢) such that
x € SCp(cyy ..., Ck: c)(“). This is immediate since any two cubes/semicubes are
separated by a hyperplane. For example, if C; is a semicube and C; a cube, then
a = (u,0)° may be chosen such that p; j =m and 0; j =i — j.

(2) If a =(u,0)¢ and B = (i/,0’)¢ are not comparable (neither « < 8 nor o > f)
and are such that there exists

x=(C1,....Cx) €SCm(ci.....cr;:0) P NSECmcy, ... cp:0)P,

then x € SCp(cy, ... cx;c)?) for a y such that y < @ and y < B. This follows
from the observation that, for each i < j such that (u;,j,0y,;) and (u; j,a/ ;) are not
comparable, there exists j < Mij = = U J such that G; CJ or C;0, 7 C,, let
us denote by o/ the corresponding orientation. The element y = (u’, 0" )c is given
by (u} L ./’/ j) as above whenever i < j indexes incomparable components and by

(e} 3 ,j) = min{(u;,;,0i,j), (u;’j,ai/,j)} otherwise.

The other cellular decomposition (indexed by RX;, ) is obtained by exchanging, in
Notation 3.6 above, the terms negative and positive. In what concerns the closed
and the open parts, such an exchange is not relevant. However, as we have remarked
before, whenever C; is a semicube and C, is a cube, if H,, exists, then C; lies in the
negative side of H,,, hence the condition p; ; <m—1if i < j given in the definition
of RIC,,. - i

4 The operad RL

4A Definition of the operad RL

We describe a coloured SC-operad RL in the category of sets, Set.

The operad RL has two natural filtrations by suboperads RL,, and RL), for m > 1.
For each m > 1, we can think of RL,, and RE;,Z as mixes between the suboperads
Ly and L, of the lattice paths operad £ introduced in [3]. The operad RL has two
types of colours, the closed colours N and the open colours N, while £ has one type
of colours N.

We generalize [3, Section 2] which serves as a basis for this section. In particular we
refer to [loc. cit.] for the definition of the category of bipointed small categories Cat «,
ordinals [n] and for the tensor product of ordinals [i] ® [j]. Decorating each object of
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the ordinal [r] with an underline gives the underlined ordinal [n]. One denotes by N
the set of the natural numbers decorated by an underline; for n € N and k € Z>_, one
lets n 4+ k :=n+ k. Let us denote by ev: N UN — N the map defined by ev(e) =n
ife=nore=n.

Definition of RL The set of colours of RL is Col = ColUColgy, where Coly:=N
and Col,p := N. Hence, n € Col, whereas n € Colyy.

For a (k+1)-tuple of colours (eyq,...,ek;e) in Col, the set RL(eq,...,eg;e) is
defined as

» the empty set & if e € Col and if there is an i/ such that ¢; € Colp,

e Catyx(fe+1][e1 +1]®[e2+1]® - ® [ex + 1]) otherwise.

The substitutions maps are the natural extension to that of £; that is, they are given by
tensor and composition in Caty x.

4.1 Remark Accordingly, one recovers the lattice path operad
RL(q,...,np;n) =L(nq, ..., 0 N)
=Caty s ([n+1],[n1 +1]Q[n2 + 1] ®--- ® [ng + 1])

for all (k+1)-tuples (ny,...,n;n) of colours in Col = N.

For instance, an element x € RL(n1, n; n) is a functor x: [n + 1] —[n1 +1]®[n3 + 1]
that sends (0,n + 1) to ((0,0), (ny + 1,n, + 1)) and is determined by the image of
the n remaining objects of [# + 1] and the morphisms into the lattice [n1 + 1]®[n2 + 1].

4.2 Example The following lattice path x belongs to RL(3,2;3):

0.3) e 1y
21

o e b x@=x0)

@-1) |, y
x(1)

x(0) _1> . 4,0)
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Integer strings representation In [3, Section 2.2] a description of £ in terms of
integer strings is given. One has the obvious similar bijective correspondence for RL,
where one considers natural numbers and underlined natural numbers; the latter corre-
spond to the open colours. Additionally, we put an extra label according to the nature
of the output colour. Explicitly, given a lattice path x € RL(ey,...,ex;e), one runs
through it starting from x(0) (or x(0)) and ending at x (e + 1). Along the way, each
time one meets an edge that is parallel to the i—axis one writes down i if ¢; € Col
and i if ¢; € Col,p; one writes down a vertical bar each time one meets an x(a) for
1 <ev(a) <ev(e). One adds an op if the output colour belongs to Colyy.

The ev(e) vertical bars of the integer string x subdivide it into ev(e) 4+ 1 (possibly
empty) substrings. The substrings are indexed by [ev(e)].

4.3 Example The lattice path x given in (4-1) corresponds to the integer string
(12211]]21)°.

4.4 Example (121)°" € RL(1,0;0) whereas (121) € RL(1,0:0).

Let us exhibit the corresponding composition on integer string representations via an
example.

4.5 Example (12[14231[|24)°" o (13|213|31)* = (124]1632451][426)°F.

We renumber the integer string (12[14231(]24)°" by increasing the integers greater
than 2 by 2 (which is one less than the number of integers in the second integer string)
to obtain (12]16251]|26)°P. We increase the integers of the second integer string by 1
(one less than the value of 2) to obtain (24|324|42)°7. Finally, we replace the three
occurrences of 2 by the three substrings 24, 324 and 42.

The action of the symmetric group o - x € RL(€5-1(1),---»€5—1(k); €) is obtained
by permuting the number i (resp. i) of the integer string representation of x by the
number o (i) (resp. o (i)).

4.6 Example For x = (12|3211]|21)°" and (1) =2, 6(2) = 3, 0(3) =1, one has
o x = (23]1322]|32)°F.

The underlying category of RL It follows directly from [3, Section 2.4] and the defi-
nition of RL that the two underlying subcategories (RL) ;[ and (RL);} are (canonically
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isomorphic to) the simplicial category A. Thus, for each k& > 0, one has a functor
RL(—,...,— —): (A"p)k x A — Set,

that is, a multisimplicial/cosimplicial set.

Dual interpretation of RL For later use, let us mention that RL has a dual inter-

pretation as given in [3, Lemma 2.7]. In particular, an element x € RL(e1,...,eg;e)

determines a k—tuple (x1q,...,xg) € A(ler], [e]) x---x A([ex], [e]). The value of x;(r)

corresponds to the substring of the integer string x in which the (r+1)* occurrence
of i (or i) appears. We refer to [loc. cit.] for more details.

4.7 Example The integer string x from Example 4.3 determines the pair (x1, x,) €
A([3].[3D) x A([2]. [3]) given by

x1:(0,1,2,3) = (0,1,1,3) and x:(0,1,2) ~(0.1,3).

