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Comparing 4–manifolds in the pants complex via trisections

GABRIEL ISLAMBOULI

Given two smooth, oriented, closed 4–manifolds, M1 and M2 , we construct two
invariants, DP .M1;M2/ and D.M1;M2/ , coming from distances in the pants
complex and the dual curve complex, respectively. To do this, we adapt work of
Johnson on Heegaard splittings of 3–manifolds to the trisections of 4–manifolds
introduced by Gay and Kirby. Our main results are that the invariants are independent
of the choices made throughout the process, as well as interpretations of “nearby”
manifolds. This naturally leads to various graphs of 4–manifolds coming from
unbalanced trisections, and we briefly explore their properties.

57M15, 57M99

1 Introduction

In [6], Johnson uses two closely related simplicial complexes associated to surfaces
in order to define invariants of 3–manifolds. In particular, using Heegaard splittings,
Johnson [6] defines distances between two 3–manifolds in the pants complex and the
dual curve complex, which are independent of the particular Heegaard splittings chosen.
An interesting interpretation of the distance between M1 and M2 in the dual curve
complex is that it is equal to the minimum number of components of a link L�M1

such that Dehn surgery along L produces M2 .

Through the recent work of Gay and Kirby [2], trisections of 4–manifolds have arisen
as an analogue to Heegaard splittings. A .g; k/–trisection of a 4–manifold X is a
decomposition into three pieces, X DX1[X2[X3 , where each Xi is diffeomorphic
to \kS1 �D3, and is equipped with a genus-g Heegaard splitting of #k

S1 � S2

on its boundary. The intersection of the three pieces, X1 \X2 \X3 , is a surface of
genus g , called the trisection surface. One of the nice features of a trisection is that it
encodes all of the data of a smooth 4–manifold as curves on the trisection surface. We
are therefore able to access the numerous complexes associated to surfaces to address
questions about 4–manifolds.
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We seek to adapt the work of [6] to 4–manifolds through trisections. One of the key
observations which allows us to do this is that, if we have two 4–manifolds equipped
with .g; k/–trisections for the same g and k , we may cut out a chosen Xi from each
of them, and glue them together in a way which respects the Heegaard splitting on the
boundary of Xi . This gives a way to view all relevant curves on a single surface, and
hence compare them in the chosen complex. This allows us to define two nontrivial
distances between trisections: D.T1;T2/ and DP .T1;T2/.

If T is a genus-h trisection and g D hC 3n for n 2 N , there is a natural way to
construct a genus-g trisection of the same 4–manifold, which we call a stabilization
of T and denote by T g. The main theorem of the paper is the following:

Theorem 2.5 Let M1 and M2 have trisections T1 and T2 , respectively. Then
the limit limg!1D.T

g
1
;T

g
2
/ is well defined and depends only on the underlying

manifolds, M1 and M2 .

We also show the analogous result in the pants complex, and this allows us to define two
natural number–valued invariants of two 4–manifolds, D.M1;M2/ and DP .M1;M2/.
Sections 3 and 4 are dedicated to exploring properties of these invariants. In Section 3,
we find various upper and lower bounds. For example, if �.M / denotes the signature
of M, we obtain the following inequality:

Proposition 3.3 D.M1;M2/�
1
2
j�.M1/� �.M2/j:

Section 4 consists of interpretations of nearby manifolds in terms of Kirby calculus.
We first show that manifolds which are close in the pants complex have very similar
Kirby diagrams. More precisely, we show the following:

Theorem 4.3 If DP .M1;M2/ D 1, then M1 and M2 have Kirby diagrams which
are identical, except for the framing on some 2–handle.

We also show that manifolds with similar Kirby diagrams are close in the pants complex,
which is encompassed in the following theorem:

Theorem 4.5 Let M1 and M2 be nondiffeomorphic 4–manifolds with the same Euler
characteristic which have Kirby diagrams K1 and K2 , respectively. If K1 and K2

only differ in the framing of some 2–handle, where the framing differs by 1, then
DP .M1;M2/D 1.
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Our line of inquiry in constructing these invariants leads naturally to the construction
of various graphs of 4–manifolds coming from subgraphs of the pants complex and
the dual curve complex. Section 5 is dedicated to carefully defining these graphs and
obtaining some connectivity results.
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1.1 Simplicial complexes associated to surfaces

The most commonly used complex associated to a surface is the curve complex. It has
proven to be a useful tool in investigating the structure of the mapping class group of
an orientable surface. We recall the definition here.

Definition 1.1 Given a closed, orientable surface, †, of genus g � 2, the curve
complex of †, denoted by C.†/, is a simplicial complex built out of simple closed
curves on †. Each isotopy class of essential simple closed curves corresponds to a
vertex. A collection of n vertices spans an .n�1/–simplex if the corresponding curves
can be isotoped to be pairwise disjoint.

In his seminal work in [5], Hempel used the curve complex to give an invariant of
Heegaard splittings generalizing the notions of reducibility, weak reducibility, and
the disjoint curve property. While Hempel’s distance is an indispensable tool for
investigating the structure of Heegaard splittings of a 3–manifold, it is unlikely to be
useful for constructing invariants of manifolds. This is due to the fact that the invariant
completely collapses when a Heegaard splitting is stabilized. Our setup for trisections
will have similar problems, so we consider the dual of the curve complex.

Definition 1.2 Given a closed, orientable surface of genus g � 2, the dual curve
complex of †, denoted by C �.†/, is the simplicial complex whose vertices correspond
to maximal-dimensional simplices of C.†/. Two vertices in C �.†/ have an edge
between them if the corresponding maximal-dimensional simplices of C.†/ share a
codimension-1 face.
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Figure 1: Above: An S–move in the pants complex. Below: An A–move in
the pants complex.

For a closed, orientable surface of genus g � 2, maximal-dimensional simplices in
C.†/ are of dimension 3g�4 and correspond to a set of 3g�3 simple closed curves,
whose union separates the surface into pairs of pants. An edge in the dual curve
complex therefore corresponds to starting with one pants decomposition of a surface
and replacing one curve in order to obtain another pants decomposition of the surface.
If, instead of allowing arbitrary curve replacements, we insist that curves are replaced
in the simplest way possible, we obtain the pants complex.

