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Equivariant dendroidal sets

LUÍS ALEXANDRE PEREIRA

We extend the Cisinski–Moerdijk–Weiss theory of 1–operads to the equivariant
setting to obtain a notion of G-1–operads that encode “equivariant operads with
norm maps” up to homotopy. At the root of this work is the identification of a suitable
category of G–trees together with a notion of G–inner horns capable of encoding the
compositions of norm maps.

Additionally, we follow Blumberg and Hill by constructing suitable variants associ-
ated to each of the indexing systems featured in their work.

55U10, 55U35, 55U40; 18G30

1 Introduction

Operads encode a variety of algebraic structures, such as monoids, commutative
monoids or (depending on the ambient category) Lie algebras, En–algebras, etc. Indeed,
all such instances can be regarded as categories of algebras for some (fixed) suitable
operad. Informally, an operad O consists of “sets/spaces of n–ary operations” O.n/,
n � 0, each of which carries a †n–action encoding “reordering the inputs of the
operations”, and a suitable notion of “composition of operations”.

From the homotopy theory point of view, one of the most important classes of operads
is certainly that of the E1–operads, which are “up to homotopy” replacements of
the commutative operad Com. More concretely, while algebras for Com are the
usual commutative monoids, the algebras for an E1–operad are “up to homotopy
commutative monoids”, where associativity and commutativity are only enforced up to
homotopy. Further, E1–operads O are characterized by the property that each space
O.n/ is a contractible space with a free †n–action.

This work lies at the intersection of operad theory and equivariant homotopy theory.
Briefly, in G–equivariant homotopy theory a map of G–spaces X ! Y is considered
a G–weak equivalence only if all the induced fix point maps X H ! Y H, H � G

are weak equivalences. Therefore, it is no surprise that the characterization of G-E1–
operads, ie G–equivariant operads whose algebras are “G–equivariant up to homotopy
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commutative monoids”, would need to be modified. Indeed, a naive first guess might
be that a G–operad O should be called G-E1 if (i) each space O.n/ has a free
†n–action and (ii) O.n/ is G–contractible. Accepting this tentative characterization
for the moment, such a G–operad is easily produced: simply taking a (nonequivariant)
E1–operad and giving it a trivial G–action yields such an example. However, it has
long been known that such “G–trivial E1–operads” are not the correct replacement for
the commutative operad in the equivariant setting; see Costenoble and Waner [9]. To
see why, we consider the much-studied example of R a (strictly) commutative G–ring
spectrum. For a finite G–set T with n elements it is possible to equip R^T 'R^n with
a mixed G–action combining the actions on R and T . One often writes N TR for R^T

together with this action and calls it the Hill–Hopkins–Ravenel norm. Multiplication
then induces norm maps

(1.1) N TR!R

satisfying equivariance and associativity conditions. The flaw of “G–trivial E1–
operads” is then that they lack all norm maps (1.1) with T a nontrivial G–set (or, after
restriction to H �G , with T a nontrivial H–set).

In understanding this issue, note first that though O.n/ has a .G�†n/–action when
O is a G–operad, conditions (i) and (ii) above actually fail to determine a unique
.G�†n/–homotopy type. Indeed, (i) implies that O.n/� D∅ whenever � \†n ¤ �

while (ii) implies that O.n/� � � if � � G , but these conditions leave out many
subgroups � �G �†n . Indeed, there are identifications

(1.2) � such that �\†nD� $ graph of G�H!†n $ H–action on f1; : : : ; ng

and (ii) covers only those � encoding trivial H–actions. The correct characterization
of G-E1–operads is then that (i) O.n/ is †n–free; (ii 0 ) O.n/ is graph-contractible;
ie O.n/� � � for any � �G �†n such that � \†n D �.

A key observation of Blumberg and Hill in [2] is that the reason a “G–trivial E1–
operad” induces only the norm maps for trivial sets is that it satisfies (ii 0 ) only for
those � encoding trivial sets. Indeed, their work takes this observation much further.
Motivated by the study of equivariant spectra in incomplete universes, they define
a whole lattice of types of G–operads, which they dub N1–operads, and which
satisfy (ii 0 ) only for � encoding H–sets within certain special families. Further, they
call such special families indexing systems. “G–trivial E1” and G-E1 are then the
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minimum and maximum types of N1–operads, with the remaining types interpolating
in between.

The motivation for this paper (and the larger project it belongs to) is the observa-
tion that the closure conditions for the H–sets in an indexing system identified in
[2, Definition 3.22] admit a nice diagrammatic interpretation (discussed in Section 9)
and that this suggests the possibility of encoding equivariant operads with norm maps
(ie with operations in O.n/� ) via suitable diagrammatic models.

Indeed, it is well known that composition of operations in an operad can be encoded
using tree diagrams, and work of Moerdijk and Weiss in [17], with follow-up work of
Cisinski and Moerdijk in [5], builds a category � of trees and a model structure on the
presheaf category dSetD Set�

op
which is shown in the follow-up papers [6] and [7] to

be Quillen equivalent to the category of colored simplicial operads.

The role of this paper is to provide the equivariant analogue of the work in [17] and [5].
We first identify a (nonobvious) category �G of G–trees (introduced in Section 4.3 and
formally defined in Section 5.3) capable of encoding norm maps and their compositions,
and then adapt the proofs in [17] and [5] to prove the existence of a model structure
on dSetG whose fibrant objects, which we call G-1–operads, are “up to homotopy
G–operads with norm maps”. We note that our results are not formal: indeed, while our
proofs closely follow those in [17] and [5] the presence of equivariance often requires
significant modifications. Moreover, we note that alternative so called “genuine” model
structures on dSetG built by formal methods (say, by mimicking the definition of
the genuine model structure on TopG ) would instead only model G–operads without
nontrivial norm maps.

Acknowledgements
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is at the root of this paper, is a joint discovery with him; the author first heard of the
notion of broad posets (due to Weiss) from him; and lastly, this work has also greatly
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2 Main results

Our main result follows. It is the equivariant analogue of [5, Theorem 2.4].
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Theorem 2.1 There exists a model structure on dSetG such that

� the cofibrations are the G–normal monomorphisms;

� the fibrant objects are the G-1–operads;

� the weak equivalences are the smallest class that contains the G–inner anodyne
extensions and the trivial fibrations and is closed under “2-out-of-3”.

Theorem 2.1 will be proven as the combination of Proposition 8.8, Theorem 8.22 and
Corollary 8.23.

Further, letting F denote an indexing system (see [2, Definition 3.22], and as reinter-
preted in Definition 9.5), we also prove the following more general result.

Theorem 2.2 For F a weak indexing system there exists a model structure on dSetG

such that

� the cofibrations are the F–normal monomorphisms;

� the fibrant objects are the F-1–operads;

� the weak equivalences are the smallest class that contains the F–inner anodyne
extensions and the F–trivial fibrations and is closed under “2-out-of-3”.

Theorem 2.2 is proven at the end of Section 9.

Remark 2.3 In the special case where F is the indexing system containing only the
trivial H–sets, the model structure given by Theorem 2.2 coincides with the “formal
genuine model structure” as built using [18, Proposition 2.6] (for the collection of all
subgroups H �G ). However, this is not the case for either Theorem 2.1 or indeed the
vast majority of instances of Theorem 2.2, which are not formal consequences of the
existence of the model structure on dSet.

3 Outline

After reviewing the familiar types of trees found elsewhere in the literature (eg [16;
17; 5], among others), Section 4 provides an introductory look at the new equivariant
trees that motivate this paper, focusing on examples. Most notably, each G–tree can be
represented by two distinctly shaped tree diagrams, called the expanded and orbital
representations, each capturing different key features.

Section 5 lays the necessary framework for our work. Specifically, Section 5.1 recalls
Weiss’s algebraic broad poset model [19] for the category � of trees, which we prefer
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since planar representations of G–trees can easily get prohibitively large. Section 5.2
discusses forests, which play an auxiliary role. Section 5.3 formally introduces the
category �G of G–trees. Lastly, Section 5.4 introduces all the necessary presheaf
categories, most notably the category dSetG featured in Theorems 2.1 and 2.2.

Section 6 discusses the notions of G–normal monomorphism and G-1–operad needed
to state Theorem 2.1. The former of these is straightforward, but the latter requires the
key (and more subtle) notion of G–inner horn (Definition 6.11).

Section 7 is the technical heart of the paper, extending the key technical results [17,
Proposition 9.2] and [5, Theorems 5.2 and 4.2] concerning tensor products of dendroidal
sets and the dendroidal join to the equivariant setting (Theorems 7.1, 7.2 and 7.4).

Section 8 then finishes the proof of Theorem 2.1 by combining the results of Section 7
with the arguments in the proof of the original nonequivariant result [5, Theorem 2.4].

Finally, Section 9 proves Theorem 2.2 by straightforward generalizations of our argu-
ments to the framework of general indexing systems.

4 An introduction to equivariant trees

4.1 Planar trees

Operads are a tool for studying various types of algebraic structures that possess
operations of several arities. More concretely, an operad O consists of a sequence of
sets (or, more importantly to us, spaces/simplicial sets) O.n/, n� 0, which behave as
sets (spaces/simplicial sets) of n–ary operations. That is, one should have composition
product maps (see [15, Definition 1.1] or [10, Definition 1.4])

(4.1)
O.k/�O.n1/� � � � �O.nk/

ı
�!O.n1C � � �C nk/;

.';  1; : : : ;  k/ 7�! '. 1; : : : ;  k/;

and an identity id 2O.1/ satisfying suitable associativity and unital conditions.

A powerful tool for visualizing operadic compositions and their compatibilities is given
by tree diagrams. For instance, the tree

'

 3 2 1
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encodes the composition of operations '2O.3/,  12O.2/,  22O.3/ and  32O.0/,
and one has '. 1;  2;  3/ 2 O.5/, with arity of the composite given by counting
leaves (ie the edges at the top of the tree, not capped by a circle).

Alternatively, given the presence of the identity id 2 O.1/, one can instead define
operads using so called partial composition products [14, Definition 1.16]

O.k/�O.n/ ıi�!O.nC k � 1/;

.';  / 7�! '.id; : : : ; id;  ; id; : : : ; id/;

which are also readily visualized using trees. For example,

(4.2)
'

3

 

2
1

encodes the partial composition ' ı2  D '.id;  ; id/.

Heuristically, trees encoding iterations of ı are naturally tiered whereas trees encoding
iterations of ıi operations are not, as exemplified by the following:

In the leftmost tree, encoding an iterated composition of ı, all leaves appear at the
same height and the operations, encoded by nodes (ie the circles) are naturally divided
into levels. On the other hand, this fails for the rightmost tree, which encodes iterated
compositions of ıi . Indeed, while the definition ' ıi  D '.id; : : : ; id;  ; id; : : : ; id/
would allow us to convert the rightmost tree into a tiered tree by inserting nodes labeled
by id, there are multiple ways to do so (indeed, the leftmost tree represents one such
possibility).

In practice, trees of the second type seem to be the most convenient and we will
henceforth work only with such trees.
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4.2 Symmetric trees

The (planar) tree notation just described is suitable for working with so-called “non-†
operads”. In many applications, however, operads possess an additional piece of
structure: each set (space/simplicial set) O.n/ has a left action of the symmetric
group †n . Heuristically, the role of this action is to “change the order of the inputs
of an operation”: thinking of ' 2 O.n/ as an operation x1; : : : ;xn 7! '.x1; : : : ;xn/

and letting � 2†n , then �' 2O.n/ would correspond to the operation x1; : : : ;xn 7!

'.x�.1/; : : : ;x�.n//.

When representing compositions on a (symmetric) operad, it thus becomes convenient
to think of the edges above a node, which represent the inputs for the operation labeling
the node, as not having a fixed order. One immediate drawback of this perspective,
however, is that drawing a planar representation of such a tree on paper necessarily
requires choosing an (arbitrary) order for the input edges of every node. Therefore, it
is possible for different planar representations to encode the exact same information.
For example, the pictures

(4.3)

'

�

b

c3

c2
 

a2a1

c1

r
.123/'

c2

.12/ 

a1a2

c1

�

b

c3

r

display two planar representations of the same tree that encode the same composition
data. To explain why, we first point out that a1 , a2 , b , c1 , c2 , c3 are simply the names
of the edges of the tree (needed so as to distinguish different representations of the tree
in the plane), by contrast with  , �, .123/' , etc, which are operations in O . Next,
for a finite set S of size n, denote

�
Iso.f1; : : : ; ng;S/�O.n/

�
†n

by O.S/, where the
orbits .�/†n

are defined using the diagonal action, acting on the Iso.f1; : : : ; ng;S/

component by precomposition with the inverse. Note that though O.S/ is of course
isomorphic to O.n/, the isomorphism is not canonical, depending on the choice of an
isomorphism f1; : : : ; ng '�!S . With this convention, both trees in (4.3) represent the
same instance of a composition

O.fc1; c2; c3g/�O.fa1; a2g/�O.fbg/
.�/ıc1

.�/ıc3
.�/

�����������!O.fa1; a2; c2; bg/:

The reason for the differing labels on the nodes of the trees is then that different planar
representations correspond to different choices of isomorphisms f1; : : : ; ng '�! S .
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For example, the leftmost tree uses the identification f1; 2; 3g ' fc1; c2; c3g while
the rightmost tree uses f1; 2; 3g ' fc3; c1; c2g, so that, for example, the classes
Œ.f1; 2; 3g '�!fc1; c2; c3g; '/� and Œ.f1; 2; 3g '�!fc3; c1; c2g; .123/'/� are in fact the
same element of O.c1; c2; c3/.

For reasons to become apparent when we discuss how to encode compositions in
equivariant operads using equivariant trees, the fact that the labels in (4.3) change
depending on the planar representation is rather inconvenient. Since the source of the
problem is the use of noncanonical isomorphisms O.S/'O.jS j/, an easy solution
is to use labels in O.S/ instead. Thus, denoting by Œ � 2O.fa1; a2g/, Œ�� 2O.fbg/,
Œ'� 2O.fc1; c2; c3g/ the classes of the operations in the leftmost tree in (4.3), the same
information could then be instead encoded by labeling both trees with the common
labels Œ'�, Œ �, Œ��. In what follows, we refer to labels of the form ' 2 O.n/ as
coordinate-dependent labels and to Œ'� 2O.S/ labels as coordinate-free labels.

Additionally, an important feature of symmetric trees not present in planar trees is that
they have nontrivial “automorphism groups”. For example, the tree

has automorphism group isomorphic to the wreath product †3 o†2 D†3 Ë .†2/
�3 .

Remark 4.4 An alternative and more rigorous perspective on (4.3) is provided by
[16, Section 3], where it is explained that any tree T has an associated colored operad
�.T /. Briefly, colored operads generalize operads much in the way that categories
generalize monoids: each colored operad O has a collection of objects, morphism sets
O.bI a/ for an ordered tuple of source objects bD b1; : : : ; bn and target object a, units
ida 2O.aI a/, compositions

O.b1; : : : ; bnI a/�O.c1I b1/� � � � �O.cnI bn/
ı
�!O.c1; : : : ; cnI a/;

and isomorphisms O.b1; : : : ; bnI a/
���!O.b��1.1/; : : : ; b��1.n/I a/ for each � 2 †n

satisfying natural associativity, unitality and symmetry conditions. Note that regular
operads are then “colored operads with a single color”.