Filtrations of RL by suboperads Let us define two maps
C,',j,a',ji RL(e1,...,e,;e) = N,

The map ¢;,; is defined as in [3, Section 2.9] and will be used to defined the complexity
index for the closed and the open parts of RL. The map ¢; ; will be used to control
the interaction between the closed and the open part.

For 1 <i < j <k, we denote by
@ij: RL(eq,...,ex;e) = RL(ej,ej;e)
the projection induced by the canonical projection
pijiler + 1@ @lex +1] = [e; + 1] ®[ej +1].

For x € RL(ey,....ex;e) and 1 <i < j <k, we define ¢;;j(x) as the number of
changes of directions in the lattice paths ¢;; (x).

The second number ¢;,j(x) is defined as follows. Recall that if x € RL(eyq, ..., e e),
then its integer string representation is, in particular, a sequence of numbers (underlined
or not) between 1 and k. For 1 <i <k, weset i~ (resp. i~ ) to be the first occurrence
of i (resp. i) in the integer string representation. Equivalently, i~ (resp. i ™) is the first
edge of the lattice x which is in the i™ direction. We write r~ < s~ if the element 7~
precedes s .
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For 1 <i < j <k, weset

ci,j(x) if i_<l_,
~ cGix)+1 ifti=>j—,
(4-2) R
cj(x)+1 ifi7<j7,
ci,j(x) ifim>j".
For m > 1, we define RLy,(eq,...,ex;e) as the set of elements x € RL(e1,...,ex;e)
satisfying the three conditions
maxc;,j(x) <m, maxc¢;;j(x)<m—1 and max ¢, j(x) <m.
@) i.j) @ j)or(@,j)

Changing the number defined in (4-2) to

c,-,j(x)—i—l if l'_<z_,
- i im>
4-3) &y =0T
’ ci,j(x) ifti—<j7,
cij(x)+1 if i~ >j7,

provides another filtration of RL by suboperads RL,,. Explicitly, RL,, (e1, ..., ex;e)

is the set of elements x € RL(eq, ..., eg;e) satisfying the three conditions
maxc;, j(x) <m, maxc¢;;j(x)<m—1 and max j(x) =m.
(Uy)) @.J) @.j)or(i,j)

A relation between these two filtrations and the two cellular decompositions of SCyy,
from Theorem 3.5 is given in the next section.

4B The operad Coendx,,, (8) as an SC-type operad

Given a functor 6: A — C, where C is a monoidal model category, by following the
method developed in [3, Sections 3.5-3.6], we construct a zig-zag of weak equivalences
of operads

4-4) Coendr,, (8) < Coendﬁzm (8) > BsRKwn

whenever § satisfies some conditions. Here, Bs.A denotes the j—realization of the
nerve of the category A. The intermediate operad RLy is defined using homotopy
colimits in C applied on a decomposition of RL,, indexed by RK,,.

We use most of the material from and the same conventions as in [3, Sections 3.5-3.6].
In particular, we require § to be a standard system of simplices. This confers on
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homotopy colimits good properties, such as compatibility with the symmetric monoidal
structure of C . The functors dyon, é1op and dz defined hereafter are standard systems
of simplices.

Let

1) on op |— 1) on op Cx _;Z
Otop: A =% Set? pu> Top and é7: A =% Set® p—(—)—> Ch(Z)

be the two functors, where

* dyon([n]) = Homa (—, [n]) is the Yoneda functor,
e |- Set®” — Top is the geometric realization, and

e Ci(—:Z): Set®” — Ch(Z) is the normalized chain complex.

Let us recall that for § = (81, Sop) With 81, Sop: A — C, the functor §(RLm)c,,....cp ;¢ (8)
denotes the §—realization

S(Rﬁm)cl ..... ck;c(S)(n) = Rﬁm(_» ey T n) & Ak 5c1 )R ® 8ck (_),
k

where we use implicitly the strong monoidal functor Set - C, E — [ [, lc-

We use the same functor 8 = d,, and we denote it by §. This way, by using conden-
sation from Section 2E, we define the SC-type operad Coendr,, (§) and similarly for
Coendr; (9).

The idea for providing the zig-zag (4-4) follows that of (3-2) and relies on a de-
crc(8) by “cells” §(RLm)a(8) indexed by the o €
REm(c1,...,ck;c). Under some properties, the right-sided weak equivalence results

composition of &(RLm)c....,
from “the contraction of the cells”, that is, from weak equivalences £(RL;;)q(8) — 1,
where I denotes the constant cosimplicial object 1" = 1¢ ; the left-sided weak equiva-
lence is induced by the natural map hocolim & (R L;;)q () — colim (R Ly ) (8).

In fact, Batanin and Berger [3, Theorem 3.8] show that, in the closed case, (4-4) holds
provided that £,, is strongly §—reductive. Here we extend their result to RL,,. For
consistency we recall the notion of strong §—reductivity in our context. Let us also
recall that a weak equivalence in C is called universal if any pullback of it is again a
weak equivalence.

4.8 Definition Let § be a standard system of simplices in C. The operad RL,,
is called d—reductive if for any n > 0 and k > 0 and any colours c;,c € {cl; op}
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satisfying (2-2), the map E(RLm)e,,....cr:¢(8)" = ERLm)cy,....crzc (6)° is a universal
weak equivalence.

The operad RL,, is called strongly S—reductive if in addition the induced maps
Coendr,,(8)(ct, ..., ckic) = ERLm)¢,
in C.

e (5)0 are universal weak equivalences

.....

4.9 Theorem Let § be a standard system of simplices in C . If the operad RL,,
(resp. RL,,) is strongly §—reductive, the operad Coendgc,, (8) (resp. Coendr; (3))
is weakly equivalent to BsRKp, (resp. BsRK},).

Proof The cells £(RLy;)q(8) are obtained via a map
Ctot- Rﬁm(el» ... 9ek;e) - RICm(Clv e Cs C)

for each (k+1)-tuple of colours (cy,...,ck;c) in {cl, op} and ¢; € Col,, e € Col,.
Such a map is defined in (4-7) below and recovers the maps from [3, Proposition 3.4]
in the closed case (ie ¢ = cl). Note that there is a slight inaccuracy in [3] since, as we
will show in Example 4.12 and Lemma 4.11, including in the closed case, the map ¢
is not a morphism of coloured operads but instead satisfies

(4-5) Crot(X 07 ¥) = cior(x) 0 ot (Y).

