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The double n–space property for contractible n–manifolds

PETER SPARKS

Motivated by a recent paper of Gabai (J. Topol. 4 (2011) 529–534) on the Whitehead
contractible 3–manifold, we investigate contractible manifolds M n which decompose
or split as M nDA[C B with A;B;C �Rn or A;B;C �Bn . Of particular interest
to us is the case nD 4 . Our main results exhibit large collections of 4–manifolds that
split in this manner.

57N13; 57N15

1 Introduction and acknowledgements

Introduction

Our results will generally be in the topological category, but because the spaces involved
are so nice we are able to work in both the piecewise linear and smooth categories in
our effort to obtain them. Rourke and Sanderson [16] is a good source for the piecewise
linear theory we will employ.

Definition 1.1 We will write A[C B to indicate a union A[B with intersection given
by A\B D C . We say a manifold M n splits if M n DA[C B with A;B;C � Bn

or A;B;C � Rn . In the former case we say M splits into closed balls or M is a
closed splitter and write M n D Bn [Bn Bn . In the latter case we say M splits into
open balls or M is an open splitter and write M n DRn[Rn Rn .

We are interested in contractible manifolds M n which are open or closed splitters. We
introduce a 4–manifold M containing a spine, which we call a jester’s hat, that can be
written as A[C B with A;B and C all collapsible. We’ll show that this implies M

is a closed splitter. Using M as a model we obtain a countably infinite collection of
distinct 4–manifolds all of which are closed splitters.

Theorem 1.2 There exists an infinite collection of topologically distinct splittable
compact contractible 4–manifolds. The interiors of these are topologically distinct
contractible splittable open 4–manifolds.
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By combining the above examples with an infinite connected sum operation, we will
then prove the following.

Theorem 1.3 There exists an uncountable collection of contractible open 4–manifolds
which split as R4[R4 R4 .

Our motivation comes from David Gabai’s result [6] that the Whitehead 3–manifold,
Wh3 , splits into open 3–balls:

Wh3
DR3

[R3 R3:

Other terminology in use which is synonymous with open splitting includes double
n–space property and Gabai splitting. Garity, Repovš and Wright [7] have recently
discovered uncountable collections of both 3–dimensional contractible open splitters
and 3–dimensional contractible nonsplitters (see Theorems 2.4 and 2.5).

Acknowledgements Material in this article comes from the author’s PhD thesis, which
was completed at the University of Wisconsin-Milwaukee, under the supervision of
Craig Guilbault.

2 Background and history

2.1 Elementary results

It is clear that the unit ball Bn splits into two “subballs” overlapping in a n–ball.
Likewise, euclidean space splits into two euclidean spaces meeting in a euclidean space.
More generally, we have the following (which was assumed without proof in [9]). A
proof can be found in [17, Proposition 1.2.1].

Proposition 2.1 If M n splits as M n D Bn[Bn Bn , then int M n splits as int M n D

Rn[Rn Rn .

2.2 History and current work

Some classical knowledge about manifold splitting was provided by Glaser.

Theorem 2.2 (a) For each n� 4 there exists a compact contractible PL n–manifold
with boundary, W n, not homeomorphic to Bn , such that W n � Bn[Bn Bn:

(b) For each n� 3 there exist an open contractible n–manifold On , not homeomor-
phic to Rn , such that On �Rn[Rn Rn .
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For the compact case, Glaser shows the existence of a contractible .n�2/–complex
piecewise linearly embedded in Sn which has a nonball regular neighborhood which
splits. The n� 5 case was shown in [9] and the nD 4 case was shown in [10].

For the noncompact n � 4 case he takes the interiors of the compact splitters found
in (a). For the noncompact nD 3 case, Glaser shows that the complement of a certain
embedding of a double Fox–Artin arc in S3 splits and is not an (open) ball [10].

In [6], Gabai asks:

Question 2.3 Is there a reasonable characterization of open contractible 3–manifolds
that are the union of two embedded submanifolds each homeomorphic to R3 and that
intersect in a copy of R3 ?