Definition 1.3 Given a surface †, the pants complex of †, denoted by P .†/, is
the simplicial complex whose vertices correspond to isotopy classes of pants decom-
positions of †. Two vertices v and v0 in P .†/ are connected by an edge if the
corresponding pants decompositions only differ in one curve, and the two different
curves intersect minimally. That is, if l 2 v and l 0 2 v0 with l ¤ l 0, then either l and l 0

lie on a punctured torus with jl \ l 0j D 1 or l and l 0 lie on a four-punctured sphere
with jl \ l 0j D 2. In the case that l and l 0 lie on a punctured torus, we say that v and
v0 are related by an S–move. If l and l 0 lie on a four punctured sphere we say that v
and v0 are related by an A–move. See Figure 1 for an illustration of these moves.

There is a natural map from the pants complex into the dual curve complex which is
bijective on vertices and injective on edges. In [4], Hatcher and Thurston prove that
the pants complex is connected, so the aforementioned map shows that the dual curve
complex is connected. We therefore get naturally defined metrics on the 1–skeleton of
these complexes.
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Definition 1.4 Let v1 and v2 be two vertices in C �.†/. The dual distance, D.v1; v2/,
is the length of the minimal path between v1 and v2 in the dual curve complex.
Similarly, if v1 and v2 are two vertices in P .†/, the pants distance DP .v1; v2/ is the
length of the minimal path between v1 and v2 in the pants complex.

Since the pants complex appears as a subcomplex of the dual curve complex, we get
the inequality DP .v1; v2/�D.v1; v2/. This inequality should be kept in mind when
bounds are discussed later in the paper.

1.2 Trisections

To fix notation, we briefly summarize the relevant notions in the theory of trisections
of 4–manifolds. For a more detailed account, the reader is referred to [2].

Definition 1.5 A .g; k/–trisection of a smooth, closed 4–manifold M is a decompo-
sition M DX1[X2[X3 such that:

� Xi Š \
kS1 �D3.

� Xi \Xj DHij is a genus-g handlebody for i ¤ j .

� @Xi DHij [Hik is a genus-g Heegaard splitting for @Xi Š #k
S1 �S2.

� X1\X2\X3 is a closed, orientable, genus-g surface.

In [2], Gay and Kirby show that every smooth, closed, 4–manifold admits a trisection.
At times, it will be useful to relax the condition that all of the Xi are diffeomorphic to
the same 4–dimensional handlebody. In particular, we allow Xi Š \

ki S1 �D3 where,
for i ¤ j , it is possible that ki ¤ kj . In this case, we insist that @Xi D Hij [Hik

is a genus-g Heegaard splitting for @Xi Š #ki S1 � S2. We will call this more
general setup an unbalanced .gI k1; k2; k3/–trisection. Note that S4 has unbalanced
trisections with parameters .1I 1; 0; 0/, .1I 0; 1; 0/ and .1I 0; 0; 1/. These can be used
to balance trisections by taking connected sums (see Definition 3.8 of [10] for more
details on this construction). Unless otherwise noted, all trisections will be assumed to
be balanced.

The union H12[H23[H31 is called the spine of the trisection. Note that if we thicken
the spine of the trisection by taking the product of the surface with D2 and the product
of handlebodies with D1, then we are left with a 4–manifold with three boundary
components each diffeomorphic to #k

S1 �S2. Recovering the original 4–manifold
amounts to gluing back in three copies of \kS1 �D3. By [8], this can only be done in
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one way. In other words, the spine uniquely determines the trisection. The spine, in
turn, is uniquely determined by three cut systems for the handlebodies which pairwise
form Heegaard diagrams for #k

S1 �S2. Thus, a trisected 4–manifold is completely
determined by these cut systems drawn on the trisection surface †. We refer to the
trisection surface, together with the three cut systems, as a trisection diagram.

If T1 is a .g1; k1/–trisection and T2 is a .g2; k2/–trisection, we may form their
connected sum T1 # T2 , which inherits the structure of a .g1Cg2; k1Ck2/–trisection.
On the level of diagrams, this amounts to taking the connected sum of trisection
diagrams for T1 and T2 . S4 has a .3; 1/–trisection, so, if T is a .g; k/–trisection
for M 4, we may form a .gC3; kC1/–trisection for M by taking a connected sum
with the aforementioned trisection for S4. The resulting .gC3; kC1/–trisection is
called a stabilization of T . We may also take the connected sum of T with one of the
unbalanced genus-1 trisections of S4. The resulting (possibly unbalanced) trisection
is called an i –stabilization of T , where i 2 f1; 2; 3g indicates that we are summing
with the unbalanced genus-1 trisection of S4 where ki ¤ 0. Let T be a genus-h
trisection and let g D hC 3n for some n 2N . We denote by T g the .hC3n; kCn/–
trisection obtained by stabilizing T n times to a genus-g trisection. If T has spine
H12 [H23 [H31 and trisection surface †, we will denote the spine and trisection
surface of T g by H

g
12
[H

g
23
[H

g
31

and †g. The following theorem will be essential
for extending invariants of trisections to invariants for 4–manifolds. It can be seen as
the analogue to the Reidemeister–Singer theorem [11; 12] for trisections.

Theorem 1.6 [2, Theorem 11] If T1 and T2 are trisections of the same manifold X,
then there exists a natural number n such that T n

1
and T n

2
are isotopic as trisections.

That is, if T n
1
D X1 [ X2 [ X3 and T n

2
D Y1 [ Y2 [ Y3 , then there exists a self-

diffeomorphism f of X isotopic to the identity such that f .Xi/D Yi .