Such an inequality is sufficient to apply the method developed in [3, Sections 3.5-3.6],
however. Indeed, for @ € R, (cy, ..., ck;c) and ¢; € Colg, , e € Colc, let us define

(4-6) RLm)a(e1s... ep;e) :={x € RLm(er,...,ex;e) | cor(x) <o}

It follows that RLy (e, ..., ex;e) = colimpi, (cy,...cn:0) (RLm)a(€1. . . ., ek e); the
inequality (4-5) ensures the compatibility of the decomposition with the operadic
structures, so that it implies that this is an equality of coloured operads. Moreover, the
operad RLm, given by

7’%2,,1(@1, ..., ek;e) =hocolimgi, (cy,...c:c) (RLm)a(€1, ..., €k e),

is an operad (again, because of (4-5) and because of the compatibility of hocolim with
symmetric monoidal structure). It turns out that (4-6) forms a multisimplicial subcom-
plex of RLy(—, ..., —;e), so it makes sense to take its é—realization £(RL;;)q(8). In
fact, as cosimplicial objects, §(RLm)c,,...,cx;c(8) = colimpie,, (c;.....cn:0) § (RLm)a (8),
and g(TzZm)cl ...ci;e (8) identifies with hocolimp i, (¢y.....c:¢) § (RLm)a ().
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From these considerations, it is straightforward to verify that the proof of Theorem 3.8
in [3] generalizes to our case: the §—reductivity implies that §(RLy;;)q(8) — I is
a weak equivalence, and via the strongly é—reductivity, the left-sided weak equiva-
lence of the zig-zag (4-4) results from the weak equivalence hocolim &(RL;,)a (8)° —
colim £ (RLm)a(8)°. a

4.10 Proposition If § is dtop or 8z, the operads RLy, and RL), are strongly §—
reductive. Consequently, the operads Coendgc,,(8) and Coendr/ () are weakly
equivalent to the topological (resp. chain) Swiss cheese operad SCy, (resp. C+«SCrm;)
if § is Orop (resp. 8z).

Proof Again, this is a straightforward generalization of [3, Examples 3.10], where it
is shown that L, is strongly é—reductive if § is d1op or 87 . The very same method

applies in our context by considering §(RLy)e,,....c;c(8) instead of £(Lp)r(8). O

.....

For a (k+1)-tuple (cy,...,ck;c) of colours in {c[, op} and e; € Colg, , e € Col,, let
Ciot: RLm(er, ... ex;e) > REn(ct,...,cr;¢)

be as follows. Recall the notation ¢; from (3-1). The element ¢i1(x) = (4, 0) € RKm
is defined, for 1 <i < j <k, by

Ty

N

<
>

1

4-7) (x)  and e
} = i(x an P
Hi, j i,j i,j G if Z,-i_ —

O

Similarly, let ¢/.;: RL,, — RK), be the map defined by the formula (4-7) for x e RL}, .

4.11 Lemma Forall x,y € RL,, and i such that x o; y makes sense, one has the
inequality co(x 0 ) < crot(x) 0j ¢tor(y). For all x, y € RL), and i such that x o; y
makes sense, one has the inequality c¢{(x o; ¥) < c/,,(x) oj ¢/, (¥).

Proof We show the first assertion; the second one is similar. In the following arguments
the type of colours does not matter, so we abusively forget about the underline. Let
X €RLm(er,...,ep;e) and y € RLy(f1,..., fq:€;) forsome 1 <i < p.

For an integer a # i, one defines @’ :=a ifa<i andd’ :=a+q—1ifa>1i.
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Recall that, by definition, the complete graph (i, 0) = ciot(X) 0; cror(¥) is given by

(Mkti—1,04i—1 Ok +i—1,1+i—1) = (k1 (), g 1(ca(¥))) forl =k <l =g;
(Ur 57,0 ,5) = (Crs(X), 0r5(Cor(x))) forl <r<s<p
such that i & {r,s};
(rgeti=10rj+i—1) = (¢ri(x),0ri(Co(x)))  forl=r<i, 1=k =g;
(Mk+i-—1,5s Ok +i—1,5') = (Ci,5(xX), Ois(co(x)))  fori<s=p, 1=k =gq.
On the other hand, recall that the integer string y is subdivided in 7; 4+ 1 substrings that
are delimited by the n; vertical bars (n; :=ev(e;)). Recall that the integer string xo; y is
obtained by substituting the ™ occurrence of i by the ™ substring (indexed by b—1)
of y together with a reindexation of the values. It follows that ¢ ;1 j4i—1(x0; y) =
¢k,1(y) and that the order in which the pair ((k +i —1)",(/ +i — 1)) appears in
X o; y is the same as the order in which the pair (k—, /™) appears in y. Similarly, one
has ¢, ¢ (x 0; y) = ¢, 5(x), and the order in which (r'~, s'~) appears in x o; y is the
same as the order in which the pair (r—,s~) appears in x.

Moreover, it is straightforward to see that ¢, x4;—1(x 0; y) < ¢,;(x) and that the
equality holds if and only if k is present in at least one substring per switch between r
and i. Such an equality is illustrated below; there is at least one k£ in each of the
cr,i(x) blocks of substrings:

X=i" 0 - 0ir 0ir--ri-—--i)
0/1/ T '\ \\nl
—_—— —— —— —— ——
y=( | k= |- | kel k] k)
——
1 2 cr,i (x)

Here, only the integers r, i and k are written; the arrows indicate the substitutions.

In the equality case, the order in which (r—, (kK +i — 1)™) appears in x o; y is the
same as the order in which (r—,i ™) appears in x. Similar considerations hold for the
inequality ¢gi—1,5 (x 0f ) < cis(x).

It follows from the above paragraphs that ci(x 0; ¥) < ciot(x) 0i Cot (1) O

4.12 Example Here is an example of x and y such that ¢y (X 0; 1) < cror(X) 05 Cror (1) -
For x = (121|1) and y = (1]|12]2), one has (121]1) o (1]12|2) = (1312]2), and

3 3
- 2 1 < 2 2 =1 2,1 2 _
Ctot(XOIJ’) = o> ¢ °1 o> 4 CtOt(x)olctOt(y)'
1 ; 2 1 . 2 2 1
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4C Action on cochains
One has the obvious relative version of [3, Proposition 2.20]:

4.13 Proposition Let X and Y be two simplicial sets equipped with a simplicial
map f:Y — X. The pair (Z|X],Z[Y]) (resp. (Hom(Z[X],Z),Hom(Z[Y ], 7Z)))
is a coalgebra (resp. an algebra) over RL. In particular, Coendg(87) acts on
(CH(X:;Z),C*(Y;Z)).

Proof The RL—coaction in the closed case is as in [3, Proposition 2.20]. Otherwise,
ZIRL(ey, ..., ex:n)] ® Z[Y,] — tensor products of Z[Xy,] and Z[Yy,]

is given by x ® y > tensor products of x/(y) and f(xj’.k (»)), where the x; and x;
are the components of the dual interpretation of x from Section 4A; ie x corresponds
to the k—tuple (xi,...,xx) € A(ler],[e]) x--- x A([eg],[e]). Since f is a map of
simplicial sets, the result directly follows from [loc. cit.]. O

4D Action on iterated relative loop spaces

In this section we show that, for any two topological spaces ¥ C X pointed at the
same point *, the operads Coendr.,,(dtop) and Coendr /. (dtop) act on the pair
(QMX,Q™(X,Y)). Here, 2™ X denotes the m—fold loop space of X, and Q" (X,Y)
denotes the m—fold relative loop spaces of (X,Y).