Renewed interest in this topic, motivated by Gabai’s splitting of the Whitehead manifold
and the resulting question above, has led to the following recent results.

Theorem 2.4 [7] There exist uncountably many distinct contractible 3–manifolds
that are open splitters.

Theorem 2.5 [7] There are uncountably many distinct contractible 3–manifolds that
are not open splitters.

Note 2.6 In dimension 3, the Poincaré conjecture gives that every compact contractible
manifold is homeomorphic to B3 , so the question of closed splitters in this case is
uninteresting.

Earlier work of Ancel and Guilbault [1] and more recent work of Ancel, Guilbault and
Sparks [2] provides a great deal of information about splitters in dimensions greater
than or equal to 5.

Theorem 2.7 If C n .n� 5/ is a compact, contractible n–manifold, then C n splits as
Bn[Bn Bn .

Corollary 2.8 For n� 5,

(1) the interior of every compact contractible n–manifold is an open splitter, and

(2) there are uncountably many nonhomeomorphic n–manifolds which are open
splitters.

Theorem 2.9 For n� 5, every Davis n–manifold is an open splitter.

Algebraic & Geometric Topology, Volume 18 (2018)
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3 The Mazur and jester’s manifolds

3.1 The Mazur manifold

In [14], Barry Mazur described what are now often called Mazur manifolds. Starting
with an S1 �B3 , one adds a 2–handle h.2/ � B2 �B2 along the curve � shown in
Figure 1. That is,

Ma4
ˆ D .S

1
�B3/[ˆ .B

2
�B2/

is a Mazur manifold. Here ˆ is a framing ˆW S1 �B2! T� , where T� is a tubular
neighborhood of � in @.S1 � B3/ and the domain S1 � B2 is the first term in the
union

.S1
�B2/[ .B2

�S1/D @.B2
�B2/:

For each Dehn twist of the S1 � S1 D @.S1 � B2/ sending S1 � p .p 2 S1/ to
a closed curve (that is, an integer number of full twists), there exists a framing ˆ.
Thus the number of framings is infinite. Mazur chose a specific framing ' yielding a
specific manifold, which we’ll denote Ma4 , for which he showed that @Ma4

6� S3 , so
Ma4
6�B4 . The chosen framing corresponds to a parallel copy of � , say � 0D'.S1�p/,

which lies at the “top” (the up direction is perpendicular to the page, toward the viewer)
of S1 �B2 . Thus there are no twists with this framing.

Here we’ll describe our interpretation of his argument for the nontriviality of �1.@Ma4/.
The details of this calculation will play a key role in our proof of Theorem 5.8. Starting
with the link � [ � in S3 pictured in Figure 2, we obtain the corresponding Wirtinger
presentation (see [15, page 56] for a treatment of Wirtinger presentations). This
gives a presentation with exactly one generator for each arc in the link diagram.
These generators correspond to the loops in S3 which start at the viewer’s nose
(the basepoint), travel under the arc, and then return home (to the nose). Thus in
our picture the generators are the xi as pictured. The relators in the presentation

�

Figure 1: � � @.S1 �B3/
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x1

x2

x3

x4x5

x6

x7

x8

x9

�

�

Figure 2: Wirtinger diagram of the Mazur link

correspond to the undercrossings of pairs of arcs. As there are nine undercrossings,
the Wirtinger presentation of this link diagram has nine generators and nine relators:
hx1; : : : ;x9 j r1; : : : ; r9i. We then perform a Dehn drilling on a tubular neighborhood,
N.�/�B2�S1 , of � . That is, we remove int N.�/. Next, we perform a Dehn filling by
sewing in N.�/ backwards (ie sewing in an S1�B2 ) along @N.�/. This Dehn surgery
on S3 � .S1 �B2/[S1�S1 .B2 �S1/ results in an .S1�B2/[S1�@B2 .S1�B2/�

S1�S2 with � embedded as in Figure 1. This surgery exchanges the meridian of N.�/

with the longitude. Thus the group element corresponding to following around � is
killed, and we must add in a relator, say r� D x5x�1

2
x�1

1
D 1, to our presentation to

adjust for this.