�.T / is then the colored operad with objects the set of edges of T and freely generated
by morphisms associated to each node. Explicitly, for the tree in (4.3) these generators
are (unique) morphisms a1a2! c1 , b! c3 and c1c2c3! d if using the leftmost
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planar representation, or generators a2a1! c1 , b! c3 and c3c1c2! d if using the
rightmost planar representation (that the two descriptions coincide follows from the
symmetry isomorphisms).

Equation (4.3) is then a diagrammatic representation of a morphism �.T / ! O ,
between the colored operad �.T / and the regular operad O , with the node labels
being the image of the associated generators of �.T /.

4.3 Equivariant trees

Throughout the following we fix a finite group G and the term operad will now
refer to an operad O together with a left G–action compatible will all the structure.
Notably, O.n/ now has a .G�†n/–action, so that from an equivariant homotopy theory
perspective it is natural to consider fixed points O.n/� for � �G �†n . On the other
hand, since operad theory often focuses on †–cofibrant operads (ie such that O.n/ is
†n–free), it is natural to focus attention on � such that � \†n D �, since for such O
we have that O.n/� D∅ otherwise. The key identifications

� such that �\†nD� $ graph of G�H!†n $ action of H �G on f1; : : : ; ng

then hint at a deep connection between G–operads and H–sets that is at the core
of Blumberg and Hill’s work in [2]. Briefly, to each †–cofibrant G–operad O they
associate the family of those � such that O.n/� ¤∅ and, in turn, the family of the
corresponding H–sets, H �G [2, Definition 4.5]. They then show that such families
satisfy a number of novel closure conditions [2, Lemmas 4.10, 4.11, 4.12, 4.15], and
dub such a family an indexing system [2, Definition 3.22]. Moreover, analyzing their
proofs one sees that the key idea is that carefully chosen fixed-point conditions on
the source of the composition (4.1) induce fixed-point conditions on its target (for an
explicit example, see (4.11) below).

The discovery of equivariant trees was the result of an attempt to encode the closure
conditions of Blumberg and Hill diagrammatically, and we provide more details on
how that works in Section 9. For now, however, we focus on examples.

As a first guess, one might attempt to define G–trees simply as symmetric trees together
with a G–action (using the automorphisms mentioned in the previous section). As it
turns out, such “trees with a G–action” are only a part of what is required, though we
will choose such trees as our first examples.
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Example 4.5 Let G D Z=4 . The following are two equivalent representations of a
symmetric tree T with a G–action:

T

cC 1

aC 3aC 1

bC 1

aC 2a

b

c

d

T

aCG=4G

bCG=2GcCG=2G

d CG=G

The leftmost representation, which we call the expanded representation, is simply a
planar representation of the corresponding equivariant tree, together with a naming
convention for the edges that reflects the G–action. More concretely, 1 2 G acts on
the tree by sending a to aC 1, aC 1 to aC 2, b to bC 1, etc (note that implicitly
bC 2D b , cC 2D c , d C 1D d ).

The rightmost representation, which we call the orbital representation, is obtained from
the expanded representation by “identifying edges that lie in the same G–orbit” and then
labeling the corresponding “edge orbit” by the G–set of the edges corresponding to it.

Example 4.6 Let G DD6D fe; r; r
2; r3; r4; r5; s; sr; sr2; sr3; sr4; sr5g denote the

hexagonal dihedral group with generators r and s such that r6D e , s2D e , s rsD r5 .

Letting H1 � H2 � H3 denote the subgroups H1 D hr
2; si, H2 D hsi, H3 D feg,

one has the following representations of a tree T with G–action:

T

srar5a

r5b

sr3ar3a

r3b

sr5ara

rb

rc

sr2ar4a

r4b

sr4ar2a

r2b

saa

b

c

d

T

.G=H3/ � a

.G=H2/ � b

.G=H1/ � c

.G=G/ � d

We note that it is implicit in the orbital representation that, for example, the assignment
b 7! c defines a G–set map .G=H2/ � b! .G=H1/ � c (ie H1 �H2 ).

We can now ask what the analogue of the node labels in (4.2) are for such G–trees. For
example, for G D Z=4 consider the label ' in the leftmost expanded representation of
the following equivariant corolla (ie tree with a single node):
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(4.7)

C

'

cC 1

bC 1b

c

d

C

Œ'�

bCG=2G
cCG=2G

d CG=G

An immediate answer is provided by Remark 4.4: indeed, the corolla C with a G–action
will generate a colored operad �.C / with a G–action, so that (4.7) should encode a G–
equivariant map �.C /!O . Unpacking this observation, one should have ' 2O.4/,
but an additional equivariance condition is to be expected. To make this explicit, note
first that there are left actions of both G and †4 on the set of all morphisms of �.C /
and that these actions commute, assembling to an action of G �†4 . As concrete
examples, 12Z=4 sends the morphism cb.bC1/.cC1/! d to .cC1/.bC1/bc! d

while .124/ 2†4 sends cb.bC1/.cC1/! d to .cC1/c.bC1/b! d . Further, one
can readily check that the .G�†4/–isotropy of the morphism cb.bC 1/.cC 1/! d

is precisely the subgroup �fc;b;bC1;cC1g given by the graph of the homomorphism
G ! †4 encoding the G–set fc; b; bC 1; cC 1g. And since ' is the image of that
morphism, we get the sought condition ' 2O.4/�fc;b;bC1;cC1g .

We now turn our attention to the orbital representation of C on the right side of (4.7),
which is often preferable both for conceptual reasons and compactness. Writing
S D fb; c; bC 1; cC 1g, our node label is now the coordinate-free label Œ'� 2 O.S/
(indeed, a label in O.4/ can not be used since the orbital notation provides no ordering
of S ). Further, O.S/ now has two commuting G–actions, one induced by the structural
G–action on O and one induced by the G–action on S . Referring to the combined
diagonal G–action as the canonical G–action, the equivariance condition is now
straightforward: it is simply Œ'� 2O.S/G .

It seems helpful to make the equivalence between the previous two paragraphs explicit.
The homomorphism �W G!†S encoding S induces a semidirect product GË†S with
multiplication .g; �/.xg; x�/D .gxg; ��.g/x��.g/�1/. The semidirect product G Ë†S

naturally acts on S with the action of .g; �/ given by ��.g/ and on O.S/ with
action given by �g (where � 2 †S acts via symmetries and g 2 G acts via the
canonical action). The isomorphism � W fc; b; bC1; cC1g '�!f1; 2; 3; 4g then induces
an isomorphism ��W G Ë†S

'
�!G �†4 via ��.g; �/ D .g; ���.g/��1/. That the

previous two paragraphs are equivalent is then simply the observation that �� sends
the subgroup G � G Ë†S to �fc;b;bC1;cC1g � G �†4 , ie that the graph subgroup
encodes the canonical action when in coordinate-dependent notation.
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Now that we know that corollas with G–actions encode operations fixed by graphs of
full homomorphisms G!†n , we turn to the question of how to encode operations
fixed by graphs of partial homomorphisms G �H !†n . A natural first guess might
be that this role is played by corollas with an H–action. However, due to the lack of
full G–actions this would not quite provide the necessary maps for the category �G of
G–trees that we introduce in Section 5.3. The solution is both simple and surprising:
one simply “induces a tree with an H–action into a G–object”. We start with an
example where H D �.

Example 4.8 Let G D Z=3 . The equivariant corolla C with orbital representation
given on the right

c

b

a

d

cC1

bC1

aC1

dC1

cC2

bC2

aC2

dC2

cCG=3G

bCG=3G

aCG=3G

dCG=3G

C
C

has expanded representation given by the union of the three (nonequivariant) corollas
on the left. For clarity, we stress that we refer to the three trees on the left together as a
forming a single Z=3–tree. The legitimacy of this nomenclature is born out of the role
such G–trees play in the theory, though for now we simply point out that at least the
orbital representation is an “honest” tree (for further discussion, see Section 5.3).

A map �.C /!O is then determined by the image of the morphism abc! d , and
hence by an arbitrary operation Œ'�2O.fa; b; cg/'O.3/, which determines operations
Œ'�C 1 2O.faC 1; bC 1; cC 1g/ and Œ'�C 2 2O.faC 2; bC 2; cC 2g/.

Example 4.9 Keeping G D D6 and H1;H2;H3 as in Example 4.6, removing the
root orbit (ie bottom orbit) from the G–tree T therein yields the D6–tree

(4.10)

srar5a

r5b

sr3ar3a

r3b

sr5ara

rb

rc

sr2ar4a

r4b

sr4ar2a

r2b

saa

b

c

.G=H3/ � a

.G=H2/ � b

.G=H1/ � c

S S

We end this introduction by illustrating the kind of compositions that G–trees encode.
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Taking the D6–tree S from Example 4.9, a map �.S/!O leads to node labels

r'

r5 
r3 

r 

'

r4 
r2 

 

a

b

c Œ'�

Œ �

.G=H3/ � a

.G=H2/ � b

.G=H1/ � c

where Œ � 2 O..H2=H3/ � a/
H2 and Œ'� 2 O..H1=H2/ � b/

H1 . We note that in par-
ticular r Œ'� 2 O.r.H1=H2/r

�1 � rb/rH1r�1

D O..H r
1
=H r

2
/ � rb/H

r
1 and likewise for

r ; r2 ; : : : ; r5 , so that we are adopting the convention that labels in the orbital
notation are chosen according to the edge orbit generators a; b; c .

Further unpacking the map �.S/ ! O , we see that S encodes the fact that the
composition product

O.H1=H2/�
Y

Œh�2H1=H2

O.H h
2 =H

h
3 /!O.H1=H3/

restricts to

(4.11) O.H1=H2/
H1 �

� Y
Œh�2H1=H2

O.H h
2 =H

h
3 /

H h
2

�H1

!O.H1=H3/
H1

or, using that
�Q

Œh�2H1=H2
O.H h

2
=H h

3
/H

h
2

�H1
'O.H2=H3/

H2 , simply

O.H1=H2/
H1 �O.H2=H3/

H2 !O.H1=H3/
H1 :

5 Categories of trees and forests

In this section we introduce the several categories of trees, forests and presheaves we
will be working with. We will make heavy use of the broad poset framework introduced
by Weiss in [19], which provides an algebraically flavored model for the category � of
trees (see [16; 17; 5; 11], among others). We will find this particularly convenient since,
when using tree diagrams as in Section 4.3, representative examples of equivariant
trees are typically quite large.

5.1 Broad posets and the category of trees

We start by recalling the key notions in [19] and establishing some basic results.

Given a set T we denote by TC the free abelian monoid generated by T . Elements
of TC will be written in tuple notation, such as e D e1e3e1e2 D e1e1e2e3 2 TC
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for e1; e2; e3 2 T . We will also write ei 2 e whenever ei is a “letter” appearing in e ,
f � e if f g D e for some g 2 TC , and denote the “empty tuple” of TC by � .

Definition 5.1 A (commutative) broad poset structure [19, Definition 3.2] on T is a
relation � on TC , T (ie a subset of TC �T ) satisfying the following conditions:

� Reflexivity e � e (for e 2 T ).

� Antisymmetry If e � f and f � e , then e D f (for e; f 2 T ).

� Broad transitivity If f1f2 � � � fn D f � e and gi � fi , then g1 � � �gn � e

(for e; fi 2 T and f ;gi 2 TC ).

Remark 5.2 Omitting antisymmetry yields the notion of a prebroad poset.

Since the main examples of broad posets are induced by constructions involving trees,
we will refer to the elements of a broad poset as its edges.

Definition 5.3 A broad poset P is called simple if for any broad relation e1 � � � en � e

one has ei D ej only if i D j .

Notation 5.4 A broad poset structure � on T naturally induces the following preorder
relations on T and TC :

� For f; e 2 T we say that f is a descendant of e , written f �d e , if there exists
a broad relation f � e such that f 2 f .

� For f ; e 2 TC , we write f � e if it is possible to write f D f 1 � � � f k and
e D e1 � � � ek such that f i � ei for i D 1; : : : ; k .

Remark 5.5 Generally, these preorders can be fairly counterintuitive. For example, it
is possible to have ab � a, or even both aa� a and a� aa simultaneously. The case
of simple broad posets, however, is much simpler.

Proposition 5.6 Let T be a simple broad poset. Then �d (resp. �) is an order relation
on T (resp. on TC ). Further, if f1 � � � fk � e then the fi are �d–incomparable (in
particular, ef � e only if f D � ).

Proof The “further” part is immediate: if two fi were �d–comparable then broad
transitivity would produce a nonsimple broad relation.

To see that �d satisfies antisymmetry, note that if e0f � e and eg� e0 , then egf � e ,
so it must be that g D f D � and the antisymmetry of � on T implies e D e0 .
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Finally, we show antisymmetry of � on TC by induction on the size of the tuple e in
a pair of relations f � e and e � f . The eD � case is immediate. Otherwise let e 2 e

be �d–maximal and choose eg� e and f 2 f such that eg � f and choose hf � f

and e0 2 e such that hf � e0 . Then e �d f �d e0 and by �d–maximality of e it must
hold that e D f D e0 and hence, by the “further” claim, also that g D � D h. And
since this must hold regardless of how f , e0 , g , h are chosen, one concludes that,
writing e D ee0 and f D ef 0 , it must in fact also hold that e0 � f 0 and f 0 � e0 ; thus
the induction hypothesis applies.

Definition 5.7 An edge e 2 T is called

� a leaf if there are no f 2 TC such that f < e (ie f � e and f ¤ e );

� a node if there is a nonempty maximum f ¤ � such that f < e ;

� a stump if f D � is the maximum (in fact, only) f such that f < e .

Further, in either the node or stump case the maximum such f is denoted by e" .

Remark 5.8 While it is customary to regard stumps simply as a type of node, we will
find it convenient, in light of Proposition 7.15 and Lemma 7.22, to separate the two
cases.

The following definition is the key purpose of [19].

Definition 5.9 A dendroidally ordered set is a finite simple broad poset T satisfying
the following additional conditions:

� Nodal condition Each edge e 2 T is either a leaf, a node or a stump.

� Root condition There is a maximum rT 2 T for �d , called the root of T .

Weiss proves in [19] that the category of dendroidally ordered sets (together with the
obvious notion of monotonous function) is equivalent to the category � of trees (see
[16; 17; 5; 11] etc). As such, we will henceforth refer to dendroidally ordered sets
simply as trees and use them as our model for �.

Example 5.10 The tree diagram

dc

g
f

ba

e

r
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represents a broad poset structure on fa; b; c; d; e; f;g; rg. The nodes represent gener-
ating broad relations � � b , ab � e , � � f , cd � g and efg � r with the other broad
relations, such as afcd � r , obtained by “composition” (ie using broad transitivity).
Note that, alternatively, one can also write b" D � , e" D ab , f " D � , g" D cd

and r" D efg to denote the generating broad relations.

We will make use of the following basic results.