2 Distances of trisections

Let .T1; †1/ and .T2; †2/ be two .g; k/�trisections with corresponding spines
H˛1
[Hˇ1

[H1
and H˛2

[Hˇ2
[H2

. Both H˛1
[Hˇ1

and H˛2
[Hˇ2

are
genus-g Heegaard splittings for #k

S1 �S2. Waldhausen’s theorem [13] therefore
asserts that both of these are in fact the unique genus-g splitting of #k

S1 � S2.
Therefore, there exists a map �W H˛1

[Hˇ1
!H˛2

[Hˇ2
such that �.H˛1

/DH˛2

and �.Hˇ1
/DHˇ2

. Such a map induces isometries on the various complexes associated
to †1 and †2 , and we will denote the induced isometry by y� .
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P .†1/

H1

H˛1
Hˇ1

P .†2/

y�.H1
/ H2

H˛2
Hˇ2

D.T1;T2/

y�

y� y�

Figure 2: The distance between two trisections is the minimum distance
between the sets y�.H1

/ and H2

If we fix an identification of both H˛1
[Hˇ1

and H˛2
[Hˇ2

with #k
S1 �S2, all

such maps (up to isotopy with �t .†1/D†2 ) can be identified with the mapping class
group of the Heegaard splitting, which we denote by Mod.#k

S1 � S2; †g/. The
mapping class groups of Heegaard splittings have been studied extensively and can be
quite complicated. For example, when g > k , the group Mod.#k

S1 �S2; †g/ will
always have pseudo-Anosov elements [7].

We say a vertex v 2 C �.†/ (or P .†/) defines a handlebody, H, if all of the curves
in the pants decomposition associated to v bound disks in H. Equivalently, attaching
3–dimensional 2–handles to † along the curves of v and filling in the resulting 2–
sphere boundary components with 3–balls produces H. We are now ready to define
the main objects of study.

Definition 2.1 Let M1 and M2 be two 4–manifolds equipped with .g; k/�trisections
T1 and T2 . The dual distance between T1 and T2 , D.T1;T2/, is

minfD.y�.v1/; v2/ j v1 defines H1
and v2 defines H2

g:

Similarly, the pants distance, DP .T1;T2/, is

minfDP .y�.v1/; v2/ j v1 defines H1
and v2 defines H2

g:

Here, the minimum is taken over all orientation-preserving maps �W H˛1
[Hˇ1

!

H˛2
[Hˇ2

such that �.H˛1
/DH˛2

and �.Hˇ1
/DHˇ2

as well as all vertices defining
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Figure 3: Left: Stabilizing a trisection amounts to gluing this diagram onto a
punctured trisection diagram. Right: A pants decomposition for one handle-
body of the stabilizing surface

the handlebodies in the respective complexes. See Figure 2 for an illustration of the
definition. Since these distances are natural number–valued, they give well-defined
invariants of two .g; k/–trisections. Furthermore, if either distance is 0, then the
distance-minimizing map extends to a homeomorphism of spines, which means that T1

and T2 are in fact diffeomorphic trisections. Since there are many manifolds admitting
a .g; k/–trisection for a given g and k with g ¤ k (see for example [1; 9]), this
distance is nontrivial.

We now seek to extend these distances of particular trisections to well-defined distances
of 4–manifolds. To do this, we need to understand how the distance behaves under
stabilization. If .T; †/ is a trisection, we may stabilize T by puncturing † in a disk
and gluing on the stabilizing surface shown in Figure 3. From this point of view, it is
clear that we should begin by understanding paths in the complexes associated to †nD2.
The following key lemma treating this case is contained in Lemma 15 of [6].

Lemma 2.2 Let v1; v2; : : : ; vn be a minimal path in C �.†/ (resp. P .†/) between
two handlebodies H1 and H2 . Then there exists a disk D�† and a path v0

1
; v0

2
; : : : ; v0m

in C �.†nD/ (resp. P .†nD/) with m� 2n such that after capping off †nD with a
disk, every loop in v0

1
bounds a disk in H1 and every loop in v0m bounds a disk in H2 .

Moreover, if there is some loop which is never moved in the path from v1 to vn , then
there exists a disk D and a path v0

1
; v0

2
; : : : ; v0m satisfying the previous conclusions

with mD n.
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In what follows, we will adapt the work of [6] to prove that the invariants of trisections
behave well under stabilization. In order to aid exposition, we will only explicitly treat
the case of the distance in the dual curve complex. It should be clear after the fact that
by using the part of Lemma 2.2 pertaining to the pants complex, all of the arguments
go through virtually unchanged.

Lemma 2.3 Let .T1; †1/ and .T2; †2/ be .g; k/–trisections, and let T h
1

and T h
2

be their genus-h stabilizations. Then D.T h
1
;T h

2
/� 2D.T1;T2/.

Proof If D.T1;T2/ D n then there is a map �W H˛1
[Hˇ1

! H˛2
[Hˇ2

and a
path v1; v2; : : : ; vn in C �.†2/ such that v1 defines �.H1

/ and vn defines H2
. Let

l1
i ; : : : ; l

m
i be the loops corresponding to the pants decomposition given by vi . Let

D be a disk in the annulus formed by two parallel copies of l1
1

. Consider the pants
decomposition for †2nD consisting of l1

1
; : : : ; lm

1
; lmC1

1
, where lmC1

1
is the parallel

copy of l1
1

on †2 lying on the other side of D on †2nD. Let v0
1

be the corresponding
vertex of C �.†2nD/.

By Lemma 2.2, there is a path from v0
1

to a vertex w such that if l 2 w , then after
capping off †2nD with a disk, l is isotopic to some loop in vn . Moreover, this path is
of length at most 2n.

We first treat the case of a single stabilization. Consider the stabilization of †1 produced
by cutting out the disk ��1.D/ gluing on a stabilizing surface to the resulting boundary
component. Then H

gC3
1

has a pants decomposition given by the curves in ��1.v0
1
/

along with ��1.@D/ and the pants decomposition for the stabilizing surface shown
in Figure 3. By gluing on a stabilizing surface to @D, we can extend � to a map
�gC3W †

gC3
1
!†

gC3
2

such that �gC3.w/[@D[�gC3 (the curves shown in Figure 3)
is a pants decomposition for H

gC3
2

. Since the path in C �.†1nD/ from v0
1

to w
takes place away from the stabilizing surface, it corresponds to a path in C �.†

gC3
2

/

such that D.T
gC3
1

;T
gC3
2

/� 2D.T1;T2/. To achieve the more general result, simply
connect-sum multiple stabilizing surfaces first before connect-summing with the given
trisection surfaces.