Adding a 2–handle along � (and throwing out its portion of the interior of Ma4 ) gives
our @Ma4

D .S1 � S2 � int N.�// [@N.�/ .B
2 � S1/. We describe the gluing of

B2 � S1 in two steps. We first glue in a thickened meridional disc D , which kills
off the curve � 0 to which it is it is attached. Thus to our Wirtinger presentation we
introduce a relator r� D x�1

7
x�1

5
x7x�1

3
x�1

2
x�1

7
D 1. We next glue on the rest of

B2�S1 . The closed complement of D in B2�S1 is a 3–ball and it is attached along
its entire boundary. Adding such does not change the fundamental group and thus
�1.@Ma4/Š hx1; : : : ;x9 j r1; : : : ; r9; r� ; r�i.

Proceeding as in [14], let ˇ D x7 , � D x2 (see Figure 2) and ˛ D ˇ�. Via Tietze
transformations (see [8, page 79] for a treatment of Tietze transformations), it was
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2136 Peter Sparks

shown in [14] that

�1.@Ma4/Š h˛; ˇ j ˇ5
D ˛7; ˇ4

D ˛2ˇ˛2
i;

G WD �1.@Ma4/=ncfˇ5
D 1g Š hˇ; 
 j 
 7

D ˇ5
D .ˇ
 /2 D 1i;

where 
 D ˛2 . We claim G maps nontrivially into the subgroup of the isometries of
the hyperbolic plane generated by reflections in the geodesics containing the edges of
a triangle with angles �

7
, �

5
, and �

2
. That is, there exists a homomorphism

hW G! Isom.H2/

such that Im h can be generated by rotations with centers at the vertices of a triangle
�ABC with angles �

7
, �

5
, and �

2
. Here h.ˇ/D rotation with angle �2�

5
at C and

h.
 /D rotation with angle 2�
7

at A.

We’ll show the relator h..ˇ
 /2/D 1 is satisfied. Let rX Y be reflection in the geodesic
containing X and Y . Then

h.ˇ/D rBC ı rAC and h.
 /D rAC ı rAB;

so that
h.ˇ/h.
 /D rBC ı rAC ı rAC ı rAB D rBC ı rAB:

This last isometry is a rotation at B with angle �� and h.ˇ
 / is shown to have order 2.

This shows Im h is nontrivial. Hence �1.@Ma4/ is nontrivial and thus @Ma4
6� S3 .

We will use the following proposition in Section 5.2.

Proposition 3.1 Let m� be the meridian of the torus @T� . Then m� is nontrivial in
S1 �S2� int.T�/.

Proof We choose x5 as our representative of m� . By the relator

r9 W x1 D x�1
7 x2x7 D ˇ

�1�ˇ D ˇ�1.ˇ�1˛/ˇ

we get x1 D ˇ
�2˛ˇ . By r� W x5 D x1x2 we obtain

x5 D .ˇ
�2˛ˇ/.ˇ�1˛/D ˇ�2˛2

D ˇ�2
:

Thus
h.x5/D h.ˇ�2
 /

D h.ˇ�2/h.
 /

D
�
rotation of 4�

5
at C

��
rotation of 2�

7
at A

�
¤ 1H2 (since A is not fixed).
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Thus x5 is not trivial in @Ma4 . Hence x5 is nontrivial in S1 �S2 � int.T�/. This
concludes the proof of Proposition 3.1.

The following question is still open.

Question 3.2 Does Ma4 split into closed balls?

Question 3.3 Are there infinitely many closed 4–dimensional splitters?

We will answer this question in Section 5.2.