Proposition 5.11 Let T be a tree and A any broad poset. A set map 'W T !A is a
broad poset map if and only if '.e"/� '.e/ for each node/stump e 2 T .

In particular, the broad relations of T are generated by the e" � e relations.

Proof Since for any nonidentity relation f < e one has f � e" < e , one can write
e" D e1 � � � ek and f D f 1 � � � f k so that f i � ei (k D 0 is allowed, in which case
e" D f D � ), so the result follows by �d induction on e .

The “in particular” claim follows from the identity map idT W T ! zT , where zT has
the broad poset structure generated by the e" � e .

Lemma 5.12 Let T be a tree. For any e 2 T there exists a minimum e� 2 TC such
that e� � e . In fact, e� D l1 � � � lk consists of those leaves li such that li �d e .

Further, a broad relation f D f1 � � � fn � e holds if and only if fi �d e , the fi

are �d–incomparable and f �
1
� � � f �n D e� .

Proof The proof is by �d induction on e . The leaf case is obvious. Otherwise, let
f � e" < e be any nonidentity relation and write e" D e1 � � � ek and f D f 1 � � � f k

so that f i � ei (k D 0 is allowed). By induction, e�i � f i � ei where e�i consists of
the leaves l such that l �d ei and hence indeed we have that e� D e�

1
� � � e�

k
� f .

Only the “if” half of the “further” statement needs proof. We use the same induction
argument: incomparability yields e 62 f provided f ¤ e and, writing e" D e1 � � � ek

and f D f 1 � � � f k so that s 2 f i if and only if s �d ei , the induction hypothesis
applies.

Example 5.13 In Example 5.10, e� D a, g� D cd , f � D � and r� D acd .

We now discuss a key operation on trees: grafting. We recall that � denotes the tree
with a single edge, also denoted by �, and only the identity relation �� �.
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Definition 5.14 Let T;U 2� be trees and let v denote both a leaf vW �! T and the
root vW �! U . The grafting T qv U is the pushout (of prebroad posets):

� U

T T qv U

v

v

Proposition 5.15 T qv U is a tree.

Proof The underlying set of T qv U is the underlying coproduct and the broad
relations are easily seen to come in three types: (i) t � t , a relation in T ; (ii) u� u,
a relation in U ; (iii) tu � t whenever both tv � t in T and u � v in U . The
antisymmetry, simple, nodal and root conditions are straightforward.

Remark 5.16 More generally, letting vD v1 � � � vn denote both a tuple of leaves of T

and the roots vi 2Ui we similarly define a grafted tree Tqv .U1q� � �qUn/. Explicitly,
its broad relations have the form (i) t � t , a relation in T ; (ii) u � u, a relation in
some Ui ; (iii) tuk1

� � �ukp
� t whenever fkig � f1; : : : ; ng and both tvk1

� � � vkp
� t

in T and uki
� vki

in Ui .

Example 5.17 A tree representation of the grafting procedure follows:

(5.18)

T qv .U1qU2qU3/

v3
v2

v1

T

v3
v2

v1

U1

v1

U2

v2

U3

v3

We will also find it useful to be able to reverse the grafting procedure.

For any tree T and edge e 2 T we will let T �e denote the prebroad poset with set
ff 2 T j f �d eg and the generating relations f " � f for f �d e .

Similarly, for a �d–incomparable tuple e D e1 � � � en we will let T<=e denote the
prebroad poset with set ff 2 T j f <= d ei for all ig and the generating relations
f " � f for f satisfying f <=d ei and f ¤ ei for all i . Note that by incomparability
we have that ei 2 T<=e .
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Proposition 5.19 T �e and T<=e are trees. Hence, for any �d–incomparable tuple
e D e1 � � � en , one has

(5.20) T ' T<=eqe .T
�e1q� � �qT �en/:

Proof In both cases antisymmetry and simplicity are inherited from T . Further, since
any string f1 �d f2 �d � � � �d fn in T (note that we can assume the �d are induced
by generating relations) where f1; fn 2 T �e (resp. f1; fn 2 T<=e ) is a string in T �e

(resp. T<=e ), the nodal and root conditions also follow.

Equation (5.20) follows from the “in particular” claim in Proposition 5.11.

Example 5.21 Denoting by V the rightmost tree in (5.18), one has Ui D V �vi

and T D V<=v . We note here a pictorial mnemonic for our index/exponent notation:
V �vi denotes an “upper subtree” of V while V<=v denotes a “lower subtree”.

Remark 5.22 The leaves of T<=e consist of the edges ei 2 e together with the leaves
of T not in e� , ie those leaves �d–incomparable with the ei 2 e .

Corollary 5.23 Let U
'
! T be a map in � and let r be the root and l be the leaf

tuple of U . Then ' naturally factors as U ! T
�'.r/

<='.l/
,! T .

Proof By the “in particular” claim in Proposition 5.11 it suffices to check that any
relation e �T e in T is a relation in T �e

<=e
. Since the root of T �e

<=e
is e and the leaf

tuple is e , this follows by Lemma 5.12.

Lemma 5.24 Let T be a tree and e a tuple of �d–incomparable edges of T . Then,
letting r be the root of T , there exists a broad relation of the form ef � r .

Proof The proof is by induction on the sum of the distances (measured in �d inequality
chains) from the edges in e to the root. Clearly r 2 e only if r D e . Otherwise one
can write r" D r1 � � � rk and e D e1 � � � ek so that s 2 ei if and only if s �d ri . The
induction hypothesis applies to ei and the subtrees T �ri .

Since the converse of the previous lemma holds by Proposition 5.6, we obtain the
following.

Corollary 5.25 If e; f 2 T are �d–incomparable and e0 �d e , then e0; f are �d–
incomparable.
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5.2 Categories of forests

We will also need to discuss forests, ie formal coproducts of trees. We start by
generalizing Definition 5.9.

Definition 5.26 A forestially ordered set is a finite simple broad poset F satisfying
the following additional conditions:

� Nodal condition Each edge e 2 F is either a leaf, a node or a stump.

� Root tuple condition For each edge e there is a unique �d–maximal element
r 2 T such that e �d r . Further, we denote by rF the tuple of �d–maximal
elements of F and refer to it as the root tuple.

The last condition guarantees that any forestially ordered set decomposes as a disjoint
union of dendroidally ordered sets, ie trees. We shall hence refer to these simply as
forests and denote by ˆ the category formed by them.

Definition 5.27 A map of forests F
'
!F 0 is called

� wide if '.rF /� rF 0 ;

� independent if there exists a tuple e 2 FC such that '.rF /e � rF 0 .

The subcategory of forests and independent (resp. wide) maps is denoted by ˆw

(resp. ˆi ). Note that there are inclusions ˆw ,!ˆi ,!ˆ.

Remark 5.28 The category ˆi nearly coincides with the category of forests discussed
in [11, Section 3.1], the only difference being that here we include the empty forest ∅.

Example 5.29 Consider the following tree T and subtrees (all labels are on edges):

T

hg

i

e

f

c

b
a

d
r

U

h

e

d

r

V

ba

d

Further denoting by �a; �b; : : : the single-edge subtrees corresponding to each edge,
some examples of wide morphisms are given by the inclusions

U ,! T; V q �f ,! T; V q �e ,! T;

V q �f q �i ,! T; V q �f q �g ,! T; �aq �bq �f ,! T;
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some examples of nonwide independent maps are given by

V q �g ,! T; �f q �i ,! T; �gq �h ,! T; ∅ ,! T;

and examples of nonindependent maps are given by

V q �r ! T; V q �f q �iq �g! T; �iq �i! T:

The following is a useful forestial strengthening of Proposition 5.6, which follows by
combining that result with Lemma 5.24.

Proposition 5.30 Let F be a forest. If f � e D e1 � � � ek with �d–incomparable ei ,
then the decomposition f D f 1 � � � f k with f i � ei is unique. In fact, for s 2 f one
has s 2 f i if and only if s �d ei .

Proof If s �d ei and s �d ej with i ¤ j , the unique root r such that s �d r must
also satisfy ei �d r and ej �d r and Lemma 5.24 can be used to produce a nonsimple
relation. Thus such ei is unique and the result follows.

We now turn to describing the degeneracy-face decomposition of maps in the broad
poset setting, which we obtain as Proposition 5.37 below.

Definition 5.31 A map F
'
!F 0 in ˆi is called

� a face map if the underlying set map is injective;

� a degeneracy if the underlying set map is surjective and for each leaf l 2 F we
have that � — '.l/.

Lemma 5.32 For any map F
'
!F 0 in ˆi , we have that e; xe are �d–comparable if

and only if '.e/; '.xe/ are �d–comparable.

Further, if '.e/ D '.xe/, then xef � e can hold only if f D � and thus either e � xe

or xe � e .

Proof If e; xe are not �d–comparable, Lemma 5.24 ensures that there exists f such
that exef � rF . Thus, by definition of ˆi , there exists g such that '.e/'.xe/'.f /g �
'.rF /g � rF 0 , hence '.e/; '.xe/ are �d–incomparable.

The “further” claim is immediate.

Lemma 5.33 If F
'
!F 0 is both a face map and a degeneracy then ' is an isomorphism.
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Proof Bijectivity allows us to assume that the underlying sets are the same and it thus
follows from Lemma 5.32 that the relations �F

d
and �F 0

d
coincide. Hence, both forest

structures have the same roots (ie �d–maximal edges) and one needs only show that
broad relations coincide in each of the constituent trees. But noting that a leaf l is
precisely a �d–minimal edge such that � — l , the definition of degeneracy implies that
F and F 0 have the same leaves and the result follows by the criterion in the “further”
part of Lemma 5.12.

Lemma 5.34 Let F
'
!F 0 be a map in ˆi and f � e be a broad relation in F such

that '.f /¤ '.e/. Then for any f 0 and e0 such that '.f 0/D '.f / and '.e0/D '.e/,
we also have that f 0 � e0 .

Proof Writing f D f1 � � � fn and f 0D f 0
1
� � � f 0n , the condition '.f /¤ '.e/ ensures

fi <d e , and thus Lemma 5.32 implies that f 0i <d e0 also. Using the characterization
in Lemma 5.12, the desired relation f 0 � e0 will hold provided we show that a� D xa�

whenever '.a/ D '.xa/. But since leaves are �d–minimal, this too follows from
Lemma 5.32.

Remark 5.35 It follows from the “further” part in Lemma 5.32 together with anti-
symmetry that the preimage of any edge by a map ' always consists of a linearly
ordered subset of edges. As such, degeneracies are necessarily maps that “collapse
linear sections of a tree”, and indeed that was their original description in [19]. A
typical degeneracy (sending edges labeled ai , bi , ci , di to respective edges a, b ,
c , d ) is pictured below:

d1

d2

c1

c2

c3

a1

a2

b1

b2
e1

e2

d
c

a

b
e

Lemma 5.36 Let 'W F ! F 0 be a map in ˆi and let U � F be any sub-broad poset
consisting of exactly one edge in each preimage of ' and the broad relations of F

between them. Then U is a forest.
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Proof Simplicity of U is inherited from F . Given u 2 U , let xu 2 F be the �d–
minimal edge such that '.xu/D '.u/. Lemma 5.34 implies that u is a leaf in U if xu
is a leaf in F . Otherwise, xu" < xu (in F ) and again by Lemma 5.34 the unique tuple v
of U such that '.v/D '.xu"/ provides the desired node tuple u" D v for U . Lastly,
by Lemma 5.34, s will be a root of U if and only if '.s/D '.r/ for r a root of F .

We now prove the following factorization result, which in the � case first appeared as
[16, Lemma 3.1] and in the ˆi case was proven in [11, Lemma 3.1.3].

Proposition 5.37 Each map ' of ˆi has a factorization 'D 'Cı'� as a degeneracy
followed by a face. Further, this decomposition is unique up to unique isomorphism.

Finally, the decomposition restricts to the subcategories � and ˆw .

Proof Given a map F
'
!F 0 and picking any U as in Lemma 5.36, the isomorphism

U ' '.F / allows us to equip '.F / with a forest structure. Moreover, by Lemma 5.34
the broad relations of '.F / are exactly the image of those in F , and thus independent
of the chosen U . The existence of a factorization follows.

The uniqueness of the F
'�
��G

'C
>�!F 0 factorization follows since by the description

of the broad structure on '.F / there is clearly a broad poset map '.F /!G , which
by Lemma 5.33 is an isomorphism.

Further, the decomposition restricts to � since the image by a degeneracy map of a
tree is necessarily a tree and restricts to ˆw since any edge surjective map F

'�
��G

must map roots to roots and hence '�.rF /D rG must hold.

Corollary 5.38 If F
�
��F 0 is a degeneracy in any of �, ˆi or ˆw then the broad

relations in F 0 are precisely the image of the broad relations of F . Further, any section
F 0 s
!F of the underlying set map is a section in �, ˆi or ˆw .

The following will be needed in Section 5.4 when discussing dendroidal boundaries.

Corollary 5.39 In any of �, ˆi or ˆw , pairs of degeneracies with common domain
have absolute pushouts.1

1Recall that an absolute colimit can be described as either a colimit that is preserved by the Yoneda
embedding or (equivalently) a colimit that is preserved by any functor.
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Proof We will throughout write „ for any of �, ˆi or ˆw and „ŒF � 2 Set„
op

for
the presheaf represented by F 2„. Given a diagram of degeneracies E

�̄��F
�
��E0

we first inductively extend it to a diagram of degeneracies as on the left below

(5.40)

F E0 E1 � � � En Ei F

xE EiC1
xE

�̄

� � � � si

� �̄

�

as follows: assuming E0! � � � !Ei have been built, Corollary 5.38 implies that a
(necessarily unique) compatible degeneracy xE!Ei exists if and only if it exists at
the level of the underlying sets; otherwise, there must exist edges e1; e2 2Ei and lifts
f1; f2 2 F such that �ıiC1.fk/ D ek and �̄.f1/ D �̄.f2/, and choosing si to be a
section of �ıiC1 such that si.ek/D fk , one defines �W Ei!EiC1 via the degeneracy-
face factorization of �̄si , as in the right square in (5.40). The condition on si then
guarantees that �W Ei�EiC1 is never an isomorphism, so that this procedure always
terminates.

It remains to show that „Œ xE�q„ŒF �„ŒE0�!„ŒEn� is an isomorphism. Surjectivity
is immediate from the existence of a section sW En!E0 of �ın . For injectivity, the
existence of a section xsW xE ! F of x� implies that one can represent any element
of „Œ xE�q„ŒF �„ŒE0� by an element in „ŒE0�, ie as an equivalence class Œ'� for a
map 'W T !E0 . It now suffices to show by induction on i that if �ıi' D �ıi then
Œ'�D Œ � or, equivalently, that Œ'�D Œ�si�

ıi'�. The case i D 0 is trivial. Otherwise,
we claim that

Œ'�D Œ�si�1�
ıi�1'�D Œ�si�1�

ıisi�
ıi'�D Œ�si�

ıi'�:

The leftmost and rightmost identities follow from the induction hypothesis for i � 1

and the functions ' and �si�
ıi' . For the inner identity, one considers the lifts

si�1�
ıi�1'W T ! F and si�1�

ıisi�
ıi'W T ! F and notes that postcomposition

with �̄ yields �̄si�1�
ıi�1' D ��ıi' and �̄si�1�

ıisi�
ıi' D ��ıiC1si�

ıi' D ��ıi' .
Injectivity now follows, finishing the proof.