Lemma 2.4 For sufficiently large g , D.T h
1
;T h

2
/�D.T

g
1
;T

g
2
/ when h� g .

Proof By the previous lemma, D.T
g
1
;T

g
2
/� 2D.T1;T2/. Choose g so that 3g�3>

2D.T1;T2/. Since a pants decomposition of †g
2

consists of 3g�3 loops, it follows that
some loop is never moved in the path on †g. In this case, we conclude by Lemma 2.2
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that paths on †g from y�g.H
g
1
/ to H

g
2

lift to paths of the same length on †h from
y�h.H h

1
/ to H h

2
.

Theorem 2.5 Let M1 and M2 have trisections T1 and T2 , respectively. Then
the limit limg!1D.T

g
1
;T

g
2
/ is well defined and depends only on the underlying

manifolds, M1 and M2 .

Proof Since the sequence D.T
g
1
;T

g
2
/ is natural number–valued and nonincreasing

for sufficiently large g , it converges. Furthermore, by Theorem 1.6, any two trisections
of the same manifold have a common stabilization fixing the labels of the handlebodies.
Therefore, if T1 and T3 are distinct trisections of M1 , and T2 and T4 are distinct
trisections of M2 , then there exists an h such that T h

1
is isotopic to T h

3
and T h

2
is

isotopic to T h
4

. Then, for g > h we have that D.T
g
1
;T

g
2
/ D D.T

g
3
;T

g
4
/, so that

limg!1D.T
g
1
;T

g
2
/D limg!1D.T

g
3
;T

g
4
/.

Remark 2.6 The reader may be concerned that the definitions of D and DP seem
to distinguish between which third of the trisection is labeled X1 , whereas we have
seemingly defined an invariant of a 4–manifold which is not sensitive to this information.
However, Theorem 2.5 does actually encompass this case. Suppose M1 has two
trisections of the form T1D .X1;X2;X3/ and T2D .Y1;Y2;Y3/ such that Yi DXi�1

with indices taken mod 3. In [2], it is shown that any two trisections of the same
manifold have a common stabilization fixing the labels of the sectors. We therefore
have a map f W M 4!M 4 isotopic to the identity such that f .Y h

i /DX h
i .

We are now justified in making the following definitions:

Definition 2.7 Let M1 and M2 be two 4–manifolds which have .g; k/–trisections for
the same g and k . The dual distance between M1 and M2 is limg!1D.T

g
1
;T

g
2
/,

where T1 is any trisection of M1 and T2 is any trisection of M2 with the same
parameters as T1 . Similarly, the pants distance between two 4–manifolds is given by
limg!1DP .T

g
1
;T

g
2
/.

Remark 2.8 In the 3–manifold case, any two pants decompositions will determine a
3–manifold, so that minimal paths between two 3–manifolds pass through intermediary
3–manifolds. This nice property simplifies many of the arguments in [6]. In our setup,
we can not guarantee that H˛2

, Hˇ2
and the handlebody determined by an intermediary

vertex in a minimal path between y�.H1
/ and H2

will still pairwise form Heegaard
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splittings for #k
S1 �S2. Therefore, these three handlebodies may not form the spine

of a trisection, and there may be no way to uniquely obtain a closed 4–manifold from
this information. This leads to two natural questions:

(1) Can we pass between trisections through paths whose intermediary vertices form
trisections?

(2) Is there any significance to the three handlebodies which occur in paths between
two trisections?

It is clear from the definitions that trisections T1 and T2 can only be compared when
.g1; k1/D .g2; k2/. However, it is not immediately obvious when two manifolds can
be compared. A necessary and sufficient condition for comparing M1 and M2 is that
both manifolds have a .g; k/–trisection for some g and k . If a 4–manifold has a
.g; k/–trisection, the Euler characteristic is given by �.M / D 2C g � 3k , so it is
necessary that �.M1/D �.M2/. The following straightforward lemma shows that this
is also a sufficient condition.

Lemma 2.9 D.M1;M2/ and DP .M1;M2/ are well defined whenever �.M1/ D

�.M2/.

Proof Let M1 have a .g1; k1/–trisection T1 and let M2 have a .g2; k2/–trisection T2 .
Now, 2Cg1�3k1D 2Cg2�3k2 since �.M1/D �.M2/. Without loss of generality,
assume k1 > k2 . Then, by stabilizing T2 k1 � k2 times we get a new trisection T 0

2

of M2 , with k 0
2
D k1 and g0

2
D g2C 3.k1�k2/D g2C .g1�g2/D g1 , hence these

two trisections can be compared.

Remark 2.10 If we don’t insist on the trisections being balanced, we may compare
any two 4–manifolds, regardless of their Euler characteristics. To do this, let M1 and
M2 be 4–manifolds with corresponding trisections, T1 and T2 . We may perform
1–stabilizations until they have the same k1 . Next, perform 2–stabilizations until both
trisections have the same genus. We now have two trisections, T 0

1
DX1[X2[X3 and

T 0
2
D Y1 [Y2 [Y3 , such that both @X1 and @Y1 are diffeomorphic to #k1 S1 �S2.

Moreover, both @X1 and @Y1 have the structure of a genus-g Heegaard splitting, so,
as before, there are diffeomorphisms respecting the structure of the Heegaard splittings.
This allows us to carry through with the definition of the distance between trisections
virtually unchanged.

It is a quick corollary of Theorem 1.6 that unbalanced trisections of the same 4–manifold
with the same parameters (ie .g; k1; k2; k3/) become isotopic after some number of
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balanced stabilizations. This allows us to carry through with Theorem 2.5 and define
a distance between any two manifolds which stabilizes as the initial trisections are
stabilized. A slight caveat is that this will, in general, depend on the values of the ki .
Nevertheless, we can still get a well-defined distance, depending only on the underlying
manifolds, by further minimizing over all choices of ki .