For m > 1 let A™ be the simplicial m-simplex and dA™ its boundary. For 0 < p <m,
let A7' be the m-horn at p. Explicitly, (A}')x C A}’ is given by elements of the
form yz: [k] — [m] for z: [k] — [n] and y: [n] — [m] with n <m,and it n =m —1,
then p € Im(y). For more details on these simplicial sets we refer to [11, pages 6-7].
It immediately follows from the definitions that:

4.14 Lemma Let x € A™. If x € A", then there is a k € {m — 1, m} such that
x =1p: [n] = [k] < [m]. Moreover, if k =m —1, then t = 3p: [m — 1] < [m] is the
p—tface map (p ¢1m(d,)); if k = m, then « = id: [m] — [m] is the identity map. In
particular, if x € 0A™, then k = m; hence X is surjective.

Let S = A™ /9 A™ be the simplicial m—sphere. Let K [m]:= (S™, %) and Kapp[m] =
(A" /NG, OA™ /AT Both K[m] and Klf;[m] are simplicial objects in the category
CFin whose objects are pairs (4, B) of finite sets pointed at the same point with
x C B C A and whose morphisms f: (4, B) — (A, B’) are morphisms of pointed
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sets f: A— A’ suchthat f(B) C B’. The wedge sum is given by (A4, B)Vv (A’, B') =
(AvA,BVvB).

The inclusion A7? C 9A™ induces the projection 7: KO% [m] — Kq[m], which is a map
of simplicial objects in CFin.

4.15 Proposition Letm>1 and 0 < p <m. For p odd, the pair (K [m], Ké;,[m]) is
a coalgebra over RLy, in CFin. For p even, the pair (K[m], Kg,[m]) is a coalgebra
over RL,, in CFin.

Proof Letus fix m > 1. In order to simplify notation, we denote K([m] (resp. K g; [m])
by K (resp. K°). An element x € RL(eq,...,ex;e) induces maps

*, cl cl cl : _ ok, op c1 cr _
XKy —>Kp x--xK, ife=n  and X7 KF > Kl x--xK < if e=n.

In what concerns the closed part (e = n), this is [3, Proposition 2.16]. For e = n, let
(x1,...,x%) € A(leq],[n]) x --- x A([ex], [n]) be the k—tuple corresponding to x in
the dual interpretation of RL; see Section 4A. For 1 <i <k, let n; = ev(e;). For
y e A™/A™ the i™ component of X*(y) is given by

cxoy _XT) i g [n] =[],
X (y) = % . .
m(x;(y)) if x;: [n;] — [n].
We prove that if x € RL,, for p odd (resp. x € RL,, for p even) then X*(y) belongs
to Kgll VeV Kg’; . From now on, let us suppose that there are i # j such that x(y)

and x ;." (») are not at the base point.

Suppose i corresponds to an open colour (ie e; = n;). In this case, x](y): [n;] —
[n] — [m] is not at the base point, ie x;(y) ¢ A}'. From Lemma 4.14, this means that
Im(x;) Ny~ (r) # @ for each r € [m] such that r # p.

(1) Suppose j corresponds to an open colour. This means that x]’." (ys) is not at
the base point and then Im(x;) N y~!(r) # @ for each r € [m] such that
r # p. Therefore, i and j appear in m common fibres of y. Consequently,
¢i,j(x)=m>m—1. -

(2) Suppose j corresponds to a closed colour. This means that n(x]’." () € 0A™,
that is, xJ’." (»): [nj] — [n] = [m] does not belong to dA™ and thus is surjective
(Lemma 4.14). It follows that Im(x;) intersects all the fibres of y; that is,
Im(x;) Ny~ 1(r) # @ for each r € [m]. In particular, y: [n] — [m] is surjective,
and then there are two cases for x;:
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(@ Im(x;))Ny~Y(p)#@ (e Im(x;) Ny~ (r) # @ for each r € [m]), and so
¢i,j(x) = m+1>m (because i and j appear in m + 1 common fibres
of y).

(b) Im(x;) N y~'(p) = @. When p is odd, this implies that ¢; j(x) > m if
JT <i” and ¢ j(x)>m—11if j7 >i~. When p is even, this implies
that ¢; j(x)>m if j=>i" and ¢; j(x) >m—11if j~ <i™.

Let us illustrate what happens in (b) when p is odd and j~ < i~ . In the integer string
representation of x,

0 p—2 p—1 D p+1 m—1 m
x=( ji || ij | ji | j | ji -] ij | ji ) with j7 <i”,
¢i,j(x)j0,p—1Zp ¢i j(X)p+1.m=m—p

we only represent (relevant occurrences of) the integers i and j; the m + 1 substrings
represent the fibres y~!(r) for r € [m], so that if n > m, then these substrings would
be subdivided (to end up with n vertical bars). Condition (2) says that the j are
present in each of the m 4 1 substrings. Case (b) says that the i are present in all
the m + 1 substrings except the substring p. The number of switches c¢; j (x)|o, p—1
(resp. ¢i,j(X)|p+1,m) between i and j in the first p substrings (resp. in the last m — p
substrings) is then > p (resp. = m— p). If ¢; j(x)|0,p—1 = p, the conditions j~ < i~
and p odd imply that, in the substring p—1, the occurrences of j all appear before that
of i. Therefore, because of the presence of j in the substring p, there is an additional
switch, ie ¢; j(x) = ¢;,j(X)j0,p—1 + 1+ i j(X) | pt1,m =P+ 1+m—p>m. a

4.16 Corollary Let x C Y C X be topological spaces. For m > 1, the pair
(Q"MX,Q™(X,Y)) is an algebra over Coendrc,, (8op) and over Coendrz/ (81op) -

Proof The m—fold relative loop space Q" (X,Y) = Homryp, (|K£J [m]55,,0 (X, Y))
is, by adjunction, homeomorphic to the 5Top—totalization of (X,7, *)(K oplm] ) Sim-
ilarly, the m—fold loop space ™ X = Homrop, (| Ka[m]|s,,,, X) is homeomorphic
to the dtop—totalization of (X, 5) (Kalml:*)  proposition 4.15 implies that the pair
(X, %) Kalml®) (x 'y, *)(KDI;J[’"]’*)) is an RLp,—algebra for p odd and an RL,,—
algebra for p even. The result follows from condensation (Section 2E). O