3.2 The jester’s manifolds

As an initial step towards constructing 4–dimensional splitters, we describe a collection
of 4–manifolds similar to Mazur’s. Start with an S1 � B3 and within its S1 � S2

boundary select a curve C as follows. Let T be a tubular neighborhood of C in our
S1 �S2 . We have chosen C so that it is the preimage of the Mazur curve � under
the standard double covering map pW S1 �B3! S1 �B3 ; see Figure 3.

C

Figure 3: C � @.S1 �B3/

Then, given a framing ‰W S1 �B2! T; define

M‰ D .S
1
�B3/[‰ .B

2
�B2/;

where the domain is the S1�B2 factor in the boundary of our 2–handle h.2/�B2�B2 .
We call such an M‰ a jester’s manifold.

(In Section 4, we will expand our definition of jester’s manifold to include analogous
attachments using pseudohandles.)

Remark 3.4 Initially, we had hoped that, by altering the framings, we could prove
the existence of an infinite collection of these jester’s manifolds. Unfortunately, the
group-theoretic calculations proved too complicated. Fortunately, however, we were
able to get around this problem by employing a technique of David Wright’s (see
Section 5.2). We are still interested in the following question.
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Question 3.5 Does there exist a jester’s manifold that is not homeomorphic to a ball?
Are there infinitely many jester’s manifolds?

4 Spines

4.1 Collapses

We borrow our definitions of collapse from [4, pages 3–4, 14–15]. We denote the cone
over a simplicial complex A with cone point a by aA.

Definition 4.1 If K and L are finite simplicial complexes, we say that there is an
elementary simplicial collapse from K to L, and write K&e L, if L is a subcomplex
of K and K D L[ aA, where a is a vertex of K , A and aA are simplexes of K ,
and aA\LD a.@A/. We call such an A a free face of K .

Observe that a free face completely specifies an elementary simplicial collapse.

Definition 4.2 Suppose that .K;L/ is a finite CW pair. Then K&e L — that is, K

collapses to L by an elementary collapse — if and only if

(1) K DL[ en�1[ en where en and en�1 are not in L, and

(2) there exists a ball pair .Qn;Qn�1/� .Bn;Bn�1/ and a map 'W Qn!K such that

(a) ' is a characteristic map for en ,

(b) 'jQn�1 is a characteristic map for en�1 ,

(c) '.Pn�1/�Ln�1 , where Pn�1 � cl.@Qn�Qn�1/.

In both the simplicial and CW cases we define:

Definition 4.3 K collapses to L, denoted K& L, if there is a finite sequence of
elementary collapses

K DK0&
e K1&

e K2&
e
� � � &

e Kl DL:

If K collapses to a point we say K is collapsible and write K& 0.

Definition 4.4 Suppose M is a compact PL manifold. If K is a subcomplex of M

contained in int M with M &K , we say K is a spine of M .

We will make use of the following regular neighborhood theory, due to J H C Whitehead.
The following four results, 4.5–4.8, can be found in [16, pages 40–41].
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Proposition 4.5 Suppose M �M1 are PL n–manifolds with M &M1 . Then there
exists a homeomorphism hW M !M1 .

Theorem 4.6 Suppose X �M , where M is a PL manifold, X is a compact poly-
hedron, and X & Y . Then a regular neighborhood of X in M collapses to a regular
neighborhood of Y in M .

Thus if K is a spine of M then for any regular neighborhood N.K/ of K in M we
have N.K/�M .

Proposition 4.7 If X & 0 then a regular neighborhood of X is a ball.

Corollary 4.8 Suppose M is a manifold with a spine K and K & 0. Then M is
a ball.

Proposition 4.9 Suppose W is a PL manifold and A and B are simplicial complexes
contained in the interior of W . If W &A[B with A;B;A\B& 0, then W splits
into closed balls.

Proof Let A;B , and C be such that W & A[C B with A;B;C & 0. Regular
neighborhoods of collapsible subcomplexes are piecewise linear balls. So, given a
triangulation of W with A and B as subcomplexes, we construct (with respect to this
triangulation) regular neighborhoods NA of A and NB of B and we have that NA

and NB are balls and NA\NB is a regular neighborhood of C , and as such is also
a ball. NA[NB is a regular neighborhood of A[B , a spine of W , so NA[NB is
homeomorphic to W .