It is natural to ask whether these distances induce a metric on the set of 4–manifolds with
the same Euler characteristic. It follows quickly from the definition that these distances
are 0 if and only if the manifolds are diffeomorphic. These distances are also symmetric,
since if � is the distance-minimizing map for D.M1;M2/ (resp. DP .M1;M2/), then
��1 minimizes the distance D.M2;M1/ (resp. DP .M2;M1/). The triangle inequality,
however, is likely false. This is due to the fact that we are minimizing over handlebody
sets of infinite diameter in the complexes. Given three handlebodies H1 , H2 and H3 ,
the representative of H2 closest to H1 may be far away from the representative of H2

closest to H3 .

3 Some bounds

Lemma 3.1 If D.M1;M2/Dn and D.M3;M4/Dm, then D.M1#M3;M2#M4/�

nCm.

Proof Stabilize trisections of M1 and M2 to genus-g trisections, .T g
1
; †

g
1
/ and

.T
g
2
; †

g
2
/, with 3g � 3 > n. Also, stabilize trisections of M3 and M4 to genus-h

trisections; .T h
3
; †h

3
/ and .T h

2
; †h

2
/, with 3h� 3 >m. Since a pants decomposition

for †g
2

has 3g � 3 loops, it follows that some loop in the path from y�g.H
g
1
/ to

H
g
2

is never moved, where y� is the distance-minimizing map. Let v0
1
; v0

2
; : : : ; v0n be

the path in the dual curve complex (or the pants complex) guaranteed by Lemma 2.2
on C �.†

g
2
nD/, and let w0

1
; w0

2
; : : : ; w0n be the path guaranteed by the same lemma on

C �.†h
4
nD0/.

Form the connect sum †
g
2

#†h
4

along the disks D and D0. Let v0i [w
0
j be the pants

decomposition of †g
2

#†h
4

consisting of the pants decomposition for †g
2

induced
by v0i , the pants decomposition for †h

4
induced by w0j , along with the additional curve

@D D @D0. Then the path v0
1
[w0

1
, v0

2
[w0

1
, : : : ; v0n[w

0
1

, v0n[w
0
2

, : : : ; v0n[w
0
m is a

path of length nCm from M1 # M3 to M2 # M4 .

Corollary 3.2 For any N with �.N /D2, D.M1#N;M2/�D.M1;M2/CD.N;S4/.
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The question of whether D.M1 # M3;M2 # M4/ D nCm is quite easily shown to
be false. For example, if M1 and M2 are homeomorphic — but not diffeomorphic —
4–manifolds that become diffeomorphic after a single connected sum with S2 �S2,
then D.M1;M2/¤ 0 whereas D.M1 # .S2 �S2/;M2 # .S2 �S2//D 0.

We next seek to prove a lower bound on the distance between two manifolds based on
the difference of their signatures. To this end, we briefly discuss how this information
can be recovered from a trisection. Given a genus-g surface †, choose a symplectic
basis for H1.†g;R/. That is, a basis fa1; b1; : : : ; ag; bgg such that for all i and j ,
jai \aj j D jbi \bj j D 0 and jai \bj j D ıij . Let ! be the associated symplectic form
on R2g.

Given a trisection with spine H1 [H2 [H3 , we get three Lagrangian subspaces
of H1.†g;R/, given by Li D ker

�
i�W H1.†g;R/! H1.Hi ;R/

�
. We may define

a symmetric bilinear form, q , on L1˚L2˚L3 by q..x1;x2;x3/; .y1;y2;y3// D

!.x1;y2/C!.y1;x2/C!.x2;y3/C!.y2;y3/C!.x3;y1/C!.y3;x1/C!.x3;y1/.
In [2], it is observed that the signature of the matrix associated to this bilinear form is
the signature of the original 4–manifold. While intermediary vertices in minimal paths
between handlebodies will not always define trisections, the signature of this matrix
will always be well defined. As a result, we obtain the following proposition:

Proposition 3.3 D.M1;M2/�
1
2
j�.M1/� �.M2/j:

Proof Suppose D.M1;M2/D n with a path v1; : : : ; vn such that v1 defines �.H1
/

and vn defines H2
. At each vertex, we have a triple of handlebodies determined

by H˛2
, Hˇ2

and the handlebody determined by vi . These in turn determine three
Lagrangian subspaces of H1.†2;R/, L1 , L2 and Lvi

. Going from vi to viC1

involves changing a single curve in the pants decomposition so that Lvi
and LviC1

have bases in H1.†2;R/ which are the same except for possibly one vector.

Let Mi be the matrix corresponding to the symmetric bilinear form qi on L1˚L2˚Lvi
.

Then Mi has real eigenvalues �1 � �2 � � � � � �3g . Let a1; : : : ; ag be a basis for Lvi
.

In going from Lvi
to LviC1

, it is possible that none of the basis vectors are changed,
in which case the signature of the matrix is obviously unchanged. It is also possible
that one vector, say aj , is changed. Let M 0

i be the matrix obtained by deleting the row
and column corresponding to aj , and let �0

1
� �0

2
� � � � � �0

3g�1
be its eigenvalues.

By the Cauchy interlacing theorem, �1 � �
0
1
� �2 � �

0
2
� � � � � �0

3g�1
� �3g , so that

j�.Mi/� �.M
0
i /j � 1. Similarly, we may obtain M 0

i by deleting a row and column
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of MiC1 , so that j�.MiC1/� �.M
0
i /j � 1. Therefore, j�.MiC1/� �.Mi/j � 2. The

result immediately follows.

Comparing the standard .g; 0/�trisections of #g CP2 and #g CP2 one can see that
this bound is sharp. Moreover, we may conclude that

lim
g!1

D
�
#g

CP2;#g
CP2

�
D1:

4 Nearby manifolds

We next seek to build some intuition as to what it means when 4–manifolds are close
to each other with respect to our distances. We first consider an illustrative example.
The top of Figure 4 shows trisection diagrams T1 for S2 �S2 and T2 for S2 z�S2,
where the ˛ and ˇ handlebodies are identical. Below that are pants decompositions
for the  handlebodies, which are identical except for in one curve. The curves which
are different intersect exactly once, showing that DP .T1;T2/ D 1. Moreover, we
have two curves in the pants decomposition which never move, so, by Lemma 2.2, the
path lifts to new paths of distance 1 on all stabilizations. Since these manifolds are
nondiffeomorphic, we may therefore conclude that DP .S2 �S2;S2 z�S2/D 1.