We now recall the usual [19; 17; 5; 11] description of faces as composites of maximal
“codimension 1” faces. We first discuss some terminology.

Firstly, we will regard a face F 0 of F as a subset of F together with a subset of the
broad relations of F , and write F 0 ,!F to indicate this. Further, if the broad relations
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between edges of F 0 in the broad posets F 0 and F coincide, then we will call F 0 a
full face of F and write F 0 � F instead.

Secondly, an edge e 2 F is called external if e is either a leaf or a root and internal
otherwise.

Finally, we denote a generating broad relation of F by ve D .e
" � e/ and refer to it as

the vertex at e .

Notation 5.41 The maximal faces of F in �, ˆi , ˆw have the following types:

� The inner face (valid for any of �, ˆi , ˆw ) associated to an inner edge e is
the full face F � e � F obtained by removing e .

� The leaf vertex outer face (valid for any of �, ˆi , ˆw ) associated to a vertex ve

such that e" consists of leaves is the full face F<=e � F obtained by removing
the leaves in e" .

� The stump outer face (valid for any of �, ˆi , ˆw ) associated to a stump vertex
ve D .�D e"� e/ is the face F<=e ,!F with the same edges as F but removing
� � e as a generating broad relation (note that this also removes some composite
relations).

� The root vertex outer face (valid only for �) for an edge e 2 r" such that the
edges of r" other than e are leaves is the full face T �e � T consisting of those
edges xe such that xe �d e .

� The root face (valid only for ˆi , ˆw ) associated to a root ri 2 rF which is not
also a leaf is the full face F � ri � F obtained by removing ri .

� The stick component face (valid only for ˆi ) associated to a stick � 2 F (ie an
edge that is simultaneously a root and a leaf) is the full face F ���F obtained
by removing �.

Remark 5.42 The implicit claim that an inner face F � e is itself a forest can easily
be checked using Lemma 5.12, which shows that f ";F�e can be defined to consist of
the �d–maximal edges fi ¤ e such that fi �d f .

Similarly, Lemma 5.12 shows that a broad relation f1 � � � fn� f in F holds in a stump
outer face F<=e if the condition e �d f implies that e �d fi for some i .

Example 5.43 Consider the trees in Example 5.29. One can write

U D .....T<=c/<=d /�f /� i/�g/;

where the intermediate steps (from the inside out) are a stump face, a leaf vertex face
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and three inner faces. Further, both �a D V �a and �b D V �b are root vertex outer
faces of V when viewing V as a tree and �aq �b D V � d is a root face of V when
viewing V as a forest.

5.3 The category of equivariant trees

Let G be a finite group. We will denote by ˆG the category of G–forests, ie forests
equipped with a G–action.

Definition 5.44 The category of G–trees, denoted by �G , is the full subcategory
�G �ˆ

G of G–forests F such that the root tuple rF consists of a single G–orbit.

Remark 5.45 The relationship between ˆG and �G is similar to the relationship
between the category FinG of finite G–sets and the orbital category OG consisting of
the orbital G–sets G=H .

Examples of equivariant trees can be found throughout Section 4.3. The author is
aware that the fact that G–trees often “look like forests” is likely counterintuitive at
first (indeed, that was a major hurdle in the development of the theory presented in
this paper). However, the following two facts may assuage such concerns: (i) similarly
to how a nonequivariant tree is a forest that can not be decomposed as a coproduct
of forests, so too a G–tree can not be equivariantly decomposed as a coproduct of
G–forests; (ii) the orbital representation of a G–tree (see Section 4.3) always does
“look like a tree”.

Remark 5.46 Note that �G , the category of G–trees, is rather different from �G , the
category of trees with a G–action. In fact, each G–tree is (noncanonically) isomorphic
to a forest of the form G �H T for some H � G and T 2�H . More precisely, one
has the following elementary proposition.

Proposition 5.47 �G is equivalent to the Grothendieck construction for the functor

O
op
G
! Cat;

G=H 7!�G=H ;

where G=H denotes the groupoid with objects the cosets gH and arrows gH
xg
!xggH .

(Here OG is the orbit category; see Remark 5.45.)

Remark 5.48 There is a natural inclusion G �� ,! �G given by regarding each
object .�;T / 2G �� as the G–tree given by the G–free forest G �T .
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Remark 5.49 While maps in � can be built out of two types of maps, faces and
degeneracies (Proposition 5.37), in �G we need a third type of map: quotients.

To see this, note that by Proposition 5.47, each G–tree T sits (up to equivalence) inside
one of the subcategories �G=H , and that �H is equivalent to the latter. Since it is
immediate by (the proof of) Proposition 5.37 that the degeneracy-face decomposition
extends to �H , Proposition 5.47 implies that any map in �G factors as a degeneracy
followed by a face (both inside one of the fibers �G=H ) followed by a cartesian map.
We will prefer to refer to cartesian maps as quotients.

For a representative example, let G DZ=8 and consider the map (represented in orbital
notation; see Section 4.3)

T

cC2CG

b̄C2CG=4G

bC2CG=4G

cCG

b̄CG=4G

bCG=4G

aCG=4G

W

cCG

bCG=4G

aCG=2G

G=G

'.b̄/D b

where we follow these conventions: (i) edges in different trees with the same label
are mapped to each other; (ii) if an edge is labeled eCi , we assume that its orbit is
disjoint from that of e and that, if no edge labeled eCi appears in the target tree, then
'.eCi/D '.e/C i .

This map can be factored as (where, for brevity, we write aCG=4G as a=4, etc):

(5.50)

T

cC2=8

b̄C2=4

bC2=4

c=8

b̄=4

b=4

a=4

U

cC2=8

bC2=4

c=8

b=4

a=4

b̄ 7! b

V

cC3=8

bC3=4

cC1=8

bC1=4

aC1=4

cC2=8

bC2=4

c=8

b=4

a=4

G=4G

W

c=8

b=4

a=2

G=G
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It is perhaps worthwhile to unpack the last map in (5.50), which is an example of a
quotient. The G–tree labeled V can be written as V 'G �4G

xV , where xV 2�4G is
the tree with a 4G–action pictured below:

xV

cC3C 4cC3

bC3

cC1C 4cC1

bC1

aC1

cC2C 4cC2

bC2

cC 4c

b

a
r

In words, V consists (nonequivariantly) of four trees identical to xV which are inter-
changed by the action of elements of G other than 0 and 4. The G–tree W , on the
other hand, consists of a single (nonequivariant) tree, also shaped like xV , and can be
thought of as the quotient of V obtained by gluing the four trees so that the edges
eCi C j and eC i C j are identified.

Remark 5.51 One particularly convenient property of � is that �op is a generalized
Reedy category, in the sense of [1]. In fact, � is a dualizable generalized Reedy
category, so that both � and �op are generalized Reedy.

Unfortunately, this is not the case for �G : while indeed �G itself can be shown
to be generalized Reedy, the opposite category �op

G
is not. The problem is readily

apparent in the factorization in (5.50). Indeed, for the Reedy factorizations to hold
(see [1, Definition 1.1(iii)]), quotient maps would need to be considered the same type
of maps as face maps, ie degree-raising maps of �G . However, the quotient map
in (5.50) fails [1, Definition 1.1(iv) 0 ], since there is an automorphism of V (given by
eCi 7! eCiC1 � 1, where eC0 is interpreted as e , and yet undefined eCi labels are
interpreted by regarding i 2 Z=k as needed) compatible with the quotient map to W .

5.4 Presheaf categories

We now establish some key terminology and notation concerning the presheaf categories
we will use. Recall that the category of dendroidal sets is the presheaf category
dSetD Set�

op
.

Definition 5.52 The category of G–equivariant dendroidal sets is the category

dSetG D Set�
op�G :
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The category of genuine G–equivariant dendroidal sets is the category

dSetG D Set�
op
G :

Twisting the inclusion in Remark 5.48 by the inverse map Gop .�/�1

���!G yields an
inclusion uW �op �G ,!�G .

Proposition 5.53 The adjunction

(5.54) u�W dSetG� dSetG Wu�

identifies dSetG as a reflexive subcategory of dSetG .

Remark 5.55 Since Theorem 2.1 concerns dSetG , that category will be our main
focus throughout the present paper, although dSetG also plays a role in its proof (see
Section 8.2).

Nonetheless, dSetG is arguably the most interesting category. Indeed, the adjunction
(5.54) bears many similarities to the adjunction sSetO

op
G� sSetG

op
and, as will be shown

in upcoming work, the full structure of the “homotopy operad” of a G-1–operad is
described as an object in dSetG rather than in dSetG (more precisely, the claim is
that the homotopy operad of a G-1–operad forms a “colored genuine equivariant
operad”; (single colored) genuine equivariant operads have been recently formalized
by the author and Peter Bonventre in [3]). We note that this is similar to how �n of a
G–space forms a G–coefficient system rather than just a G–set. We conjecture that a
model structure on dSetG making (5.54) into a Quillen equivalence exists, and that too
is the subject of current work. The presence of extra technical difficulties when dealing
with �G (see Remark 5.51), however, make it preferable to address the dSetG case first.

Notation 5.56 Recall the usual notation

(5.57) �
T 7!�ŒT �
�����! dSet

for the Yoneda embedding.

One can naturally extend this notation to the category ˆ of forests: given F D
`

i Ti ,
set �ŒF �D

`
i �ŒTi �. Passing to the G–equivariant object categories and using the

inclusion �G ,!ˆG we will slightly abuse notation and write

(5.58) �G
T 7!�ŒT �
�����! dSetG :

More explicitly, if T 'G �H Te for some Te 2�
H , then �ŒT �'G �H �ŒTe �, where

�ŒTe � is just the Yoneda embedding of (5.57) together with the resulting H–action.
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Remark 5.59 While (5.58) defines “representable functors” for each T 2�G , given
a presheaf X 2 dSetG the evaluations X.U / are defined only for U 2�, ie for U a
nonequivariant tree.

This is in contrast with dSetG , where both representables and evaluations are defined in
terms of �G . We note that to reconcile this observation with the inclusion u� of (5.54)
the nonequivariant tree U 2� should be reinterpreted as the free G–tree G �U 2�G

(see Remark 5.48).

We end this section by discussing a category of “forestial sets” which, while secondary
for our purposes, will greatly streamline our discussion of the dendroidal join in
Section 7.4.

Definition 5.60 The category of wide forestial sets is the category

fSetw D Setˆ
op
w :

Remark 5.61 The category fSeti D Setˆ
op
i of what we might call “independent

forestial sets” was one of the main objects of study in [11], where they are called simply
“forest sets”.

Mimicking (5.57) by writing ˆi ŒF � 2 fSeti for the representable functor of F 2ˆi , it
is shown in [11] that one can define a formal boundary @ˆi ŒF � possessing the usual
properties one might expect.

We will find it desirable to be able to use the analogous construction for the representable
ˆw ŒF � 2 fSetw , but this does not quite follow from the result in [11], since while
ˆi ŒF � 2 fSeti can be forgotten to a presheaf u�ˆi ŒF � 2 fSetw , one typically has a
proper inclusion ˆw ŒF � ,! u�ˆi ŒF �.

We thus instead mimic the discussion in [1], making use of the key technical results
established in Section 5.2.

Letting „ denote any of �, ˆi or ˆw and setting

jF j D #fedges of F gC #fstumps of F g;

Lemma 5.33 and Proposition 5.37 then say that „ is a dualizable generalized Reedy
category (see [1, Definition 1.1]). As in [1, Section 6], call an element xW „ŒF �!X

of a presheaf X 2 Set„
op

degenerate if it factors through a noninvertible degeneracy
operator and nondegenerate otherwise. Corollary 5.39 then allows us to adapt the proof
of [1, Proposition 6.9] to obtain the following.
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Proposition 5.62 Let X 2 Set„
op

for „ any of �, ˆi or ˆw . Then any element
xW „ŒF �!X has a factorization, unique up to unique isomorphism,

„ŒF �
�x
�!„ŒG� xx�!X

as a degeneracy operator �x followed by a nondegenerate element xx .

Defining skeleta as in [1, Section 6] the proof of [1, Corollary 6.8] yields the following.

Corollary 5.63 Let „ be any of �, ˆi or ˆw . The counit skn X!X for X2Set„
op

is a monomorphism whose image consists of those elements of X that factor through
some „ŒF �!X for jF j � n.

Definition 5.64 Let „ be any of �, ˆi or ˆw . The formal boundary

@„ŒF � ,!„ŒF �

is the subobject formed by those maps that factor through a noninvertible map in „C ,
ie through a noninvertible face map.

By combining the Reedy axioms [1, Definition 1.1] with Corollary 5.63 one has

@„ŒF �' skjF j�1„ŒF �:

6 Normal monomorphisms and anodyne extensions

6.1 Equivariant normal monomorphisms

Recalling that the cofibrations in dSet are not the full class of monomorphisms [5,
Proposition 1.5], but rather the subclass of so called normal monomorphisms, one
should expect a similar phenomenon to take place in dSetG .

We start by noting that for X 2 dSetG and U 2�, the set XU DX.U / is acted on by
the group G �†U , where †U denotes the automorphism group of U .

Definition 6.1 A subgroup N �G�†U is called a G–graph subgroup if N\†U D�.

It is straightforward to check that a G–graph subgroup N can equivalently be described
by a partial homomorphism G � H

�
�!†U . Further, since such a � allows us to

write U 2 �H, one has that each G–graph subgroup N has an associated G–tree
G �H U . More precisely, one has the following result.
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Proposition 6.2 The functor �Œ��W �G ! dSetG induces an equivalence between
�G and the full subcategory of quotients of the form .G ��ŒU �/=N for U 2� and
N �G �†U a G–graph subgroup.

Recalling the discussion following (5.57) one can, for a forest F '
`

i Ti in ˆ,
define @�ŒF �D

`
i @�ŒTi �. Carrying this discussion through to G–objects leads to

the following definition.

Definition 6.3 The boundary inclusions of dSetG are the maps of the form

(6.4) @�ŒT � ,!�ŒT �

for T 2�G .

More explicitly, if T 'G �H Te for some Te 2�
H , then the (nonequivariant) presheaf

�ŒTe � inherits an H–action and (6.4) is isomorphic to the map

G �H .@�ŒTe � ,!�ŒTe �/

or, letting N �G �†Te
denote the G–graph subgroup associated to Te ,

.G � .@�ŒTe � ,!�ŒTe �//=N:

The following is an immediate generalization of [1, Proposition 7.2].

Proposition 6.5 Let �W X!Y be a map in dSetG . Then the following are equivalent:

(i) For each tree U 2�, the relative latching map

lU .�/W XU q
LU X

LU Y ! YU

is a †U –free extension.

(ii) � is a monomorphism and, for each U 2� and nondegenerate y 2YU ��.X /U ,
the isotropy group fg 2G �†U j gy D yg is a G–graph subgroup.