4.2 The dunce hat

The dunce hat D is defined as the quotient space obtained by identifying the edges of
a triangular region as pictured in Figure 4.

Figure 4: The dunce hat D
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The dunce hat was one of the first examples of a contractible but not collapsible
simplicial complex. A well-known result by Zeeman is that the Mazur manifold has a
dunce hat spine [20]. That observation will become clear in the following subsection,
when we identify a spine of a slightly more complicated example.

To the best of our knowledge the following question is open.

Question 4.10 Can the dunce hat be expressed as D DA[C B with A;B;C & 0?
If so, the answer to Question 3.2 is yes: Ma4

� B4[B4 B4 .

4.3 The jester’s hat

We define the jester’s hat J to be the quotient space obtained by gluing the hexagonal
region of the plane as in Figure 5. We can also realize this space by attaching a disc to
a circle with the attaching map in Figure 6. Since the attaching map is homotopic to
the identity, J is contractible [12, page 16]. J is not collapsible as it has no free edge.

C

Figure 5: The jester’s hat

Figure 6: Attaching map for J

By cutting J open along the dashed arc in Figure 5, one can see that J can be
decomposed into the union of collapsible subsets intersecting in C , another collapsible
subset:

J DA[C B with A;B;C & 0:
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The interested reader can see [17, pages 17–18] for details.

Proposition 4.11 Every jester’s manifold has a jester’s hat spine.

Proof The proof is analogous to Zeeman’s proof that Mazur’s manifold has a dunce
hat spine [20]. Let M DM‰ be a jester’s manifold for a given framing ‰ . We divide
the S1 of the S1�S2 in which C resides into four arcs I1; I2; I3; I4 so that I1�S2

and I2 �S2 each contain a “clasp” of C (see Figure 7).

I1

I2

Figure 7: Intervals of S1 and their clasps

For i D 1; 2, let fi W S
1! S1 be the map that shrinks Ii to a point, say pi , and is a

homeomorphism on the complement of Ii . Further, let � W S1�S2!S1 be projection
onto the first factor, j W C ,!S1�S2 be the inclusion, g D f1 ıf2 ı� W S

1 �S2! S1

and hDgıj . Let M.g/ and M.h/ be the mapping cylinders of g and h, respectively.
That is,

M.g/D
�
.S1
�S2

� Œ0; 1�/tS1
�
=�g and M.h/D

�
.C � Œ0; 1�/tS1

�
=�h;

where �g and �h are generated by .x; 0/�g g.x/ and .y; 0/�h h.y/, respectively.

The mapping cylinder M.g/ is homeomorphic to S1�B3 [17, page 19]. Since hDgjC ,
M.h/ is a subcylinder of M.g/, and by a result of Whitehead, M.g/&M.h/ [18].
Further, the 2–handle h.2/ viewed as B2�B2 in our construction of M collapses onto
the union of its core with the attaching tube: .B2 � f0g/[ .S1 �B2/: Follow this with
the collapse of M.g/ onto M.h/ to obtain the collapse:

M DS1
�B3
[‰B2

�B2
&S1

�B3
[‰

�
.B2
�f0g/[.S1

�B2/
�
&M.h/[‰jC B2:

But from the illustration of M.h/ (Figure 8) we can see that M.h/[‰jC B2 is our
jester’s hat J .
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C

p1

Figure 8: The mapping cylinder of h

Corollary 4.12 The jester’s manifolds split into closed 4–balls.

Remark 4.13 While we now know that the M‰’s split into closed balls, we have not
demonstrated that any M‰ is not just a ball. To deal with that issue we will modify
the construction.

5 More jester’s manifolds

For this section we let M D M‰ be an arbitrary jester’s manifold. Recall ‰ is
the framing ‰W S1 � B2 ! T and T is a tubular neighborhood of the curve C in
@.S1 �B3/.