5 The relative surjection operad

We define two SC-type operads RS, and RS, that are suboperads of Coendr,, (§7)
and Coendr; (8z), respectively. We show that these inclusions are weak equivalences.
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Since we are using §z-realization, the Dold—Kan correspondence provides a convenient
cr:c(RLm)(6z) as well as the
operad Coendr,, (87). We closely follow [4, Section 3] in which this point of view

way to present the cosimplicial chain complex &, ...,
is adopted. In particular, we refer to [4, Section 3.3] for normalized totalizations
of (co)simplicial abelian groups; we adopt the same notation except that since we
have defined RL,, in the category of sets, we apply Z[—] to make it a multisim-
plicial/cosimplicial abelian group. This way, one identifies Coendg.,,(8z) with
Nor Nor(Z[R L)), where Nor(—) stands for the normalized realization of multisimpli-
cial abelian groups and Nor(—) stands for the normalized totalization of cosimplicial
dg-abelian groups.
Let (¢1,...,ck;c) be a (k+1)—tuple of colours in {cl, op}. As complexes, we set
RSm(cts ..., cki¢)* == Nor(Z[RLm(—,...,—;e)]),
where e is of type ¢ such that ev(e) = 0 and the colours in the i™ input are of
type ¢; for 1 < i < k. More explicitly, RSy (cy,...,ck:c)* is obtained from
@*=—(n1+~-~+nk) Z[RLm ey, ..., er;e)], where e is of type ¢ such that ev(e) = 0
and n; := ev(e;) with ¢; of type ¢; for 1 <i <k, by modding out the images of the
simplicial degeneracies.
We closely follow [4, Equations (4) and (5)], in which the following whiskering map
and partial compositions are defined for the closed case.
On an integer string x € RLy(eq, ..., ek; e) with ev(e) = 0, the n—whiskering wy, (x)
is a signed sum of integer strings obtained from x by copying integers and adding
a vertical bar between each copy (eg i — i|i|i) with the requirement that the total

number of vertical bars is n. Note that there is no bar between two adjacent integers
with different values (eg 7|/ is not allowed).

5.1 Example (1]12|2]2)° is a term of w3 ((12)°7).

The whiskering
w: RSy — Nor Nor(Z[R L))
is defined by x — [Mwy(x) for x e RLy (e, ..., e; e) with ev(e) =0, and is extended
by linearity.
Let f € RSm(cy,....cx;¢) and g € RSp(dy, . ... dj;c;) be two integer strings. We

define their partial composition by

(5-1) S oM g = f oi ()8
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where val; (/) is one less than the number of occurrences of ¢; in the integer string f.
We extend the partial compositions o?‘s’” by linearity.

We define an operad RS),, in the same way as RS, by replacing RL,, by RL,, in
the above paragraphs.

/

RS ;
REm and o; " respectively endow RSn,

i
and RS), with operad structures. The inclusions w: RSy, < Coendgc,, (8z) and

5.2 Proposition The partial compositions o
w': RS), < Coendr . (3z)) are weak equivalences of operads.

Proof Except for signs, the fact that w is compatible with the operadic structures is
straightforward from the definition. To get signs for the whiskering, we can proceed
by a laborious induction, by requiring the whiskering to be a morphism of operads.
One can also remark that, concerning signs, the type of the colours (closed or open)
does not matter. This is because closed and open colours obey the same (co)simplicial
and composition rules (with different constraints). Thus, signs can be chosen using
the same method as in the nonrelative case (disregarding for signs only the colour):
One could proceed as proposed in [4, Proposition 3.2], that is, embed RS, into the
operad of coendomorphisms of the chains of a high-dimensional simplex. Then choose
signs in such a way that they match with those of [6, Section 2.2] in the closed and in
the open cases and, in fact, in the open/closed case, disregarding type of colours when
choosing signs. This can be compared with Proposition 4.13, by asking the map f to
be id: A" — A",

Let us denote by
7: Nor Nor(Z[R L)) — Nor(Z[RLm])® = REm

the map induced by the projection p: Nor(Z[RLm]) — Nor(Z[RLx])°. Such a map
is a weak equivalence by Proposition 4.10. Moreover it satisfies = o w = id. Thus, w
is a weak equivalence. a

6 The operads RL; and RL)

6A The operad R L, in term of trees

6A1 The sets of R7 In what follows we will consider planar rooted trees; we refer
to [17, Part 11, Section 1.5] for the terminology. Our trees have only one external edge,
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called the root; all the other edges have 2 adjacent vertices. The external vertices
(vertices that are adjacent to only one edge) are called the leaves. Given a vertex v of
arooted tree 7', the minimal subtree of 7" containing both the root and v has only one
edge originating from v; such an edge is called the output of v. The edges originating
from a vertex that are not the output are called the inputs. In our planar trees, the set of
the edges originating from a vertex v is cyclically ordered in the clockwise direction.
This induces a linear order on the set of the inputs of v. This also canonically endows
the set of the leaves with a linear order.

One considers planar rooted trees with 4 types of vertices: white round-shaped o, called
closed vertices; white square-shaped o, called open vertices; black round-shaped e,
called neutral vertices; and black arrow-shaped A, called the arrows. A white vertex is
either a closed vertex or an open vertex.

6.1 Definition Let 7" be a planar rooted tree. Let v be a vertex of 7. We denote
by T, the maximal subtree of T such that the output of v is the root of 7, .

Let (eq,...,ex,e) be a (k+1)-tuple of colours in Col. The set R7 (eq,...,eg;e)
is the empty set if e € Col, and there exists a i such that ¢; € Col,p; otherwise,
RT(eq,...,ex;e) is the set of equivalence classes of planar rooted trees 7" satisfying
the following:

e The set of the arrows is a subset of the leaves of T and is of cardinal ev(e).

» The set of closed vertices is labelled by the set {i € {1,...,k}|e; =n;} and
open vertices by {i € {1,...,k} | e; = n;} in such a way that
(F1) the vertex labelled by i € {1,...,k} has ev(e;) inputs,
(F2) there is no white vertex above an open vertex; ie if v is an open vertex,

then in the tree 7, the vertex v is the unique white vertex.

e If e is an open colour (ie ¢ = n for some n), then the root of 7' is decorated by
an op.

The equivalence class is the same as in [10, Section 3.2.1]. Explicitly, it is the finest
one in which two planar rooted trees are equivalent if one of them can be obtained
from the other by either

e the contraction of an edge with neutral adjacent vertices, or

e removing an neutral vertex with only one edge originating from it and joining
the two edges adjacent to this vertex into one edge.
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3 op op

Figure 1: Examples of trees in R7 : a tree of R7 (3,2, 2;6) (left), a tree of
RT(2,0,3,3;5) (middle), and a tree of RT (2, 2;5) (right).

6.2 Remark In the closed case, the trees of RT (ny, ..., n;n) have no open vertices.

The operadic structure of R7 is explicitly given in the next section and corresponds to
the substitution of trees into white vertices.

6A2 Correspondence between R7T and RL;, Let us start by constructing a bi-
jection of sets ®: RT (eq,...,ex;e) = RLy(eq,...,er;e) for each (k+1)-tuple
(e1,...,ex;e) of colours.