(iii) For each n� 0, the relative n–skeleton

skn.�/DX q
skn X

skn Y

is obtained from the relative .n�1/–skeleton by attaching boundary inclusions.

Definition 6.6 A monomorphism that satisfies any of the equivalent conditions in
Proposition 6.5 will be called a G–normal monomorphism.
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Remark 6.7 By Proposition 6.5(i) a monomorphism in dSetG is G–normal if and only
if it is normal as a map in dSet [1, Proposition 7.2]. In view of this, we often drop G

from the terminology. Moreover, all monomorphisms over a G–normal dendroidal set
are hence G–normal monomorphisms [5, Corollaries 1.7 and 1.8].

6.2 Equivariant anodyne extensions

The key to the preceding section was the observation that if T 2�H then the usual
boundary @�ŒT � inherits an H–action. However, such is not the case for inner horns:
if e 2 T is an inner edge, then ƒe ŒT � (see [17, Section 5]) will inherit an H–action if
and only if e is an H–fixed edge.

Therefore, to define G–inner horns, one must treat all inner edges in an inner edge
orbit in an uniform way. To do so, we first recall the notion of generalized inner horns
(see [17, Lemma 5.1]).

Definition 6.8 Let E �E i.T / be a subset of the inner edges of T 2�. We define

ƒE ŒT � ,! @�ŒT � ,!�ŒT �

to be the subpresheaf formed by the union of those faces other than the inner faces of
the form T �E0 for E0 �E .

More generally, given a forest F D
`

i Ti and E D
`

i Ei with Ei �E i.Ti/ we set

(6.9) ƒE ŒF �D
a

i

ƒEi ŒTi �:

Remark 6.10 The reader of [11] may note that (6.9) clashes with [11, Section 3.6].
This is because in [11] the presheaf being defined lives in fSeti rather than in dSet.

Definition 6.11 The generating G–inner horn inclusions are the maps in dSetG of
the form

ƒGe ŒT �!�ŒT �;

where T 2�G is a G–tree and Ge is the G–orbit of an inner edge e .

Definition 6.12 A G–dendroidal set X is called a G-1–operad if X has the right
lifting property with respect to all generating G–inner horn inclusions:

ƒGe ŒT � X

�ŒT �
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Further, A! B is called a G–inner anodyne extension if it is in the saturation of
the generating G–inner horn inclusions under pushouts, transfinite compositions and
retracts.

Example 6.13 If one considers the G D Z=4–tree T in Example 4.5, one possible
inner orbit edge is Gb D fb; b C 1g. The following are the (inner) faces of T not
included in ƒGe ŒT �:

T

cC1

aC3aC1

bC1

aC2a

b

c

d

T �b

cC1

aC3aC1

bC1

aC2
a

c

d

T � .bC1/

cC1

aC3

aC1

aC2a

b

c

d

T �fb;bC1g

cC1

aC3

aC1aC2

a

c

d

We recall (see Remark 5.59) that since presheaves X 2 dSetG are only evaluated on
nonequivariant trees U 2�, the faces above are merely nonequivariant faces of the
equivariant tree T : indeed, T � b and T � .bC 1/ do not admit a full compatible
G–action. Rather, G acts instead on the set of such faces and since T � b admits a
compatible HD2G–action and one can think of the disjoint union .T�b/q.T�.bC1//

as the G–tree G �H .T � b/.

Remark 6.14 An eventual goal of the project this work belongs to is to show that
there is a Quillen equivalence

W!W dSet
G� sOpG

WhcNd ;

generalizing [7, Theorem 8.15] (where sOpG is the category of G–equivariant colored
simplicial operads and hcNd is the dendroidal homotopy coherent nerve).

While the proof of such a result is work in progress, and some of the best evidence in
that direction is the subject of a current parallel write-up making Remark 5.55 precise,
we provide here a first piece of evidence by generalizing [17, Theorem 7.1].
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Proposition 6.15 Suppose that O 2 sOpG is locally G–graph fibrant, ie that O.aI b/�

is fibrant whenever � �G �†a stabilizes a and b and satisfies � \†a D �.

Then hcNd .O/ is a G-1–operad.

Proof Since any G–tree has the form G �H T for some T 2 �H , it suffices after
unpacking adjunctions to solve all the lifting problems as on the left below:

(6.16)
W!ƒ

He ŒT � O W!ƒ
He ŒT �.l I r/ O.f .l/If .r//

W!�ŒT � W!�ŒT �.l I r/

f

Repeating the argument in the proof of [17, Theorem 7.1], it suffices to build this lift
for the mapping spaces between the leaves l and root r of T . That is, one needs only
solve the rightmost lifting problem in (6.16), which needs only be equivariant with
respect to the subgroup � �H�†l encoding the H–set l (crucially, note that operadic
compatibility is automatic). Since the condition on O guarantees that O.f .l/If .r//
is genuinely �–fibrant and the vertical map on the right side of (6.16) is (generalizing
the formula in the proof of [7, Proposition 4.5])

.f1g !�Œ1�/�He� .@�Œ1�!�Œ1�/�E i.T /�He;

which is a genuine �–trivial cofibration, the result follows.

We will develop for G–inner horns most of the key results of [17] and [5], the proofs
of which turn out to need only moderate modifications in order to generalize to the
equivariant context.

The hardest of those results, concerning the tensor product, will be the subject of
Section 7. To finish this section, we collect a couple of easier results, starting with the
analogue of [17, Lemma 5.1].

Proposition 6.17 Let T 2�G be a G–equivariant tree and E a G–equivariant subset
of the inner edges of T . Then the generalized G–horn inclusion

ƒE ŒT � ,!�ŒT �

is G–inner anodyne.

Proof Since E consists of a union of edge orbits, one immediately reduces to proving
that maps of the form

ƒE ŒT �!ƒE�Ge ŒT �
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are G–inner anodyne. In the nonequivariant case [17, Lemma 5.1] such maps can be
described as single pushouts, but here we require multiple pushouts, naturally indexed
by an equivariant poset which we now describe.

Firstly, let Te denote the (nonequivariant) tree component containing the edge e and set
H �G to be its isotropy, resulting in a canonical identification G �H Te ' T . Writing
InnHe.Te/ for the H–poset (under inclusion) of the inner faces of Te collapsing
only edges in He , it suffices to check that, for any H–equivariant convex2 subsets
B � B0 � InnHe.Te/,

(6.18) ƒE ŒT � [
[

g2G;U2B

�ŒgU � ! ƒE ŒT � [
[

g2G;U2B0

�ŒgU �

is G–inner anodyne. Without loss of generality, we may assume B0 is obtained from B

by adding a single orbit HV and, setting xH �H to be the isotropy of V in InnHe.Te/,
we claim that (6.18) is a pushout of

G � xH
�
ƒEe�He ŒV �!�ŒV �

�
;

where EeDE\Te denotes the subset of inner edges of Te that are in E . This claim is
straightforward except for the following: one needs to note that the G–isotropy of any
faces in InnEe�He.V / (ie those faces missing from ƒEe�He ŒV �) is indeed contained
in xH , and this follows since xH can also be described as the subgroup of G sending
the edge subset He\V DGe\V to itself.

This concludes the proof by nested induction on the order of G and the number of
G–orbits of E .

The following is the equivariant analogue of [17, Lemma 5.2]. Note that edge orbits of
a G–tree T are encoded by maps G=H � �

G=H �e
����!T for some H �G .

Proposition 6.19 Suppose that T has a leaf orbit and U a root orbit both isomorphic
to G=H . Write V D T qG=H �� U for the grafted G–tree.

Then

(6.20) �ŒT �q�ŒG=H ����ŒU �!�ŒV �

is inner G–anodyne.

Proof Let Out.V / denote the G–poset of outer faces (which have the form V �e
<=e

, and

2Recall that a subset B � P of a poset P is called convex if b̄ � b and b 2 B implies b̄ 2 B .

Algebraic & Geometric Topology, Volume 18 (2018)



2214 Luís Alexandre Pereira

are hence not inner faces of any other face) of the grafted tree V , and Out 6�T;U .V /

the G–subposet of those outer faces contained in neither T nor U .

It suffices to show that for all G–equivariant convex subsets B �B0 of Out 6�T;U .V /,

(6.21) �ŒT �[�ŒU �[
[

R2B

R!�ŒT �[�ŒU �[
[

R2B0

R

is G–inner anodyne (indeed, (6.21) recovers (6.20) when BD∅ and B0DOut 6�T;U .V /).

As before, we can assume B0 is obtained from B by adding the orbit GS of a single
outer face S . Letting H �G denote the isotropy of S , one has that (6.21) is then the
pushout (note that the G–isotropy of an inner face of the outer face S is at most H ) of

G �H
�
ƒE i.S/ŒS �!�ŒS �

�
;

finishing the proof.

Remark 6.22 A key difference between the proofs of Propositions 6.17 and 6.19
versus their nonequivariant analogues is the need to check that the isotropies are correct
when attaching equivariant horns.

7 Tensor products

Our goal in this section is to prove equivariant analogues of [17, Proposition 9.2],
[5, Theorem 5.2] and [5, Theorem 4.2], which are the key technical results in their
respective papers. These results concern the interaction of anodyne extensions with
the tensor product and the join constructions, which we recall in Section 7.1 and
Section 7.4. We now present our versions of the results, starting with the analogue of
[17, Proposition 9.2].

Theorem 7.1 Let S;T 2 �G be G–trees and let G� be an inner orbit edge of T .
Then the map

@�ŒS �˝�ŒT � q
@�ŒS �˝ƒG� ŒT �

�ŒS �˝ƒG� ŒT �!�ŒS �˝�ŒT �

is a G–inner anodyne extension if either

(i) both S and T are open G–trees (ie have no stumps);

(ii) at least one of S;T is a linear G–tree (ie isomorphic to G �H Œn� for Œn� 2�).

The proof of Theorem 7.1 will be the subject of Section 7.3. More specifically, the
result will follow from Proposition 7.44 when B D∅ and B0 D IEG�.S ˝T /.
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The following is the equivariant analogue of [5, Theorem 5.2].

Theorem 7.2 Let S 2�G be a tree with a G–action such that S ¤ � and denote by
A!�ŒS �˝�Œ1� the pushout product map

@�ŒS �˝�Œ1� q
@�ŒS �˝f1g

�ŒS �˝f1g !�ŒS �˝�Œ1�:

Then there is a factorization A! B!�ŒS �˝�Œ1� such that:

(a) A! B is a G–inner anodyne extension.

(b) There is a pushout (the join S ? � is introduced in Definition 7.46):

(7.3)
ƒ�ŒS ? �� B

�ŒS ? �� �ŒS �˝�Œ1�

(c) Letting � r
!S denote the root edge, the composite

�Œ1�'�Œ� ? ��
r?id
���!�ŒS ? ��!�ŒS �˝�Œ1�

coincides with the composite

�Œ1�' �˝�Œ1�
r˝id
���!�ŒS �˝�Œ1�:

Theorem 7.2 will be proven at the end of Section 7.3 as a direct consequence of the
arguments used in the proof of Proposition 7.44. We note that ƒ�ŒS ? �� is an outer
horn, lacking only the outer face .S ? �/� �D .S ? �/�r ' S .

The following is the equivariant analogue of [5, Theorem 4.2]. Note that we use the
notation i W �!� for the inclusion and i�W dSet! sSet for the restriction.

Theorem 7.4 Let S 2�G be a tree with a G–action. Assume further that S has at
least two vertices and unary root vertex G=G ��Œ1�

vr
�! S . Then a lift exists in any

commutative diagram

(7.5)
ƒr ŒS � X

�ŒS � Y

f

such that X ! Y is a G–inner fibration between G-1–operads and f .vr / is an
equivalence in the 1–category i�.X G/.
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We will prove Theorem 7.4 at the end of Section 7.4.

7.1 Tensor product

To keep the proofs of Theorems 7.1 and 7.2 compact we will prefer to use broad poset
language throughout. We start by defining tensor products in this framework.

Given s 2 SC and t 2 TC , we will let s � t 2 .S � T /C denote the obvious tuple
whose elements .s; t/ 2 s � t are those pairs with s 2 s and t 2 t .

Definition 7.6 Given prebroad posets S and T (see Remark 5.2), their tensor product
S ˝T is the prebroad poset whose underlying set is S �T and whose relations are
generated by relations of the form s � t � .s; t/ (resp. s � t � .s; t/) for s 2 S , t 2 T

and s � s (resp. t � t ) a broad relation in S (resp. T ).

Proposition 7.7 If S and T are simple broad posets then so is S ˝T . Further, for
any nonidentity broad relation .s1; t1/ � � � .sn; tn/� .s; t/ in S ˝T one has:

(i) si �d s and tj �d t for all 0� i; j � n.

(ii) For i ¤ j either there exists s such that sisj s � s or there exists t such that
ti tj t � t (or both).

(iii) If both of the pairs si ; sj and ti ; tj are �d–comparable then i D j .

Proof Note first that the “further” conditions suffice to check that S ˝T is a simple
broad poset, ie that they imply antisymmetry and simplicity. Indeed, antisymmetry
follows from combining (i) with the fact that �S

d
and �T

d
are order relations while

simplicity is a particular case of (iii).

Item (i) follows since the condition holds for generating relations and is preserved
by transitivity. Similarly, (ii) holds for generating relations and is readily seen to be
preserved by transitivity when applied to relations satisfying (i). Lastly, (iii) follows
from (ii) and the �d–incomparability result in Proposition 5.6.

Remark 7.8 The main claim in Proposition 7.7 fails for nonsimple broad posets. As an
example, let S be the broad poset fa; bg with generating relations ab � a and ab � b

(antisymmetry holds since � decreases the size of tuples) and T be fcg with generating
relation � � c . Then the relations .a; c/� .b; c/� .a; c/ hold in S ˝T .
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Proposition 7.9 Let S and T be trees. An edge .s; t/ 2 S ˝T has one of five types:

(leaf) It is a leaf if both s 2 S and t 2 T are leaves.

(stump) It is a stump if s 2 S is a leaf and t 2 T is a stump or vice versa, or if both
s 2 S and t 2 T are stumps.

(leaf node) It is a node if s 2 S is a node and t 2 T is a leaf or vice versa. In fact
.s; t/" D s" � t or .s; t/" D s � t" , accordingly.

(null node) It is a node such that � � .s; t/ if s 2 S is a node and t 2 T a stump or
vice versa. In fact .s; t/" D s" � t or .s; t/" D s � t" , accordingly.

(fork) If s 2 S and t 2 T are both nodes then there are exactly two maximal f
such that f < .s; t/, namely s � t" and s" � t . We call such .s; t/ a fork.

Proof Only the fork case requires proof. In fact, it is tautological that only s� t" and
s"� t can possibly be maximal, hence one needs only verify that neither s� t"� s"� t

nor s"� t � s� t" . This follows since the S coordinates of the pairs in the tuple s"� t

are <d than those in s � t" and vice versa.

In order to simplify notation, we will henceforth write e"S D s" � t , e"T D s � t"

and e"S;T D s" � t" .