5.1 Pseudo-2–handles

Using M as a model, we apply a construction due to Wright to obtain a collection
of manifolds fWig, as follows [19]. To construct Wi , we start with the S1 �B3 of
the jester’s manifold construction and attach a “pseudo-2–handle”, a B4 , along Ki ,
the connected sum of i trefoils in the boundary of B4 , to the curve C in @.S1 �B3/.
(See Figure 9.) That is,

Wi D .S
1
�B3/[‰i

H:

Here ‰i is a homeomorphism from a tubular neighborhood Ti of Ki in @B4 to T .

We define the core of the pseudohandle to be the cone of Ki with cone point the center
of B4 . The core is then a 2–disc whose interior lies in int B4 .

Proposition 5.1 Each Wi collapses to J .
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C
S

K2

Figure 9: The union of S1 �B3 with a degree-2 pseudo-2–handle

Proof The proof that every jester’s manifold collapses to J (Proposition 4.11) goes
through with the pseudo-2–handle collapsing to its core. H collapses to the union
of its core with its attaching tube, defined as ‰i.Ti/. The mapping cylinder M.g/

again collapses to M.h/, with the attaching tube collapsing to the attaching sphere:
‰i.Ki/D C .

Corollary 5.2 Each Wi decomposes as Wi D B4[B4 B4 .

5.2 A theorem of Wright

Applying the following theorem will yield an infinite collection of distinct Wi . Before
we state the theorem we’ll need some definitions.

Definition 5.3 A 3–manifold is irreducible if every embedded S2 bounds a B3 .

Definition 5.4 A torus S in a 3–manifold X is said to be incompressible in X if the
homomorphism �1.S/! �1.X / induced by inclusion is injective.

Definition 5.5 A group G is indecomposable if for all subgroups A;B such that
G �A�B , either AD 1 or B D 1. (That is, G contains no nontrivial free factors.)

Theorem 5.6 [19] Suppose X is a compact 4–manifold which is obtained from the
4–manifold N by adding a 2–handle H . If cl.@X �H / is an orientable irreducible 3–
manifold with incompressible boundary, then there exists a countably infinite collection
of compact 4–manifolds Mi such that

(1) �1.@Mi/© Z and �1.@Mi/ is indecomposable, and

(2) �1.@Mi/© �1.@Mj / for i ¤ j ,

and hence int.Mi/ is not homeomorphic to int.Mj /.
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Wright constructs the infinite collection of manifolds fMig of the theorem as follows.
For each i D 1; 2; : : : he constructs a manifold by attaching to N a pseudo-2–handle
along Ki . From this sequence he exhibits a subsequence fMij g each term of which
has a distinct boundary.

For the proof of the following theorem we’ll employ the loop theorem [15, page 101].

Theorem 5.7 (loop theorem) If X is a 3–manifold with boundary and the induced
inclusion homomorphism �1.@X /! �1.X / has nontrivial kernel, then there exists
an embedding of a disc D in X such that @D lies in @X and represents a nontrivial
element of �1.@X /.

Theorem 5.8 There exists an infinite collection of closed 4–dimensional splitters. The
fundamental groups of their boundaries are distinct, indecomposable, and noncyclic.

Proof We’ll show M meets the hypotheses of Theorem 5.6, thus yielding a sub-
sequence of fWig as our desired collection. Recall T is the tubular neighborhood
of the attaching sphere C in the construction of the jester’s manifold so that @T D
@ cl.@M � h.2//. It suffices to show:

Claim @T is incompressible in cl.@M � h.2//D S1 �S2� int.T /.

We will show that

ker
�
�1.@T /! �1.S

1
�S2

� int.T //
�
D 1:

Recall T� is the tubular neighborhood of the Mazur curve � in the S1�S2 in the con-
struction of the Mazur manifold Ma4 (see Section 3.1). Recall further Proposition 3.1:
Let m� be the meridian of the torus @T� . Then m� is nontrivial in S1�S2� int.T�/.