The map ® For a 7" € R7 (ey,...,e;e), let us construct an integer string in
RLy(eq,...,er;e) as follows. One runs through the tree 7" in clockwise direction
starting from the root in such a way that one passes exactly two times on each edge
(once per direction). On our way, each time one meets a closed (resp. an open) vertex
labelled by an i € {1,...,k} one writes down the corresponding label i (resp. the
corresponding label with an underline i ), and each time one meets an arrow one writes
down a vertical bar. One adds an extra label op if the root is decorated by op.

The map ®~! To an integer string representation one assigns a tree with one closed
(resp. open) vertex for each different integer (resp. underlined integer) and one arrow for
each vertical bar. The white vertices have one input less than the number of occurrences
for the corresponding integer; the corresponding tree is constructed such that its order
fits with the reading (from the left to the right) of the integer string. One adds an extra
label op on the root if the integer string is decorated by op. Note that when two equal
integers (or two vertical bars) are adjacent in the integer string this forces the creation
of a neutral vertex.

6.3 Example Via ®, the tree from Figure 1 (middle) corresponds to the integer string
(1]1]13]|3234]4]443)°F.
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2 3 3
2
° ﬂ/( = 2 = 2
3 4 4
1
Mop 1 Top Mop

Figure 2: An example of composition in R7

We endow RT with an operadic structure by transferring the composition maps of RL,
along the bijections above. Explicitly, T o, T := ®~1(®(T") o, ®(T")) for all com-
posable T, T’ € RT. One can check that the composition maps in R7 are given
by substitution of planar rooted trees into white vertices: Let T € RT (e1,...,¢eg;e)
and let v be a vertex of 7 labelled by e;. For a tree T/ € RT(f1...., fj:ei), the
tree T oy T € RT (e1,....€i—1. f1.---, fj.€it1.....€k:e) is given as follows. The
vertex v of T is substituted by the tree 7" in such a way that

e the root of 7' is identified with the root of v,

e the ordered set of the n; = ev(e;) arrows of T’ is identified with the ordered set
of the n; inputs of v.

The set of the white vertices of T o, T’ is labelled by the set {1,...,.k+ j—1}
associated to (ey,...,ej—1, f1,..., fj.€i+1,...,ex). See Figure 2.

By construction one has:
6.4 Proposition The coloured operads RL, and RT are isomorphic.

6B The operad RL’, in term of trees

This section is the analogue of the previous section for RL,. We define an op-
erad R7’ as follows. For a (k+1)-tuple (eq,...,ex;e) of colours in Col, the set
RT (e1,...,ex;e) is defined as RT (eq, ..., ex;e) is, except that the condition (F2)
from Section 6A1 is replaced by the following condition:

(F2') There is no white vertex below an open vertex; ie if v is a white vertex of T,
then in the tree T, either the vertex v is the unique open vertex or there is no
open vertex.
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In particular, for the closed part, RT"(ny,...,ng;n) = RT(ny,...,ng;n).

The operadic composition for R7” is the same as for R7, and we have the analogue
of Proposition 6.4:

6.5 Proposition The coloured operads RE/Z and RT’ are isomorphic.

Here is an example of an element of R77(3,2,2; 6) and its corresponding element in

RL,(3,2,2:6):
) 2
< (31[1[1]132][2[23).
3T op

6C A few remarks on the operads RS, and RS),

6.6 Proposition As an operad, RS, is generated by the elements
wa=12), T, =(1213---1k1) for k =2 (closed part),
Jop = (12)°" (open part),
Tj= (121§-~-111)°p for j =2,
inc = (1),
and the two unit elements id = (1) and id,p, = (1)°*. As an operad, RS, is generated by

/’LC[’ Tk’ Mop, TJ/’ inc? idc[v ldop

for k > 2 and j > 2, where ij = (1213---151)°.

Proof We prove the statement for RS, ; the case RS/Z is similar. We suppose by
induction on N that any integer string of RS, with N different integers is obtained
by operadic compositions of elements cited in the statement. The cases N = 1 and
N =2 are trivially verified.

In what follows we abusively do not mark the distinction between underlined and
nonunderlined integers. Let x be an integer string of RS, with N +1 different integers.
Because of the filtration condition (4-2), x can be written as a sequence (Aq--- 4,),
where the A4; are nonempty sequences of integers such that if j belongs to A4;, then
j & As for s # i. Moreover, because of the symmetric group action, one can suppose
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that the integers of A4; are smaller than the integers of 4; whenever i < j. In this
case,if n>1,then x = (¢ oy (A1 -+ Ay—1)) Omax 4, +1 (zzfn), where A, is obtained
from A, by decreasing each number by max 4,_1, and « is (12), (12)°, (12)°P,
(12)°P or (12)°P. Since the A; are not empty, (A --- A,—1) as well as A, have at
most N different integers and thus satisfy the induction hypotheses. If » = 1 then
either x is Ty (or Ty ) for some k, or x is such that Ay = jByjByj--- jBpj with
1 < p < N and for some integer j. Thus there exists at least one B;, that contains
2<g<N—(p—1) elements, and x = (jBy j -+~ Bijo_1 jajBiyx1j - jBpJ)oa Bi,
for some a, which concludes the proof. |

Via Proposition 6.4, the generators of RS, described in Proposition 6.6 correspond to

the trees
1 2 2 3 k—1lk
id = % Mdzv, Tk:w
and
1 2 2 3 J=-lj
ldop = %] s /"Lﬁp = E\Tf]y inC = (1f ) Tl = Dvm
op op op 1T op

(open part)

for the closed and nonclosed parts, respectively. For RS& the element Tj’ corresponds to

2 3 J-lJ

The operadic structure of RS> is described in terms of trees by means of Proposition 6.4;
the whiskering w defined in Section 5 has a corresponding map on R7 (roughly, it
consists in adding arrows linked to the white vertices) and the composition of two
trees is given by transferring the formula (5-1) to R7 . One has a similar description
for RS, . For the closed part, details are given in [4] with a slightly different convention.
A full description of the operad RS/, in terms of similar trees is given in [12].

6D The algebras over RL,

We describe the algebras over RL;, where RL; is implicitly seen in C by means of
the strong symmetric monoidal functor Set — C, E + [ [, 1 ¢ . Precisely, we show
that RL, encodes the pairs (M, Z) subject to the following conditions:
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(I M is a multiplicative non-X operad.

II) Z isin BiMod 45, and there is a morphism ¢: M — Z in BiMod rq_45.

Let E be the category with objects the pairs (M, Z) satisfying the two conditions
(I) and (IT) above; morphisms are the pairs (f, g): (M, Z) — (M’, Z’) subject to the
following conditions:

e f: M — M isamorphism of multiplicative non-X operads,

e g: Z— Z'isan f-equivariant morphism of left modules over M,

e g is a morphism of bimodules over As, and

e /of=gou

6.7 Remark Note that E is well defined since, by the last condition (/o /' = g o,
the morphism ¢ of (II) associated to (M, Z) is unique. The pair (As, As) is the initial
object of E.