Proposition 7.10 Let S and T be trees and consider the broad relation

e D .s1; t1/.s2; t2/ � � � .sn; tn/� .s; t/D e

in S ˝T . Then:

(i) e � e"S (resp. e � e"T / if and only if si ¤ s for all i (resp. ti ¤ t for all i ).

(ii) e � e"S;T if and only if both si ¤ s and ti ¤ t for all i .

Proof Only the “if” directions need proof, and the proof follows by upward �d

induction on s , t . The base cases of either s or t a leaf are obvious.

Otherwise, let e satisfy the “if” condition in (i). Since it must be either that e � e"S or
e� e"T , we can assume the latter case holds. Writing t"D u1 � � �uk and eD e1 � � � ek

so that ei � .s;ui/ (note that possibly k D 0), the induction hypothesis now yields
ei � .s;ui/

"S D s" �ui , and hence

(7.11) e D e1 � � � ek � .s
"
�u1/ � � � .s

"
�uk/D s" � t" � s" � t D e"S :

The proof of (ii) simply disregards the last inequality in (7.11).
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Corollary 7.12 e � e"S;T if and only if both e � e"S and e � e"T .

Lemma 7.13 Let S and T be trees. For any e D .s; t/ 2 S ˝ T there exists a
minimum e� 2 .S �T /C such that e� � e . In fact, e� D s� � t� .

Proof The proof is by �d induction on e . The case of s , t both leaves is obvious.
Otherwise, for any nonidentity relation either f � e"S < e or f � e"T < e , and
the analysis in the proof of Lemma 5.12 applies in either case to show that indeed
s� � t� � f .

7.2 Subtrees

Definition 7.14 Let S and T be trees. A subtree of S˝T is a tree U together with a
broad poset map U ,! S˝T that is an underlying monomorphism. Further, a subtree
is called full if the relations in U coincide with those in its image and in that case we
instead write U � S ˝T .

We have the following characterization.

Proposition 7.15 U
'
,!S ˝T is full if and only if for each leaf l 2 U it is not the

case that � � '.l/.

Proof To simplify notation we will simply write u for both an edge u 2 U and its
image '.u/ 2 S ˝ T and instead decorate the broad relations as �U , �S˝T , and
similarly write u�;U , u�;S˝T , following Lemmas 5.12 and 7.13.

We need to show that a broad relation uD u1 � � �un�
S˝T u can not fail the conditions

in Lemma 5.12 with respect to U . Further, we note that, since S˝T has a �d–maximal
element .rS ; rT /, the proof of Lemma 5.32 applies to show that the two �d–relations
on '.U / coincide. Thus, only condition (iii) of Lemma 5.12 could possibly fail, and
this would happen only if u

�;U
1
� � �u

�;U
n lacked some of the leaves in u�;U . But our

hypothesis is that l�;S˝T ¤ � for l any leaf of U , hence this is impossible.

Definition 7.16 Let S and T be trees. A subtree U ,! S ˝T is called

� elementary if all of its generating broad relations are of the form e"S � e

or e"T � e ;
� initial if U contains the “double root” .rS ; rT / 2 S ˝T .

Further, a maximal elementary subtree is a subtree that is not contained in any other.
Note that, since one can graft new root vertices to U , Proposition 5.11 implies that
maximal elementary subtrees are necessarily initial.
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Remark 7.17 Maximal elementary subtrees are called percolation schemes in [17,
Example 9.4].

Remark 7.18 As noted in Proposition 7.9, the relation � � e is a decomposable
relation of S ˝T whenever e is a null node. As a consequence, any elementary tree
containing such a generating relation is in fact an inner face of a larger elementary tree.

Lemma 7.19 If U is a full face of S , then U ˝T � S ˝T ; ie U ˝T contains all
broad relations in its image.

Proof Given a relation e D .s1; t1/ � � � .sn; tn/ � .s; t/ D e with all si 2 U (but not
necessarily s 2 U ), we first claim that there is a factorization e � u� t � .s; t/ with u

in U and u� s in S . If s 2 U one simply takes uD s . Otherwise Proposition 7.10
yields e � e"S � e and the claim follows by �d induction on e .

To check the desired claim that e � e will be in U ˝T if si ; s 2 U , we again argue
by �d induction on e , with the case e � e"T � e being immediate and the case
e � e"S � e following by the result in the previous paragraph.

Definition 7.20 Let S , T be trees and A D faig, B D fbj g subsets of the sets of
stumps of S , T , respectively, and let vA D f� � aig, vB D f� � bj g denote the
corresponding vertices.

We say that a subtree U ,! S ˝ T misses vA and vB if one has a factorization
U ,! .S � vA/˝ .T � vB/ ,! S ˝T .

Further, if B D ∅ (resp. A D ∅) we say simply that “U misses vA ” (resp. “U

misses vB ”).

Remark 7.21 In [17] similar notions of “U missing an inner edge/leaf vertex” are also
defined, but we note that (due to Lemma 7.19) those notions are far more straightforward.
In fact, as explained in the errata to the follow-up paper [5], the earlier treatment
overlooked some subtle properties of stumps.

For instance, note that Corollary 7.24 below implies that the notion “U misses
vA and vB ” does not coincide with the notion “U misses vA and U misses vB ”
whenever A and B are both nonempty.

Lemma 7.22 Let S and T be trees and AD faig, B D fbj g subsets of the stumps
of S and T , respectively. Then a broad relation

f D f1f2 � � � fk � e
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in S ˝T is a broad relation in .S � vA/˝ .T � vB/ if and only if

e�;.S�vA/˝.T�vB/ � f :

Proof Only the “if” direction needs proof. We argue by �d induction on e D .s; t/.
The base case, that of s a leaf of S � vA and T a leaf of T � vB , is obvious (we note
that the proof will follow even when this case is vacuous).

Otherwise, either f �e"S �e or f �e"T �e and our assumption ensures, respectively,
that s 62A or t 62B . Writing e"� to denote either e"S or e"T as appropriate, this last
observation guarantees that the relation e"� � e is in .S � vA/˝ .T � vB/. Further,
writing f D f 1 � � � f k and e"� D e1 � � � ek so that f i � ei , the induction hypothesis
shows that these last relations are also in .S � vA/˝ .T � vB/.

Recalling Proposition 5.30 hence yields the following.

Corollary 7.23 A collection of broad relations of the form gi � fi and f1 � � � fk � e

are all in .S � vA/˝ .T � vB/ if and only if the composite relation g1 � � �gk � e is.

Corollary 7.24 A subtree U ,! S ˝ T misses vA and vB if and only if, for r the
root of U , one has

r�;.S�vA/˝.T�vB/ � r�;U :

Proof This follows from Corollary 7.23 since any generating relation in U is a factor
of r�;U � r .

The following was first stated in [5, Proposition 1.9 in errata] and proven via a careful
combinatorial analysis in [8]. We include here a short broad poset proof. Recall that
dSet� dSet ˝�! dSet is defined by setting �ŒS �˝�ŒT �D Hom.�;S ˝T / together
with the requirement that ˝ commutes with colimits in each variable.

Proposition 7.25 Let S;T 2 � be trees which satisfy either (i) both are open or
(ii) S D Œn� is linear. Then the square

(7.26)
@�ŒS �˝ @�ŒT � �ŒS �˝ @�ŒT �

@�ŒS �˝�ŒT � �ŒS �˝�ŒT �
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consists of normal monomorphisms. Further,

(7.27) @�ŒS �˝�ŒT � q
@�ŒS �˝@�ŒT �

�ŒS �˝ @�ŒT � ,!�ŒS �˝�ŒT �

is also a normal monomorphism.

In particular, (7.26) is a pullback square.

Proof Note first that since ˝ commutes with colimits in each variable,

(7.28) @�ŒS �˝�ŒT �D colimF2Faces.S/�fSg�ŒF �˝�ŒT �:

In the open case, since all faces are full, Lemma 7.19 implies that if U � FS ˝ T

and U �S˝FT , then U �FS˝FT will hold, showing that (7.27) is a monomorphism
whenever (7.26) consists of monomorphisms. By skeletal induction, it thus suffices
to check that the right and bottom maps in (7.26) are monomorphisms, and this will
follow if for any U � S˝T there exists a minimal face F � S such that U �F˝T .
Clearly F D fs j .s; t/ 2 U for some tg will work once we show that this is indeed a
face. This is clear when U is elementary (in which case each vertex of U either adds
a vertex to F or nothing at all) and holds in general since any U is an inner face of an
elementary subtree.

In the S D Œn� linear case the fact that S is open still suffices to conclude that (7.27)
being a monomorphism will follow once we show that (7.26) consists of monomor-
phisms. And, similarly, that @�Œn� ˝ �ŒT � ! �Œn� ˝ �ŒT � is a monomorphism
follows by the same argument, building F in the same way. It remains to show
that �Œn�˝ @�ŒT �!�Œn�˝�ŒT � is a monomorphism. We note that the projection
� W Œn�˝T ! T given by �.k; e/D e is a map of broad posets. Given U ,! Œn�˝T

we claim that �.U / is the minimal face such that U ,! Œn�˝�.U /, noting that this is
implied by the more general claim that U ,! Œn�˝F if and only if �.U / ,!F . It now
suffices to check this when F is a maximal face, with the case of F full being obvious
from Lemma 7.19 and the stump outer face case following from Corollary 7.24.

The claim that (7.26) is a pullback square is elementary (compare with the proof of [5,
Proposition 1.9]).

7.3 Pushout product filtrations

This section features our main technical proofs, namely the proof of Theorem 7.1 and
the related but simpler proof of Theorem 7.2.
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The majority of the ideas in this section are adapted from the (rather long) proof of
[17, Proposition 9.2], but here we will need to significantly repackage those ideas. To
explain why, we note that the filtrations in the proof of [17, Proposition 9.2] are actually
divided into three nested tiers: an outermost tier described immediately following [17,
Corollary 9.3], an intermediate tier described in the proof of [17, Lemma 9.9] and an
innermost tier described in the proof of [17, Lemma 9.7]. However, in the equivariant
case G acts transversely to these tiers; ie one can not attach dendrices at an inner tier
stage without also attaching dendrices in a different outer tier stage.

Our solution will be to encode the top two filtration tiers as a poset IEG�.S ˝T / on
which G acts (to handle the lower tier). To improve readability, however, we first
describe our repackaged proof in the nonequivariant case, then indicate the (by then
minor) necessary equivariant modifications.

We will make use of an order relation on elementary subtrees (see Definition 7.16)
of S ˝T .

Definition 7.29 Write V �lex U whenever U is obtained from V by replacing the in-
termediate edges in a string of broad relations e"S;T � e"S � e occurring in V with the
intermediate edges in e"S;T � e"T � e occurring in U . An illustrative diagram follows:

S

21

3

T

c
b

a

e

V

c2

b2

a2

e2

c1

b1

a1

e1

e3

U

c2c1

c3

b2b1

b3

a2a1

a3

e3

�lex

Remark 7.30 The �lex relation is compatible with the grafting procedure described
in Remark 5.16. In particular, we will throughout assume that a relation V �lex U can
be built by first ungrafting U (Proposition 5.19), then applying �lex relations to each
piece, and finally regrafting the pieces to obtain V .

In what follows we refer to generating relations of the form e"S �e (resp. e"T �e ) in an
elementary subtree as S–vertices (resp. T –vertices). Also, given vertices vD .e"�� e/

and w D .f "� � f / we write v �d w if e �d f .

Proposition 7.31 Suppose T is open (ie has no stumps). Then �lex induces a partial
order on the set of elementary subtrees of S ˝T .
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Further, �lex together with the inclusion ,! assemble into a partial order as well, and
we denote this latter order simply by �.

Proof One needs only check antisymmetry. Let g.U / count pairs .vS ; vT / of an
S–vertex and a T –vertex in U such that vS �d vT . Since the generating relations
of �lex strictly increase g , we have that �lex is a partial order. Similarly, letting
h.U / D #fstumps of U g C

P
l2fleaves and stumps of U g d.l; r/ (where d.�; r/ denotes

“distance to the root”, measured in generating �d relations), ,! increases h and �lex

either (i) preserves h if e (as in Definition 7.29) is a fork; (ii) is an instance of ,! if e

is a null node (since T is assumed open). Thus � is a partial order.

Remark 7.32 If T is not open, then by Remark 7.18 it is possible for the combination
of �lex and ,! to fail antisymmetry.

Henceforth we will let � denote a fixed inner edge of T .

Definition 7.33 An initial elementary subtree U ,! S ˝T (see Definition 7.16) is
called �–internal if it contains an edge of the form .s; �/, abbreviated as �s , and the
T –vertex �"T

s � �s .

For T open, we will denote the subposet of such trees by .IE�.S ˝T /;�/.

Further, when S is open one can modify the order in IE�.S˝T / by reversing the �lex

order (but not the ,! order). The resulting poset will be denoted by IE
oplex
�

.S ˝T /.

Lemma 7.34 Suppose T is open. Let U ,! S ˝ T be an elementary subtree with
root vertex a T –vertex e"T � e and suppose that e�;U � e"S (or, by Proposition 7.10,
that none of the leaves in e�;U have the same S coordinate as e ).

Then there exists an elementary subtree V such that V �lex U and V contains the
relations e"S;T � e"S � e .

Proof We argue by induction on the sum of the distances (see proof of Proposition 7.31)
between the leaves and stumps of U and its root e . The base case, that of U the
elementary tree generated by e"S;T � e"T � e , is obvious.

Otherwise, writing e D .s; t/, we have for each ti 2 t" either .s; ti/"S �U .s; ti/ or
.s; ti/

"T �U .s; ti/. Applying the induction hypothesis to each of the subtrees U�.s;ti /

(see Proposition 5.19) in the latter case yields trees Wi �lex U�.s;ti / , which after
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grafted yield a tree W �lex U such that W contains all relations .s; ti/"S � .s; ti/.
But now W contains the relations e"S;T � e"T � e and hence a final generating �lex

relation yields the desired V �lex W �lex U .

Example 7.35 A typical illustration of the previous result follows:

UV

�lex

Lemma 7.36 Suppose U ,! S ˝ T and V ,! S ˝ T are subtrees with common
leaves and root. Then F D U \V defines a full face of both U and V .

Proof As a set, F could alternatively be defined as the underlying set of the composite
inner face of U that removes all inner edges of U not in V , or vice versa. Thus,
the real claim is that both constructions yield the same broad relations. Noting that
the �d order relations on U and V are induced from S ˝T (as argued in the proof
of Proposition 7.15), this follows from Lemma 5.12.

Lemma 7.37 Suppose T is open. If F is a common face (resp. inner face) of two
elementary subtrees U and V , then F is also a face (resp. inner face) of an elementary
subtree W such that W � U and W � V (resp. W �lex U and W �lex V ). In fact,
in the inner face case the �lex inequalities factor through generating �lex inequalities
involving only trees having F as an inner face.

Proof Letting r , l denote the root and leaves of F , by Corollary 5.23 one can replace
U and V with U�r

<=l
and V �r

<=l
, reducing to the case where F , U , V have exactly the

same leaves and root. Thus, by Lemma 7.36 we are free to assume F D U \V .