By construction, .S1 �S2/� int.T / is a double cover of .S1 �S2/� int.T�/. Call
the associated covering map p , and let m be a lift of m� , so m is a meridian of @T .
Then p�.Œm�/D Œm� �¤ 1 gives Œm�¤ 1. Suppose by way of contradiction that there
exists an embedded disc D in .S1 �S2/� int.T / with @D being a nontrivial loop
in @T . Choose a longitude l on @T and let �D Œm� and �D Œl � in �1.@T / so that

Œ@D�D �k�j in �1.@T / for some k; j 2 Z:

As C has algebraic index 1 in S1 �S2 , a nonzero j would imply Œ@D� nontrivial in
�1.S

1�S2� int.T //. Thus Œ@D�D�k . But any loop going around meridionally more
than once and longitudinally not at all will not be embedded. See [17, page 25] for an
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illustration. Then it must be that Œ@D�D Œm�˙1 . Since m is nontrivial in S1�S2�int T ,
such a D cannot exist, and by the loop theorem we conclude that

ker
�
�1.@T /! �1.S

1
�S2

� int.T //
�
D 1:

Definition 5.9 We call any Mi as yielded by the theorem when applied to any M‰ a
jester’s manifold.

Note that for a given knot Ki , different choices of framing homeomorphism potentially
yield different manifolds. So the variety of distinct jester’s manifolds produced by this
construction is potentially much greater than we have shown.

We conclude this section with a restatement of our first main result which we have now
demonstrated.

Theorem 1.2 There exists an infinite collection of topologically distinct splittable
compact contractible 4–manifolds. The interiors of these are topologically distinct
contractible splittable open 4–manifolds.

6 Sums of splitters

In this concluding section, we will exhibit an uncountable collection of contractible
open 4–dimensional splitters. We will do so by considering the interiors of infinite
boundary-connected sums of our jester’s manifolds. These open manifolds can also
be constructed as the connected sum at infinity of the interiors of the same sequence
of manifolds See [3, pages 1807–1813] for a description of connected sum at infinity.
We will demonstrate a splitting for such manifolds, and then, by applying a result of
Curtis and Kwun, we will show that two such sums are topologically distinct if some
jester’s manifold appears more often as a summand in one sum than in the other.

We describe what we mean by the induced orientation of the boundary of an oriented
manifold X n . Given a collar neighborhood of @X which we identify as @X � Œ0; 1�
.@X identified with @X � f0g/ and a map hW Bn�1! @X , we define Nh as

NhW Bn
! @X � .0; 1�; Nh.x1;x2; : : : ;xn/D

�
h.x1;x2; : : : ;xn�1/;

3Cxn

4

�
:

(To be precise, the codomain of Nh should be int X.) If hW Bn�1 ! @X and Nh is a
representative of the orientation of X then the ambient isotopy class of h is the induced
orientation of @X ; see [16, page 45].
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Definition 6.1 Let M n and N n be connected oriented n–manifolds with nonempty
boundaries. Orient @M n and @N n with their induced orientations and let BM and BN

be tame .n�1/–balls in @M n and @N n , respectively. Let �W BM ! BN be an
orientation-reversing homeomorphism. Then M n[�N n is called a boundary connected
sum (BCS) and is denoted M n ˘N n .

Proposition 6.2 [13, page 97] The boundary connected sum is a connected oriented
manifold which, provided Bd M and Bd N are connected, does not depend on the
choices of Bi or �i . Furthermore, the set of connected oriented n–dimensional
manifolds with connected boundaries is, under the operation of connected sum, a
commutative monoid (that is, associative and contains an identity), the identity being Bn.

Definition 6.3 Let fM n
i g

m
iD1

(m possibly 1) be oriented manifolds with nonempty
connected boundaries and for each i D 1; 2; : : : let Bi;L and Bi;R be disjoint tame
.n�1/–balls in @M n

i . For i > 1 let �i W Bi;L! Bi�1;R be an orientation-reversing
homeomorphism. Let �W

F
i>1 Bi;L!

