Volume 18, issue 3 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Divergence of $\mathrm{CAT}(0)$ cube complexes and Coxeter groups

Ivan Levcovitz

Algebraic & Geometric Topology 18 (2018) 1633–1673
Abstract

We provide geometric conditions on a pair of hyperplanes of a CAT(0) cube complex that imply divergence bounds for the cube complex. As an application, we classify all right-angled Coxeter groups with quadratic divergence and show right-angled Coxeter groups cannot exhibit a divergence function between quadratic and cubic. This generalizes a theorem of Dani and Thomas that addressed the class of 2–dimensional right-angled Coxeter groups. As another application, we provide an inductive graph-theoretic criterion on a right-angled Coxeter group’s defining graph which allows us to recognize arbitrary integer degree polynomial divergence for many infinite classes of right-angled Coxeter groups. We also provide similar divergence results for some classes of Coxeter groups that are not right-angled.

Keywords
$\mathrm{CAT}(0)$ cube complex, divergence, Coxeter group, right-angled Coxeter group
Mathematical Subject Classification 2010
Primary: 20F65
Secondary: 20F55, 57M99
References
Publication
Received: 6 March 2017
Revised: 8 January 2018
Accepted: 25 January 2018
Published: 3 April 2018
Authors
Ivan Levcovitz
Department of Mathematics
The Graduate Center, CUNY
New York, NY
United States
http://www.ivanlevcovitz.com