If the root vertices r"U � r and r"V � r coincide, the result follows by induction
on �. Otherwise, we can assume that the root vertex of U is r"S � r and that of V

is r"T � r . Lemma 7.34 now applies to V<=r"F , and one can hence build W �lex V

with a strictly larger intersection with U , finishing the proof.

Recall that a subset B of a poset P is called convex if b̄ � b and b 2B implies b̄ 2B .
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Proposition 7.38 Let S and T be trees and � 2 T an inner edge. Further, assume
that either both S and T are open or that one of them is linear. Set

AD�ŒS �˝ƒ� ŒT � q
@�ŒS �˝ƒ� ŒT �

@�ŒS �˝�ŒT �

and regard A and the �ŒV � below as subpresheaves of �ŒS �˝�ŒT �.

Then, for any convex subsets B � B0 of the poset IE�.S ˝T / (or, in the special case
of S a linear tree and T not open, of the poset IE

oplex
�

.S ˝T /), one has that

A[
[

V 2B

�ŒV �!A[
[

V 2B0

�ŒV �

is an inner anodyne extension.

To simplify notation we will throughout the proof suppress � from the notation, eg
A[

S
V 2B �ŒV � will be denoted simply by A[

S
V 2B V .

The key to the proof is given by the following couple of lemmas.

Lemma 7.39 Suppose that either S and T are both open or T is linear.

Then, for U 2 IE�.S ˝ T / and B convex such that fV j V < U g � B , any edge
�s of U with vertex �"T

s � �s is (in the sense of [17, Lemma 9.7]) a characteristic
edge; ie for each inner face F of U containing the edge �s , we have that F is in
A[

S
V 2B V if and only if F � �s is.

Proof Suppose first that F � �s is in A but that F is not.

Either F � �s ,! S 0˝T or F � �s ,! S ˝T 0 for S 0 ,! S , T 0 ,! T some maximal
subface, where in the latter case T 0 ¤ T � � . Considering the cases in Notation 5.41,
the stump cases are excluded by Corollary 7.24 and in the full cases Lemma 7.19
implies that the only possibility is for F � �s to have no edge with S–coordinate s

while F does. Further, if s were to be a root or leaf of S , then F � �s would still
contain a root or leaf with S–coordinate s (this latter case uses the fact that T is open).
Thus, the only possibility is F � �s ,! .S � s/˝T for s an inner edge of S .

Now let �"<s
s D e1 � � � ek consist of the �d–maximal ei D .si ; ti/ such that both

ei <d �s and si <d s , and consider the subtree U
��s

<=�
"<s
s

. Then (i) this tree has no leaf
with S coordinate s , or else that would be a leaf of U (Remark 5.22), and thus also
of F , so that F � �s ,! .S � s/˝T could not hold; (ii) the leaf tuple of this tree is
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hence �"<s
s ; (iii) by definition of �"<s

s , all inner edges of this tree have S coordinate s .
But the condition F ��s ,! .S�s/˝T now implies that F contains none of the inner
edges of U

��s

<=�
"<s
s

, so that Lemma 7.34 implies that F is a subface of some V <lex U ,
hence contained in A[

S
V 2B V .

Suppose now that F � �s is a subface of some V 2B . By Lemma 7.37 (and its proof)
we can assume that in fact F � �s is an inner subface of V and V <lex U . Further,
by the “in fact” part of Lemma 7.37 one can also assume that this is a generating �lex

relation. But then V necessarily contains �s , since generating �lex relations do not
add edges whose vertex is a T –vertex. Thus F � �s ,! V implies F ,! V .

Example 7.40 The following is a typical tree illustration of U
��s

<=�
"<s
s

:

s

s
s

ss

s

�s

In words, this subtree always has (i) S–vertices (in black), all of the same arity, below
its leaves; (ii) a T –vertex above its root �s (in white); (iii) all its remaining vertices
T –vertices (so that the edges marked s have S–coordinate s ).

Remark 7.41 For the previous proof to work it is crucial for the tree U
��s

<=�
"<s
s

to in
fact have inner edges, as is ensured by the fact that � is not a stump of T . In this latter
case we will instead need to use the following alternative lemma.

Lemma 7.42 Suppose that S is a linear tree (ie S ' Œn� for Œn� 2�).

Then for U 2 IE
oplex
�

.S ˝T / the �d–maximal edge of U of the form �s is a charac-
teristic edge (in the sense of Lemma 7.39).

Proof Since S is linear we will for simplicity label its edges by 0� 1� � � � � n.

Suppose first that F � �s is in A, so that repeating the argument in the proof of
Lemma 7.39 we conclude it must be F � �s ,! .S � s/˝T for s < n (note that this
makes sense even if sD 0 is the leaf of S , which must be considered if T is not open).

Since s ¤ n, one can choose a �d–minimal edge asC1 of U such that �s �d asC1 .
Then (i) the characterization of �s implies that a¤ � ; (ii) the characterization of asC1
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implies that U contains the S–vertex as D a"S
sC1
� asC1 ; (iii) since U contains both

�s and as , it contains the T –vertex a"T
s
� as , which can be rewritten as a"S;T

sC1
� aS

sC1
.

Therefore, U contains the relations a"S;T
sC1

� a"S
sC1
� asC1 ; since F must collapse

as D a"S
sC1

, this yields that F is a subface of the tree V �oplex U that is obtained by
replacing as D a"S

sC1
with a"T

sC1
.

The case of F � �s a subface of some V 2 B follows by an argument identical to that
in the proof of Lemma 7.39, except now noting that generating �oplex relations do not
add edges whose vertex is a S–vertex.

Proof of Proposition 7.38 Without loss of generality we can assume that B0 is
obtained from B by adding a single �–internal initial elementary tree U with �s its
corresponding edge.

We first note that the outer faces of U are in A[
S

V 2B V . Since a maximal outer
face xU ,! U is always still elementary, xU will be �–internal initial elementary
unless (i) xU D U�.e;rT / (resp. xU D U�.rS ;e/ ) is a root vertex face, in which case
xU ,! .S�e/˝T (resp. xU ,! S ˝ .T �e/) and is hence in A; (ii) xU D U<=�s

and xU
is no longer �–internal since it contains no T –vertices of the form �"T

zs
� �zs . But then

xU ,! S ˝T<=� would hold (by either Lemma 7.19 or Corollary 7.24) and thus xU is
in A.

Finally, we let Inn O�s
.U / denote the poset of inner faces of U removing only edges

other than �s . We claim that for any convex subsets C � C 0 � Inn O�s
.U / the map

(7.43) A[
[

V 2B

V [
[

W 2C

W !A[
[

V 2B

V [
[

W 2C 0

W

is inner anodyne. We argue by induction on C and again we can assume that C 0 is
obtained from C by adding a single X 2 Inn O�s

.U / not yet in the domain of (7.43). The
concavity of C and C 0 and the characteristic edge condition in Lemmas 7.39 and 7.42
then imply that the only faces of X not in the source of (7.43) are precisely X and
X � �s , showing that (7.43) is a pushout of ƒ�s ŒX �!�ŒX �, finishing the proof.

In the G–equivariant case, given an inner edge orbit G� , we write IEG�.S ˝T / for
the poset of initial elementary trees containing at least one T –vertex of the form
.g�/

"T
s � .g�/s (alternatively, one has IEG�.S ˝ T / D

S
g2G IEg�.S ˝ T /). Note

that in this case the group G acts on the poset IEG�.S ˝T / as well. The following is
the equivariant version of Proposition 7.38.
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Proposition 7.44 Let S;T 2 �G be G–trees and � 2 T an inner edge. Further,
assume that either both S and T are open or that one of them is linear (ie of the form
G=H � Œn�). Set

AD�ŒS �˝ƒG� ŒT � q
@�ŒS �˝ƒG� ŒT �

@�ŒS �˝�ŒT �;

and regard A and the �ŒV � below as subpresheaves of �ŒS �˝�ŒT �.

Then for any G–equivariant convex subsets B �B0 of IEG�.S˝T / (or, in the special
case of S a linear tree and T not open, of IE

oplex
G�

.S ˝T /) one has that

A[
[

V 2B

�ŒV �!A[
[

V 2B0

�ŒV �

is a G–inner anodyne extension.

Again we will suppress � from the notation of the proof.

Proof Note we are free to assume that S;T 2�G ��G , ie that S and T are actual
trees with a G–action rather than G–indecomposable forests. Indeed, otherwise writing
S 'G �H Se and T 'G �K Te for Se 2�

H and Te 2�
K yields a decomposition

S ˝T '
a

Œg�2H nG=K

G �H\gKg�1 Se˝gTe;

where when regarding Se;gTe 2�
H\gKg�1

we omit the forgetful functors.

In analogy with the nonequivariant case we can assume B0 is obtained from B by adding
the G–orbit of a single �–internal initial elementary tree U with �s the corresponding
edge. Let H �G denote the G–isotropy of U in IEG�.S ˝T /.

That the outer faces of any of the conjugates gU are in A[
S

V 2B V follows by the
corresponding nonequivariant argument in the proof of Proposition 7.38.

The key is now to prove the equivariant analogues of Lemmas 7.39 and 7.42, stating
that H �s is a characteristic edge orbit of U , ie that for each inner face F of U con-
taining all edges in H �s , we have that F is in A[

S
V 2B V if and only if F �H �s is.

When proving the equivariant analogue of Lemma 7.39, in the case of F �H �s in A,
the argument in that proof yields that F itself must already lack all the inner edges of at
least one of the U

�h�hs

–h�
"<hs

hs

subtrees (where h 2H ) and therefore applying Lemma 7.34
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again shows that F is a subface of some V <lex U . In the case of F �H �s in some
V < U , repeating the argument in the proof we can again assume V <lex U via a
generating �lex relation and such V must likewise contain all the edges in H �s .

Proving the equivariant analogue of Lemma 7.42 requires no changes to the proof,
since defining asC1 in the same way one still concludes that F must lack as (in fact,
F must lack Has , though that fact in not needed).

Lastly, we equivariantly modify the last two paragraphs in the proof of Proposition 7.38:
setting InnbH �s

.U / to be the H–poset of inner faces of U lacking only edges not
in H �s (ie containing all edges in H �s ), we show by induction on H–equivariant
concave subsets C � C 0 � InnbH �s

.U / that the map

(7.45) A[
[

V 2B

V [

� [
g2G;W 2C

gW

�
!A[

[
V 2B

V [

� [
g2G;W 2C 0

gW

�
is inner G–anodyne. Again we can assume that C 0 is obtained from C by adding the
H–orbit of a single X containing all edges in H �s and not in the domain of (7.45).
Write xH �H for the H–isotropy of X . At this point an extra equivariant argument
is needed: one needs to know that for all subsets E �H �s the G–isotropy of X �E

coincides with its H–isotropy (which is necessarily a subgroup of xH ). To see this,
note that if it were otherwise then X �E would be contained in both U and a distinct
conjugate gU , and Lemma 7.37 would imply that X is already in the domain of (7.45).
Finally, repeating the “characteristic edge (orbit)” argument we see that the map (7.45) is
a pushout of (note that this is only a generating horn if xH DH , so that Proposition 6.17
is needed otherwise)

G � xH .ƒH �s ŒX �!�ŒX �/;

finishing the proof.

We now adapt the previous proof to deduce the easier Theorem 7.2.

Proof of Theorem 7.2 The argument follows by attempting to follow the proof of
Proposition 7.44 when T D Œ1� and � D 1 (note that Definition 7.33 still makes sense,
although the edge 1s of U may now possibly be the root, hence not internal). The only
case where (the equivariant analogue) of Lemma 7.39 does not provide a characteristic
edge orbit is when the root vertex of U is 1

"T
r � 1r , in which case U will be in A

unless (using the notation in the proof of Proposition 7.25) �.U /D S , so that in fact
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U DS˝f0g[f1r g. Denoting this latest U as S ?� and noting that it is the maximum
of the poset IE�.S ˝ Œ1�/ one concludes that letting A! B denote

A!A[
[

V 2IE�.S˝Œ1�/;V¤S?�

V;

this is indeed inner G–anodyne. The pushout (7.3) follows by noting that the only face
of S ?� not in B is .S ?�/�� (in fact, the only other face F such that �.F /D S is
.S ? �/� 0r , which is a common face of the elementary tree V obtained by applying
a �lex relation to the root of S ? �).

7.4 Dendroidal join

We now turn to the equivariant version of the dendroidal join ? discussed in [5,
Section 4], which will be needed to understand the last piece of the filtration in
Theorem 7.2. We recall that several categories of forests were discussed in Section 5.2.

Definition 7.46 Given an object F 2 ˆ and Œn� 2 � we define F ? Œn� 2 � as the
broad poset having underlying set F q Œn� and relations

� e1 � � � en � e if ei ; e 2 F and e1 � � � en �
F e ;

� i � j if i; j 2 Œn� and i �Œn� j ;

� e1 � � � en � i if ej 2 F , i 2 Œn� and e1 � � � en �
F rF .

Example 7.47 As explained in [5, Section 4.3], one can readily visualize ? when
using tree diagrams, such as in the following example:

a b c

F Œ2�

0

1

2

F ? Œ2�

c
b

a

0

1

2

Further, note that when F D ∅ is the empty forest, we have that rF D � , and since
� � � , we also have that ∅? Œn� adds a stump at the top of Œn�:

∅? Œ2�

0

1

2
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We now discuss the functoriality of ?. As implicit in the discussion in [5, Section 4.5],
? is only functorial with respect to some maps of forests. Indeed, it is clear from the
third condition in Definition 7.46 that ? will be functorial in F precisely with respect
to the maps in ˆw .

Moreover, the canonical inclusions Œn�!F ?Œn� and F!F ?Œn� can be thus encoded:
letting �C , ˆwC and ˆiC denote the categories �, ˆw and ˆi together with an
additional initial object C, one has the following.

Proposition 7.48 The join ? defines a bifunctor

ˆwC ��C
�?�
���!ˆiC

such that C? Œn�D Œn� and F ?CD F .

Note that ? usually lands in �C , the only exceptions occurring when the second input
is the additional initial object.

We now extend the join operation to presheaves by defining

fSetw � sSet
�?�
���! dSet

to be the composite (writing uW „,!„C for the inclusion and u�W Set„
op
C�Set„

op
Wu�

for the standard adjunction)

(7.49) fSetw�sSet
u��u�
���!Setˆ

op
wC�Set�

op
C �
�!Setˆ

op
wC��

op
C

Lan?
���!Setˆ

op
iC u�
�!dSet:

Remark 7.50 Unpacking (7.49) one can write (see [13, Definition 1.2.8.1])

(7.51) .X ?Y /.T /DX.T /qY .T /q
a

F!T;Œn�!T;T'F?Œn�

X.F /�Y .Œn�/;

where Y .T /D∅ when T is not linear.

Remark 7.52 Because of the passage through the .�/C categories in (7.49), the
join fSetw � sSet

�?�
���! dSet does not preserve colimits in each variable. Rather, the

functors F?.�/ and .�/?Œn� preserve colimits when mapping into the under categories
dSetF= and dSetŒn�= . Therefore, ? does nonetheless preserve connected colimits in
each variable.