F
i�1 Bi;R with �jBi;L

D�i . Then
�F

Mi

�
=�

is called a boundary connected sum (BCS) and is denoted by M1 ˘M2 ˘ � � � ˘Mm (or
M1 ˘M2 ˘ � � � when mD1/.

Proposition 6.4 Let Bi � Bn . Then

(1) B1 ˘B2 ˘ � � � ˘Bm � Bn , and

(2) B1 ˘B2 ˘ � � � �Rn
C .

Proof Let Bi D Œ�1; 1�n�1 � Œi � 1; i � with Bi;L D Œ�1; 1�n�1 � fi � 1g and Bi;R D

Œ�1; 1�n�1 � fig. Then with each attaching map �i equal to the identity on Bi;L D

Bi�1;R , we have

(1) B1 ˘B2 ˘ � � � ˘Bm D Œ�1; 1�n�1
� Œ0;m�� Bn;

and

(2) B1 ˘B2 ˘ � � � D Œ�1; 1�n�1
� Œ0;1/�Rn

C:

Using this proposition and a proof similar to that of the following theorem, one can
show that any finite boundary connected sum of closed splitters is also a closed splitter.

Theorem 6.5 Suppose that Mi D Ai [Ci
Bi with Ai ;Bi ;Ci � Bn . Then M D

M1 ˘M2 ˘ � � � DA[C B , where A;B;C �Rn
C .

Proof Given MiDAi[Ci
Bi with Ai ;Bi ;Ci�Bn, we can take regular neighborhoods

Algebraic & Geometric Topology, Volume 18 (2018)



The double n–space property for contractible n–manifolds 2147

of Ai and Bi in Mi yielding another splitting A0i [C 0
i
B0i of Mi , this one guaranteed

to have a .n�1/–ball in the boundary of the intersection C 0i . Thus we can assume each
@Ci contains disjoint .n�1/–balls Bi;L and Bi;R . Forming M DM1˘M2˘� � � with
these Bi;L ’s and Bi;R ’s and letting AD

S
i Ai �M , we see that ADA1 ˘A2 ˘ � � � ,

which is Rn
C by Proposition 6.4. Likewise, B DB1 ˘B2 ˘ � � � and C D C1 ˘C2 ˘ � � �

are both halfspaces and M DA[C B .

Proposition 6.6 If M DA[C B with A;B;C �Rn
C , then int M DA0[C 0 B0 with

A0;B0;C 0 �Rn .

This proposition is proved similarly to Proposition 2.1; see [17, Proposition 1.2.1].

The following theorem and a discussion of group systems can be found in [5].

Theorem 6.7 Let M and N be infinite boundary connected sums of compact con-
nected n–manifolds (n� 4) with nonempty connected boundaries. If int M � int N ,
then the corresponding group systems are compatible. In particular, �1.@M / Š

�1.@N /.

We are now ready to prove:

Theorem 1.3 There exists an uncountable collection of contractible open 4–manifolds
which split as R4[R4 R4 .

Proof Given two sequences fMig and fNig of jester’s manifolds such that some
manifold X appears more times in fMig than in fNig, the corresponding group
systems of M DM1˘M2˘� � � and N DN1˘N2˘� � � are incompatible, since jester’s
manifolds have distinct and indecomposable boundary fundamental groups and this
implies the weak limits are not isomorphic:

�1.@M1/��1.@M2/� � � � © �1.@N1/��1.@N2/� � � � :

By Theorem 6.7, int M 6� int N . As there are an uncountable number of ways to form
such boundary connected sums of jester’s manifolds, we have our desired result.

A result of Ancel and Siebenmann states that a Davis manifold generated by C is
homeomorphic to the interior of an alternating boundary connected sum

int.C ˘�C ˘C ˘�C ˘ � � � /:

Here �C is a copy of C with the opposite orientation [11]. We have now proved:

Corollary 6.8 There exist (non-R4 ) 4–dimensional Davis manifold splitters.
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