6.8 Remark As observed in Example 2.6, since here we have a morphism As — Z,
it follows from (II) that Z is, in particular, a weak bimodule over As (see also the
proof of Proposition 6.9). By Lemma 2.7 this is equivalent to saying that Z is endowed
with a cosimplicial structure. Likewise, the multiplicative structure of M endows it
with a cosimplicial structure. These are the cosimplicial structures involved in the
d—totalization that gives rise to the Coendg ., (§)—algebra (Tots M, Tots Z).

6.9 Proposition The category of RL,—algebras in C is isomorphic to the category E.

Proof We use the interpretation of RL, in terms of planar trees; see Proposition 6.4.

Let (M, Z) be an RL,—algebra. This means that for each 7' € RL;y(eyq,...,ep:e)
one has a corresponding operation

T € Hom(products of M(n;) and Z(n;j), Z(n))
or
T € Hom(products of M(n;), M(n))

according to the type of the output e, where ng = ev(ey) is the value of e5, 1 <5 < p
and n =ev(e).

Let us write explicitly the induced structures on M and Z.
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(1) Operadic structure on M The partial compositions on elementary trees are
given by

i

L« op i M(k) @ M) = M(k +1—1).

The operadic structure of RL, provides the associativity condition for partial composi-
tions of M. This is similar to (3) below, which we describe in detail.

(2) Multiplicative structure on M The morphism «: As(k) — M(k) is given by
the corolla in a neutral vertex with k inputs. For k =1, one has that « =7n: 1¢ - M(1)
is the unit. Note that the isomorphism As(k) ® As(/) — As(k+/—1) corresponds
to the equivalence relation made on the neutral vertices (see Definition 6.1). The
multiplication in M is given by operations as

w: M(2) ® M(3) = As(2) ® M(2) ® M(3) — M(5).

(3) Left action of M on Z The k—corollas in a closed vertex with k open vertices

at the inputs give the left action A:

P k+l+2
where i,k,/, x are as in Definition 2.12.1 and 0(3 ;)41 is the block permutation
(U(Z,i),i+1(s) =s+1for2=<s =<1, U(Z,i),i—}—l(i + 1) = 2 and 0'(2,1')’1'4_1(5) =9
otherwise). The first decomposition corresponds to the top-right path in the diagram of
Definition 2.12.1; the second decomposition corresponds to the left-bottom path.
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Note that, by precomposing A™ with a: As — M, one has a left action of As:

mg

k <— prZk)=Zk)QAs(l) = Z(k+1-1).

The associativity for the right action is given by operadic composition of RL; . Precisely,
for the left-sided square of Definition 2.12.1, As(k) ® As(/) = As(k 4+ —1) leads to
the left-bottom path, while the top-right path corresponds to the decomposition of the
above tree as

The right-sided square of Definition 2.12.1 is obtained similarly.

(5) Associativity of the left M-action and right .As-action on Z This is the
square of Definition 2.12.1 and is obtained by considering trees as

5 s+1 k+1 5 s+1 k+1
= 0541 = % J
1 1
op op 11 op op

(6) The morphism t: M — Z This is given by corollas in a closed vertex with an

open output:

oo k
1 «—> 1 M(k) = Z(k).
op
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Note that the operations such as those given by k—corollas in a closed vertex with
1 < j <k open vertices atinputs 1 <b; <---<b; <k,

> kbl’_“,bj:M(k)@Z(ml)@)---®Z(mj)—>Z(k—j+ Z mp),
1=p=<j

can be obtained by precomposing the left action A by As(1) — Z(1) at the all inputs
other than the b;. This results from the fact that such a k—corolla is obtained as

(6-1)

where the a; are the inputs other than the b; (a; =1 in the picture above). In particular,
the weak left action is obtained whenever j = 1 and the left action corresponds to
j = k. Doing this to the corollas of A% in (3) above endows Z with a structure of
weak bimodule over As.

Let us remark that, because of the decomposition

I xx..z7 k 1 xx..a7 k 1 "y -1 k
AT A
op op

the morphism As — Z given by the left-sided tree corresponds to ta: As > M — Z.
More generally, note that any tree can be obtained as a composition of elementary
trees: trees as in (1)—(4), (6) above and corollas in a neutral vertex. Therefore, for
(M, Z) € E, the operation corresponding to a given a tree 7" is defined as given by
any of the decompositions of 7" in elementary trees; the independence of this operation

regarding the different decompositions is ensured by the properties of (M, Z). For
instance, the two decompositions

(%) o
= * Ov, Ovy = Oy s
op op v
op op op

correspond to (2 iterations of) the diagram of Definition 2.1(2), plus the fact that ¢
is a left module map and n: 1¢ — M is the unit. Here, the penultimate tree is not
elementary but it admits a decomposition into elementary trees as in (6-1). a
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6E The algebras over RL)
We show that the operad RL’, encodes the pairs (M, Z) subject to the following

conditions:

(I') M is a multiplicative non-X operad.

(I') Z is in BiMod 455 with a morphism ¢: M — Z in BiMod 45_ .

Let E’ be the category with objects the pairs (M, Z) satisfying the two conditions
(I') and (IT") above; morphisms are the pairs (1, g): (M, Z) — (M’, Z’) subject to the
following conditions:

e f: M — M is amorphism of multiplicative non-X operads,
e g: Z— Z'isan f-equivariant morphism of right modules over M,

e g is a morphism of bimodules over As, and

e /of=gou
6.10 Proposition The category of RL-algebras in C is isomorphic to the category E’.
Proof The only significant differences with Proposition 6.9 are the following. The

right action of M on Z is given by the k—corollas in an open vertex with a closed
vertex at an input:

k <~—pi: Zk) QM) —> Z(k+1-1).

The operations such as those given by k—corollas in a neutral vertex with 1 < j <k
open vertices at inputs 1 <b; <---<b; <k,

Vp;
e b,:As(k>®z<m1>®---®Z(mj>az(k—j+ > mp),

op 1=p=<j

are obtained via the left action of As on Z, using the fact that ta: As > M — Z isa
morphism of left modules. a

Algebraic & Geometric Topology, Volume 18 (2018)



The relative lattice path operad 1797

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

(15]

M A Batanin, Symmetrisation of n—operads and compactification of real configuration
spaces, Adv. Math. 211 (2007) 684-725 MR

M A Batanin, The Eckmann—Hilton argument and higher operads, Adv. Math. 217
(2008) 334-385 MR

M A Batanin, C Berger, The lattice path operad and Hochschild cochains, from
“Alpine perspectives on algebraic topology” (C Ausoni, K Hess, J Scherer, editors),
Contemp. Math. 504, Amer. Math. Soc., Providence, RI (2009) 23-52 MR

M Batanin, C Berger, M Markl, Operads of natural operations I: Lattice paths,
braces and Hochschild cochains, from “Operads 2009” (J-L Loday, B Vallette, editors),
Sémin. Congr. 26, Soc. Math. France, Paris (2013) 1-33 MR