Figure 4: S2 �S2 and S2 z�S2 are distance 1 in the pants complex.
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In [2], it is shown how to obtain a Kirby diagram from a trisection diagram, and these
particular trisection diagrams give rise to Kirby diagrams which are identical except
for in the framing of a 2–handle. We seek to show that this is in fact the case in
general. That is, if DP .M1;M2/D 1 then M1 and M2 have Kirby diagrams which
are identical except for in the framing of some 2–handle. To do this, we first consider
what it means for two handlebodies to be distance 1 apart in the pants complex.

Lemma 4.1 Let H1 and H2 be two genus-g handlebodies with boundary †. If
DP .H1;H2/D 1 then H1[† H2 Š #g�1

S1 �S2.

Proof Let v1; v2 2 P .†/ define H1 and H2 , respectively, with DP .v1; v2/ D 1.
The pants decompositions corresponding to these vertices are exactly the same except
for some loops l1 2 v1 and l2 2 v2 . Moreover, since A–moves do not change the
handlebody and H1 ¤ H2 , we know that l1 and l2 lie in a punctured torus with
jl1\ l2j D 1. We may therefore build a Heegaard diagram for H1[† H2 consisting
of g� 1 identical loops in both v1 and v2 , along with l1 and l2 . It is easy to see that
this is a once-stabilized splitting for #g�1

S1 �S2.

Genus-g Heegaard splittings of #g�1
S1 � S2 are in some sense the second-most

simple Heegaard splittings in a given genus after #g
S1 �S2. Genus-g trisections

where two of the handlebodies form #g
S1�S2 are easily shown to be diffeomorphic

to #g
S1 � S3. Given these facts, it would be reasonable to assume that genus-g

trisections where two of the handlebodies form #g�1
S1 � S2 are also relatively

simple. The following theorem of [10] pertaining to unbalanced trisections makes this
precise.

Theorem 4.2 [10, Theorem 1.2] Suppose that M admits a .gIg�1; k2; k3/–tri-
section T , and let k 0 Dmaxfk2; k3g. Then M is diffeomorphic to either #k0

S1�S3

or to the connect sum of #k0

S1 � S3 with one of either CP2 or CP2, and T is a
connect sum of genus-1 trisections.

Theorem 4.3 If DP .M1;M2/ D 1, then M1 and M2 have Kirby diagrams which
are identical, except for the framing on some 2–handle.

Proof Suppose the distance has stabilized in T1 for M1 and T2 for M2 , where
T1 and T2 are .g; k/–trisections. We will construct two new manifolds from these
trisections following the schematic found in Figure 5. Consider the manifold obtained
by removing X1 from T1 and X 0

1
from T2 , and gluing the resulting two manifolds

Algebraic & Geometric Topology, Volume 18 (2018)



1814 Gabriel Islambouli

H1

H˛1

H˛2

Hˇ1

Hˇ2

H2

X2 X3

X 0
2

X 0
3

X2 X3

X 0
2

X 0
3

H1

H˛2

H2

X2

X 0
2

H1

H2

Hˇ2

X3

X 0
3

\g�1S1 �D3
X2

X 0
2

\g�1S1 �D3
X3

X 0
3

Figure 5: A schematic of the construction in Theorem 4.3

by the distance-minimizing map. Since DP .M1;M2/D 1, Lemma 4.1 implies that
the 3–manifold H1

[ H2
is diffeomorphic to #g�1

S1 � S2. We may cut the
resulting 4–manifold along H1

[H2
to obtain two 4–manifolds each with boundary

#g�1
S1 � S2. We may fill in each of the resulting manifolds with boundary with

\g�1S1 �D3 in order to obtain two trisected, closed 4–manifolds.

We will focus on the manifold with trisection spine H˛ [H1
[H2

. This closed 4–
manifold inherits the structure of a .gIg�1;g�k;g�k/–trisection. By Theorem 4.2,
this trisection is a connect sum of genus-1 trisections. In particular, there are curves
l1; : : : ; lg , all bounding disks in H˛ , H1

and H2
, which cut † into g once-punctured

tori and a sphere with g holes. We may also ensure that each of these tori contain one
˛ , 1 and 2 curve, so that in all but one particular torus, the 1 and 2 curves are
identical.

Let ˛0,  0
1

and  0
2

be the three curves on the same punctured torus with  0
1
¤  0

2
.

By virtue of the classification of genus-1 trisections, as well as the fact that  0
1
¤  0

2
,

these three curves either form a diagram for CP2 or for S4. However, if both T1 and
T2 are balanced trisections, the three curves must form CP2, for, otherwise, H˛ [Hˇ

is #k
S1�S2 whereas H˛ [H 0 is #k˙1

S1�S2. After a diffeomorphism, ˛0,  0
1

and  0
2

form the trisection diagram for CP2 shown in Figure 6. From here, it can be
seen that  0

1
and  0

2
are related by a Dehn twist about a curve bounding a disk in H˛ ,

so that after pushing them into H˛ they become isotopic.
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Figure 6: The genus-1 trisections S4 (top-left), S1 �S3 (top-right), CP 2

(bottom-left) and CP 2 (bottom-right)

We may now take a diffeomorphism of the surface and perform handle slides of the
˛ and ˇ curves so that the ˛ and ˇ curves form the standard Heegaard diagram for
#k

S1 �S2. By pushing the g� k 1 and 2 curves dual to ˛ curves into H˛ , and
giving them the surface framing, we obtain framed links L1 and L2 in H˛ [Hˇ .
On page 3104 of [2], it is observed that the Li are the framed attaching links for the
2–handles in a handle decomposition for Mi . Note that g� k � 1 of these curves are
identical, and the final curves have been shown to be isotopic in H˛ , which completes
the argument.

Remark 4.4 The construction of DP .T1;T2/ can be generalized to encompass unbal-
anced trisections where one of the ki agrees on each trisection. We may then mimic the
proof of Theorem 4.3 to study adjacent manifolds represented by unbalanced trisections.
The proof goes through unchanged except that we must also consider the possibility
that ˛0,  0

1
and  0

2
form the unbalanced trisection diagram for S4 shown in Figure 6.

In this case, the  curve parallel to the ˛ curve does not play a role in the induced
Kirby diagram whereas the  curve dual to the ˛ curve manifests itself as a 2–handle.
We may therefore conclude that distance 1 in this more general case corresponds to
either changing a handle framing by 1 (the balanced case) or adding or removing a
2–handle.
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˛i

Figure 7: Resolving a Reidemeister 2 move of the attaching link on the
Heegaard surface

We now seek to prove a partial converse to Theorem 4.3. We begin by understanding
how to obtain a trisection diagram from a Kirby diagram. To do this, we follow the
proof for the existence of trisections given in [2], while taking a little extra care on the
particular diagram constructed. Take a Kirby diagram for M with k1 1–handles and k2

2–handles. The 0– and 1–handles form \k1S1�D3 and have boundary #k1 S1�S2.
We may take a genus-k1 Heegaard splitting for this boundary and draw k1 parallel ˛
and ˇ curves on the surface which bound disks in both handlebodies. Now the framed
attaching link for the 2–handles projects onto the Heegaard surface, with perhaps a
few crossings. Do Reidemeister 1 moves on the link on the surface to make the surface
framing match the handle framing, and do a Reidemeister 2 move on each component
to make sure it has at least one self-crossing. Stabilize the Heegaard surface at each of
the crossings to resolve them, resolving the self-crossings as in Figures 7 and 8. By
construction, for each component of the link Li , we may choose a dual ˛ curve, ˛i ,

l1

l2

l1
l2

˛i

Figure 8: Resolving a Reidemeister 1 move to change the surface framing
of l1 by 1 . Parallel curves such as l2 can be sent over the stabilizing surface
without twisting about ˛i to preserve the surface framing.
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that no other link component intersects. Then we may slide any other ˛ curve j̨ along
Li over ˛i to eliminate any intersections between Li and j̨ .

Embedded on the Heegaard surface, we now see g ˛ curves, g ˇ curves and k2 curves
coming from the attaching link which are dual to k2 ˛ curves and disjoint from the
rest of the ˛ curves. We complete L to the set of  curves by adding in g�k2 curves
parallel to each ˛ curve which does not intersect any component of L. It is clear that
the pairs of curves .˛; ˇ/ and .˛;  / are Heegaard diagrams for the connect sum of
some number of copies of S1�S2. What is left to check is that the same holds for the
pair .ˇ;  /.

The  curves define a handlebody, H . Note that this handlebody is the result of
pushing the  curves dual to ˛ curves into H˛ and performing surface-framed Dehn
surgery on them. But these dual curves come from the attaching link for the 2–handles
of a closed 4–manifold. After attaching 2–handles along these curves pushed into H˛ ,
H˛ becomes H , but Hˇ remains unchanged. Now H and Hˇ form a Heegaard
splitting for the boundary of the 3– and the 4–handles, so that the pair .ˇ;  / is indeed
a Heegaard diagram for some number of copies of S1 �S2. We now have a possibly
unbalanced trisection diagram for M, which we may balance by connect-summing
with the genus-1 unbalanced trisection diagrams for S4.

Theorem 4.5 Let M1 and M2 be nondiffeomorphic 4–manifolds with the same Euler
characteristic which have Kirby diagrams K1 and K2 , respectively. If K1 and K2

only differ in the framing of some 2–handle, where the framing differs by 1, then
DP .M1;M2/D 1.

Proof Let Li be the framed attaching links for Ki and let li be the component
of the Li in which the framing differs. Without loss of generality, suppose that
jfr.l1/j> jfr.l2/j where fr.li/ is the framing of li . Since K1 and K2 have the same
0– and 1–handles, we may project both attaching links onto the Heegaard surface for
the boundary of the union of the 0– and 1–handles. Introduce self-intersections as
previously described to obtain dual ˛ curves, and to make the surface framing match
the handle framing. This results in almost the same immersed curves on the Heegaard
surface, except that l1 has one more kink in it than l2 . Stabilize the Heegaard surface at
all crossings, and, in the extra kink, send l2 over the stabilizing genus without twisting,
so as not to change the framing. See Figure 8 for an illustration of this process.

We must now choose dual ˛ curves for each component of the link in order to eliminate
intersections. Let ˛i be the ˛ curve in the stabilization where l1 and l2 differ. Choose

Algebraic & Geometric Topology, Volume 18 (2018)



1818 Gabriel Islambouli

'

Figure 9: Dehn twisting the sliding arc about the target curve does not change
the isotopy type of slid curve.

˛i to be the ˛ curve dual to both l1 and l2 and choose arbitrary dual ˛ curves for
the rest of the components of the Li . We now claim that eliminating the extra ˛
intersections with Li by sliding curves off over the dual ˛ curves along arcs parallel
to the link components results in identical ˛ curves. Sliding any curve along a link
component which is not l1 or l2 obviously results in the same curve, since we have
constructed these curves to be identical. Moreover, sliding an ˛ curve over ˛i along l1

is isotopic to sliding the ˛ curve over ˛i along l2 , as can be seen in Figure 9.

We now have possibly unbalanced trisection diagrams for M1 and M2 with identical
˛ and ˇ curves. We seek to show that the ki for both of these manifolds are equal,
so that we may connect sum with the same unbalanced trisections of S4 in order to
balance them. It is straightforward to show that a .gI k1; k2; k3/–trisection has Euler
characteristic 2Cg� k1� k2� k3 . First note that both of these trisections have the
same genus. Furthermore, k1 is the number of copies of S1�S2 formed by the ˛ and
ˇ curves, which is clearly the same for both trisections. In addition, k3 comes from
the ˛ and  curves, which we have constructed to be the same in both cases. Finally,
the assumption that M1 and M2 have the same Euler characteristic ensures that these
manifolds have equal k3 , so we may balance these trisections in an identical manner.

Finally, we complete both sets of  curves to pants decompositions of the handlebodies
to finish the argument. To this end, note that l1 and l2 intersect transversely in one
point, so the boundary of a regular neighborhood of the curves bounds a disk in both
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handlebodies. This cuts off a punctured torus containing l1 and l2 . Outside of this
punctured torus, the  handlebodies are identical and so we may complete them to an
arbitrary pants decomposition. The resulting pants decompositions are easily seen to
be 1 apart in the pants complex.