C Berger, Combinatorial models for real configuration spaces and E,—operads,
from “Operads: proceedings of renaissance conferences” (J-L Loday, JD Stasheff,
A A Voronov, editors), Contemp. Math. 202, Amer. Math. Soc., Providence, RI (1997)
37-52 MR

C Berger, B Fresse, Combinatorial operad actions on cochains, Math. Proc. Cam-
bridge Philos. Soc. 137 (2004) 135-174 MR

C Berger, I Moerdijk, Resolution of coloured operads and rectification of homotopy al-
gebras, from “Categories in algebra, geometry and mathematical physics” (A Davydov,
M Batanin, M Johnson, S Lack, A Neeman, editors), Contemp. Math. 431, Amer. Math.
Soc., Providence, RI (2007) 31-58 MR

M Brun, Z Fiedorowicz, RM Vogt, On the multiplicative structure of topological
Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633-1650 MR

B Day, R Street, Abstract substitution in enriched categories, J. Pure Appl. Algebra
179 (2003) 49-63 MR

V A Dolgushev, DE Tamarkin, BL Tsygan, Proof of Swiss cheese version of
Deligne’s conjecture, Int. Math. Res. Not. 2011 (2011) 4666-4746 MR

P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174,
Birkhéuser, Basel (1999) MR

E Hoefel, M Livernet, A Quesney, On the deformation complex of homotopy affine
actions, preprint (2016) arXiv

E Hoefel, M Livernet, J Stasheff, A,,—actions and recognition of relative loop spaces,
Topology Appl. 206 (2016) 126-147 MR

M Hovey, Model categories, Math. Surveys Monogr. 63, Amer. Math. Soc., Providence,
RI(1999) MR

M Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48
(1999) 35-72 MR

Algebraic & Geometric Topology, Volume 18 (2018)


http://dx.doi.org/10.1016/j.aim.2006.07.022
http://dx.doi.org/10.1016/j.aim.2006.07.022
http://msp.org/idx/mr/2323542
http://dx.doi.org/10.1016/j.aim.2007.06.014
http://msp.org/idx/mr/2365200
http://dx.doi.org/10.1090/conm/504/09874
http://msp.org/idx/mr/2581904
http://msp.org/idx/mr/3203365
http://dx.doi.org/10.1090/conm/202/02582
http://msp.org/idx/mr/1436916
http://dx.doi.org/10.1017/S0305004103007138
http://msp.org/idx/mr/2075046
http://dx.doi.org/10.1090/conm/431/08265
http://dx.doi.org/10.1090/conm/431/08265
http://msp.org/idx/mr/2342815
http://dx.doi.org/10.2140/agt.2007.7.1633
http://dx.doi.org/10.2140/agt.2007.7.1633
http://msp.org/idx/mr/2366174
http://dx.doi.org/10.1016/S0022-4049(02)00291-8
http://msp.org/idx/mr/1957814
http://dx.doi.org/10.1093/imrn/rnq265
http://dx.doi.org/10.1093/imrn/rnq265
http://msp.org/idx/mr/2844935
http://dx.doi.org/10.1007/978-3-0348-8707-6
http://msp.org/idx/mr/1711612
http://msp.org/idx/arx/1612.06363
http://dx.doi.org/10.1016/j.topol.2016.03.023
http://msp.org/idx/mr/3494436
http://msp.org/idx/mr/1650134
http://dx.doi.org/10.1023/A:1007555725247
http://msp.org/idx/mr/1718044

1798

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Alexandre Quesney

T Leinster, Higher operads, higher categories, London Math. Soc. Lecture Note Ser.
298, Cambridge Univ. Press (2004) MR

M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Math.
Surveys Monogr. 96, Amer. Math. Soc., Providence, RI (2002) MR

JP May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer
(1972) MR

JE McClure, JH Smith, A solution of Deligne’s Hochschild cohomology conjec-
ture, from “Recent progress in homotopy theory” (D M Davis, J Morava, G Nishida,
W S Wilson, N Yagita, editors), Contemp. Math. 293, Amer. Math. Soc., Providence,
RI (2002) 153-193 MR

JE McClure, J H Smith, Multivariable cochain operations and little n—cubes, J. Amer.
Math. Soc. 16 (2003) 681-704 MR

JE McClure, JH Smith, Cosimplicial objects and little n—cubes, I, Amer. J. Math.
126 (2004) 1109-1153 MR

V Turchin, Hodge-type decomposition in the homology of long knots, J. Topol. 3 (2010)
487-534 MR

A A Voronov, The Swiss-cheese operad, from “Homotopy invariant algebraic structures”
(J-P Meyer, J Morava, W S Wilson, editors), Contemp. Math. 239, Amer. Math. Soc.,
Providence, RI (1999) 365-373 MR

Instituto de Ciéncias Matematicas e de Computagdo, Universidade de Sdao Paulo
Sao Carlos, Brazil

math@quesney.org

Received: 18 July 2017 Revised: 18 November 2017

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://dx.doi.org/10.1017/CBO9780511525896
http://msp.org/idx/mr/2094071
http://msp.org/idx/mr/1898414
http://dx.doi.org/10.1007/BFb0067491
http://msp.org/idx/mr/0420610
http://dx.doi.org/10.1090/conm/293/04948
http://dx.doi.org/10.1090/conm/293/04948
http://msp.org/idx/mr/1890736
http://dx.doi.org/10.1090/S0894-0347-03-00419-3
http://msp.org/idx/mr/1969208
http://dx.doi.org/10.1353/ajm.2004.0038
http://msp.org/idx/mr/2089084
http://dx.doi.org/10.1112/jtopol/jtq015
http://msp.org/idx/mr/2684511
http://dx.doi.org/10.1090/conm/239/03610
http://msp.org/idx/mr/1718089
mailto:math@quesney.org
http://msp.org
http://msp.org

	1. Introduction
	2. Preliminaries
	2A. Nonsymmetric operads and modules
	2B. Coloured operads
	2C. SC-operads and coloured SC-operads
	2D. SC functor-operads
	2E. Condensation

	3. Cellular decompositions of the Swiss cheese operad
	3A. The Swiss cheese operad
	3B. The SC extended complete graph operad
	3B1. Definition of RK
	3B2. Filtrations of RK

	3C. Cellular decompositions of the Swiss cheese operad

	4. The operad RL
	4A. Definition of the operad RL
	4B. The operad CoendRLm(delta) as an SC-type operad
	4C. Action on cochains
	4D. Action on iterated relative loop spaces

	5. The relative surjection operad
	6. The operads RL2 and RL'2
	6A. The operad RL2 in term of trees
	6A1. The sets of RT
	6A2. Correspondence between RT and RL2

	6B. The operad RL'2 in term of trees
	6C. A few remarks on the operads RS2 and RS'2
	6D. The algebras over RL2
	6E. The algebras over RL'2

	References