We may also alter the framings of 2–handles by Dehn twisting about a chosen dual ˛
curve which intersects no other component of the attaching link (recall that such curves
may always be created by the introduction of self-crossings in the link component).
The result of repeatedly Dehn twisting a link component about the given ˛ curve
may intersect our original link component many times, however both curves lie in the
punctured torus filled by the ˛ curve and the original link component. In addition,
adding more Dehn twists to the sliding arc in Figure 9 does not change the isotopy
type of the resulting curve, so that we may again eliminate intersections via isotopic
handle slides of the ˛ curves. These are all the essential ingredients to the following
theorem, whose details we leave to the reader.

Theorem 4.6 Let M1 and M2 be nondiffeomorphic 4–manifolds with the same
Euler characteristic which have Kirby diagrams K1 and K2 , respectively. If K1 and
K2 only differ in the framing of some 2–handle, then D.M1;M2/D 1.

5 Complexes of trisections

We next seek to define a collection of graphs associated to trisections. Here, it is useful
to consider the more general case of unbalanced trisections. Fix a surface, †, and two
handlebodies, H˛ and Hˇ , with boundary †, such that H˛[†HˇŠ #k1 S1�S2. We
may identify the first two handlebodies in a .gI k1; k2; k3/–trisection with H˛ [†Hˇ .
The third handlebody then gives rise to some handlebody subset of P .†/. We therefore
have a subcomplex of the pants complex associated to any (possibly unbalanced)
trisection with parameters .gI k1;�;�/. This motivates the following definition:

Definition 5.1 Fix a genus-g surface † and two handlebodies H˛ and Hˇ such that
H˛[†Hˇ Š #k1 S1�S2. Define the .gI k1;�;�/ complex of trisections, P .g; k1/,
to be the full subgraph of the pants complex whose vertices are˚
 2P .†/ j defines H ;H˛[†H Š#k2 S1

�S2 and Hˇ[†H Š#k3 S1
�S2

	
:
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Definition 5.2  2 P .g; k1/ is a representative for a trisection T if  defines H

and H˛ [Hˇ [H is a spine for T . We say T1 and T2 are adjacent in P .g; k1/ if
they have representatives which are adjacent.

Note that a trisection has many representatives in P .g; k1/. Not only are there infinitely
many vertices in the pants complex defining the same handlebody, but multiple different
handlebodies may represent the same trisection. For example, if k1 > 0, there is some
nonseparating curve which bounds disks in both H˛ and Hˇ . A Dehn twist about this
curve will usually change H , but will give rise to a diffeomorphic trisection. More
generally, we could take any element of the mapping class group Mod.H˛ [Hˇ; †/

which does not extend across H to produce similar results.

Lemma 5.3 Let T be a stabilized trisection of M 4. Then there exists a trisection T 0

for M # CP2 such that T and T 0 are adjacent in P .g; k1/.

The proof of the previous lemma is straightforward. We may in fact weaken the
hypothesis that T is stabilized to the condition that T is 2– or 3–stabilized, but the
lemma as stated will be sufficient for our needs. This lemma is useful to us because
4–manifolds can change drastically under connect sums with CP2 and CP2. The
following corollary of Wall’s theorem in [14] makes this precise.

Proposition 5.4 [3, Corollary 9.1.14] Let M1 and M2 be simply connected 4–
manifolds. Then there exist natural numbers l1 , l2 , m1 and m2 such that

M1 # #l1 CP2 # #m1 CP2 and M2 # #l2 CP2 # #m2 CP2

are diffeomorphic.

We are now well-equipped to prove the main proposition of this section.

Proposition 5.5 Let M1 and M2 be simply connected, smooth, closed 4–manifolds.
Then there exist .g; k;�;�/–trisections T1 and T2 for M1 and M2 , respectively,
such that T1 and T2 are in the same connected component of P .g; k/.

Proof Take arbitrary trisections, T1 of M1 and T2 of M2 . Now 1– and 2–stabilize
them so that they have the same genus, g , and the same k1 . We will first calculate
the number of stabilizations needed for the construction. Let l1 , l2 , m1 and m2 be as
in Proposition 5.4. Let aD maxfl1Cm1; l2Cm2g. After 2–stabilizing T1 and T2
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Figure 10: S4 (left) is adjacent to S2 �S2 (right) in P .2; 0/ .

a times, we may change each 2–stabilization into a summand of CP2 or CP2 to obtain
two (possibly different) trisections for the same 4–manifold. By Theorem 1.6, we
may perform some number of balanced stabilizations on the resulting trisections until
they are isotopic. Let b be the number of stabilizations needed to make the resulting
trisections isotopic.

We claim that T
gCaC3b
1

and T
gCaC3b
2

can be connected in P .gC aC 3b; k1C b/.
To see this, observe that, by Lemma 5.3, each 2–stabilization can be changed into
an extra factor of CP2 or CP2 adjacent to T

gCaC3b
1

or T
gCaC3b
2

. Changing each
2–stabilization in T

gCaC3b
1

to the appropriate CP2 or CP2 summand successively
leads to a path to a trisection of M1 # #l1 CP2 # #m1 CP2, which we know to be
diffeomorphic to M2 # #l2 CP2 # #m2 CP2. Moreover, the constructed trisections have
been stabilized enough to become isotopic.

It is especially interesting to know which manifolds are adjacent to S4, for if N is
adjacent to S4, then, for any M, we may stabilize a trisection to get an adjacent trisection
for M # N . It is straightforward to see that S4 is adjacent to CP2, CP2 and S1 �S3.
Furthermore, Figure 10 shows that S4 is also adjacent to S2 �S2. It is tempting to
believe that this is a complete list of manifolds. In light of Remark 4.4, manifolds
adjacent to S4 correspond to starting with some (perhaps very complicated) Kirby
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diagram for S4 and then changing the framing of some 2–handle, or adding/removing
a 2–handle. We conclude with a question:

Question 5.6 Which 4–manifolds are adjacent to S4 ?
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