The following is an equivariant generalization of a key technical lemma [5, Lemma 4.10]
combined with key arguments in the proof of [5, Theorem 4.2].
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Proposition 7.53 Let A
f
!B be a normal monomorphism in fSetGw (defined as in

Proposition 6.5(iii)) and C
g
!D be a left anodyne map in sSet. Then

f �? gW A?D q
A?C

B ?C ! C ?D

is G–inner anodyne.

Proof That f �? g is indeed a monomorphism whenever f and g are monomor-
phisms follows directly from (7.51).

In light of Remark 7.52 concerning connected colimits, it suffices to consider the case
where f and g have the forms @ˆw ŒF �! ˆw ŒF � and ƒi Œn�!�Œn� for 0 � i < n.
But in that case f �? g is simply the inner horn inclusion

ƒi.F ? Œn�/!�.F ? Œn�/:

Proof of Theorem 7.4 First note that the conditions on S are equivalent to saying
that S ' F ? Œ1� for some F 2 ˆG

w . One can thus rewrite the left vertical map in
Theorem 7.4 as

.ƒ1Œ1�!�Œ1�/�? .∅!ˆw ŒF �/;

and denoting by An.�/ the right adjoint to sSet
A?.�/
���! dSetG

A?C=
, standard adjunction

arguments allows us to convert (7.5) into the equivalent lifting problem

(7.54)

ƒ1Œ1� ˆw ŒF �nX f0g ˆw ŒF �nX

�Œ1� ˆw ŒF �nY �
∅nY

∅nX �Œ1� ˆw ŒF �nY �
i�.Y G/

i�.X G/

where the right-hand diagram merely simplifies the notation on the left: ∅nZ '
i�.ZG/, where we caution that ∅ 6'ˆw Œ∅�, the former being the empty presheaf and
the latter the representable presheaf on the empty forest.

Standard repeated applications of Proposition 7.53 (setting AD∅ or Y D� as needed)
yield that (i) ˆw ŒF �nX ! i�.X G/ and ˆw ŒF �nY ! i�.Y G/ are left fibrations;
(ii) ˆw ŒF �nX and ˆw ŒF �nY are left fibrant and thus 1–categories; (iii) the rightmost
map ˆw ŒF �nX !ˆw ŒF �nY �i�.Y G/ i�.X G/ in (7.54) is a left fibration. Therefore,
the map ˆw ŒF �nY �i�.Y G/ i�.X G/! i�.X G/ is itself a left fibration (it is a pull-
back of ˆw ŒF �nY ! i�.Y G/) and since left fibrations conserve equivalences [12,
Proposition 2.7] the image of the lower map in (7.54) is a equivalence. The result now

Algebraic & Geometric Topology, Volume 18 (2018)



Equivariant dendroidal sets 2233

follows since equivalences can be lifted over left fibrations between 1–categories [12,
Propositions 2.4 and 2.7].

Remark 7.55 The interested reader may note that Proposition 7.53 and Theorem 7.4
have notably shorter proofs than the analogous results [5, Lemma 4.10 and Theorem 4.2].
In fact, some of our arguments closely resemble the proof for the simplicial case as
found in [13, Proposition 1.2.4.3]. The brevity of these arguments is the reason for our
introduction of the forest category ˆw: from our perspective, many of the arguments
in [5] are replaced with the task of showing that the boundaries @ˆw ŒF � satisfy the
usual formal properties.

8 Model structure on equivariant dendroidal sets

We now adapt the treatment in [5] to equip the category dSetG with a model structure
where the cofibrations are the normal monomorphisms (see Proposition 6.5) and the
fibrant objects are the G-1–operads (see Definition 6.12). Since we have already
established the equivariant analogues of the main technical results needed (Theorems
7.1, 7.2 and 7.4), the proofs in [5] will now carry over to our context with only minor
changes needed.

8.1 Existence of the model structure

Our goal in this first section is to establish Proposition 8.8, which abstractly builds the
desired model structure on dSetG by generalizing [5, Proposition 3.12].

As it turns out, adapting the treatment in [5, Section 3] requires only minimal modifica-
tions (essentially “adding G to the statements therein”). As such, we will be brief in
our discussion, and refer the reader to [5, Section 3] for extra details.

Recall the notation J DN.0� 1/ for the nerve of the groupoid generated by a single
isomorphism between two distinct objects. As in [5, Section 3.2] we write Jd D i!.J /

when regarding J as a dendroidal set, and we will further regard Jd as a G–dendroidal
set by equipping it with the trivial G–action.

Following [5, Section 3.2], we define An, the class of J–anodyne extensions, to be the
saturation of the G–inner horn inclusions together with the maps

(8.1) fig˝�ŒT � q
fig˝@�ŒT �

Jd ˝ @�ŒT �! Jd ˝�ŒT �; i D 0; 1; T 2�G :
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A G–dendroidal set X (resp. map X ! Y ) is then called J–fibrant (resp. J–fibration)
if it has the right lifting property with respect to the maps in An.

The following generalizes the necessary parts of [5, Proposition 3.3] (note that that
result is slightly corrected in the errata to [5]).

Proposition 8.2 Let A! B be a normal monomorphism in dSetG . Then:

(i) For i D 0; 1, the map fig˝Bqfig˝A Jd ˝A! Jd ˝B is in An.

(ii) f0; 1g˝Bqf0;1g˝A Jd ˝A! Jd ˝B is a normal monomorphism, which is
in An if A! B is.

Proof Item (i) follows since normal monomorphisms are built by attaching boundary
inclusions @�ŒT �! �ŒT � for T 2 �G . Similarly, (ii) follows from the “S linear”
cases of Proposition 7.25 and Theorem 7.1 (recall that Jd is a simplicial set).

As in [5, Section 3.4], for a G–dendroidal set B we now write dSetG=B for the category
of G–dendroidal sets over B and let AnB denote the class of maps in dSetG=B whose
image in dSetG is in An.

Proposition 8.3 Write @0W f0g!Jd , @1W f1g!Jd and � W Jd!f�g for the standard
maps3 and use the abbreviation J D .Jd ˝�; @

0˝�; @1˝�; � ˝�/.

Then whenever B is normal the pair .J ;AnB/ is a homotopical structure on dSetG=B

as defined in [4, Definition 1.3.14].

Proof There are two parts: showing that J is an elementary homotopical datum as in
[4, Definition 1.3.6] and that AnB is a class of anodyne extensions with respect to J
as in [4, Definition 1.3.10]. We will refer to the axiom names used therein.

For the first claim, both axioms DH1 and DH2 follow from Proposition 7.25 since
when B is normal all monomorphisms over B are normal monomorphisms.

For the second claim, axiom An0 follows by [4, Lemma 1.3.52] while An1 and An2
follow from Proposition 8.2.

Combining the results [4, Theorem 1.3.22, Proposition 1.3.31, Proposition 1.3.36
and Lemma 1.3.52] now yields the following (which generalizes [5, Proposition 3.5
and Remark 3.6]).

3Note that f�g D i!.�/ denotes the terminal simplicial set, not the terminal dendroidal set.
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Proposition 8.4 For any normal G–dendroidal set B , the category dSetG=B has a
left proper cofibrantly generated model structure such that

� the cofibrations are the monomorphisms;

� J–anodyne extensions over B are trivial cofibrations;

� the fibrant objects are the X
p
!B such that p is a J–fibration in dSetG;

� a map X
f
!X 0 between fibrant X !B and X 0!B is a fibration in dSetG=B

if and only if f is a J–fibration in dSetG .

The following generalizes [5, Lemma 3.7], again following from [4, Corollary 1.3.35].

Lemma 8.5 Let X ! Y be a trivial fibration between normal G–dendroidal sets.
Then any section sW Y !X is in An.

Fix once and for all a normalization E1 of the terminal G–dendroidal set �, ie a
trivial fibration E1!� with E1 a normal G–dendroidal set.

The following generalizes [5, Lemma 3.9].

Lemma 8.6 For any normal G–dendroidal set X and map aW X ! E1 , the map
.a; id/W X !E1 �X is in An.

Proof Since .a; id/ is a section of the projection X �E1! X , this follows from
Lemma 8.5.

The following generalizes [5, Lemma 3.10].

Lemma 8.7 Let i W A! B be a map of normal G–dendroidal sets and pW X ! Y

any map of G–dendroidal sets. Then p has the right lifting property with respect to i

if and only if, for any map B!E1 , the map E1 �X
id�p
���!E1 �Y has the right

lifting property with respect to i in dSetG=E1 .

Proof Given a lifting problem as on the left below, one obtains a lifting problem as
on the right by arbitrarily choosing a map B!E1 (such a map always exists since
B is assumed normal). It is clear that the lifting problems are equivalent:

A X A E1 �X

B Y B E1 �Y

i p i id�p
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We finally obtain the model structure on dSetG , generalizing [5, Proposition 3.12].

Proposition 8.8 dSetG is equipped with a left proper cofibrantly generated model
structure such that

� the cofibrations are the normal monomorphisms;

� inner G–anodyne extensions are trivial cofibrations;

� the fibrant objects are the J–fibrant objects;

� the fibrations between fibrant objects are the J–fibrations.

Proof As in [5, Proposition 3.12], the model structure is built via the adjunction

p!W dSet
G=E1� dSetG Wp�;

where p!.X !B/DX and p�.X /D .E1�X !E1/. Noting that both p! and p�

preserve all colimits it follows that condition (iii) in [4, Proposition 1.4.23] reduces to
verifying that p�p!.j / is a trivial cofibration in dSetG=E1 whenever j is. Since this
follows from Lemma 8.6, the transfer model structure exists.

The claim that cofibrations are normal monomorphisms follows since all monomor-
phisms over E1 are normal. The converse follows since all boundary inclusions
@�ŒT �!�ŒT � are in the image of p! , and the claim concerning anodyne extensions
follows by the same argument. The fibrancy claims follow from Lemma 8.7. Lastly,
left properness follows from that in Proposition 8.4 together with the observation that
p� preserves both cofibrations and colimits and detects weak equivalences.

Remark 8.9 As in the case of the model structure on dSet or of the Joyal model
structure on sSet, the trivial cofibrations (resp. fibrations) in Proposition 8.8 do not
coincide with the inner G–anodyne extensions (resp. J–fibrations), but merely contain
(resp. are contained in) them.

8.2 Characterization of fibrant objects

Much as in [5], the bulk of the work is now that of characterizing the fibrant objects as
indeed being the G-1–operads.

We will need to make use of the adjunction

u�W dSetG� dSetG Wu�

discussed in Proposition 5.53.
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Definition 8.10 The class of normal monomorphisms of dSetG is the saturation of the
maps of the form u�.A!B/ for A!B a normal monomorphism in dSetG . Further,
a map X ! Y in dSetG is called a trivial fibration if it has the right lifting property
with respect to normal monomorphisms.

We now extend some notation from [5, Section 6.1].

As usual, for X an 1–category, k.X / will denote the maximal Kan complex inside X

and �.X / 2 Cat will denote its homotopy category.

Notation 8.11 For a G-1–operad X and simplicial set K (thought of as having a triv-
ial G–action), we define X .K / 2 dSetG to have T –dendrices (recall T 2�G ) the maps

i!.K/˝�ŒT �
a
�!X

such that for each edge orbit G=H � �
G=H �e
���!T , the induced map

K
ae
�! i�.X H /

factors through k.i�.X H //D k..i�.X //H /.

Remark 8.12 For X a G-1–category one always has k.X G/ � k.X /G , but this
inclusion is rarely an equality.

Notation 8.13 For a normal G–dendroidal set A 2 dSetG and a G-1–operad X we
define k.A;X / 2 sSet to have n–simplices the maps

i!.�Œn�/˝A b
�!X

such that for all element orbits G=H � �
G=H �a
���!A, the induced map

�Œn�
ba
�! i�.X H /

factors through k.i�.X H //D k..i�.X //H /.

Note that there are canonical isomorphisms

(8.14) HomsSet.K; k.A;X //' HomdSetG .u�.A/;X
.K //:

The following is the analogue of [5, Theorem 6.4]. Recall that a map C! D in Cat is
called a categorical fibration if it has the right lifting property against the inclusion
1! eŒ1� , where eŒ1� D .0� 1/ is the contractible groupoid with two objects.
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Theorem 8.15 Let pW X ! Y be a G–inner fibration between G-1–operads. Then

(8.16) ev1W X
.�Œ1�/

! Y .�Œ1�/ �u�.Y / u�.X /

has the right lifting property with respect to inclusions u�.@�ŒS �! �ŒS �/ for any
G–tree S 2�G with at least one vertex.

Consequently, the map (8.16) is a trivial fibration in dSetG if and only if all maps
� i�.X H ! Y H / for H �G are categorical fibrations.

Proof Noting that S ' G �H Se for some Se 2�
H and H � G , it suffices to deal

with the case S 2�G .

The proof of the main claim now follows exactly as in the proof of [5, Theorem 6.4] by
replacing uses of [5, Theorem 5.2] and [5, Theorem 4.2] with the equivariant analogues
Theorems 7.2 and 7.4.

For the “consequently” part, one needs only note that in the equivariant context there
are now multiple G–trees with no vertices, namely the G–trees of the form G=H ��.

The following is the analogue of [5, Proposition 6.7].

Proposition 8.17 Let pW X ! Y be a G–inner fibration between G-1–operads. If
� i�.X H ! Y H / is a categorical fibration for all H �G then, for any monomorphism
between normal dendroidal sets A! B , the map

(8.18) k.B;X /! k.B;Y /�k.A;Y / k.A;X /

is a Kan fibration between Kan complexes.

Proof We will mainly refer to the proof of [5, Proposition 6.7], while indicating
the main changes. First, note that it follows from Theorem 7.1(ii) that the map
Hom.B;X /! Hom.B;Y / �Hom.A;Y / Hom.A;X / of simplicial mapping spaces is
a G–inner fibration between G-1–categories, and therefore so is (8.18). As in [5,
Proposition 6.7], it now suffices to check that (8.18) has the right lifting property against
the “left pushout products”

@�Œn���Œ1�[@�Œn��f1g�Œn�� f1g !�Œn���Œ1�

(ie thanks to [5, Lemma 6.5] one needs only consider the case i D 1 of (8.1)). A lifting
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problem

(8.19)

@�Œn���Œ1�[�Œn�� f1g k.B;X /

�Œn���Œ1� k.B;Y /�k.A;Y / k.A;X /

h

induces an (a priori nonequivalent) lifting problem:

(8.20)

u�.@�Œn�˝B [�Œn�˝A/ X .�Œ1�/

u�.�Œn�˝B/ Y .�Œ1�/ �u�.Y / u�.X /

xh

That the lift xh in (8.20) exists follows from Theorem 8.15 and it hence remains to
check that the adjoint map i!.�Œn� � �Œ1�/˝ B ! X indeed provides the map h

in (8.19). That is, one must check that for any element orbit G=H �b of B the induced
map �Œn���Œ1�! i�.X H / factors through k.i�.X H // (note that the existence of xh
only guarantees such a factorization for the restriction along f0; 1; : : : ; ng ��Œ1� �
�Œn���Œ1�). The n D 0 case is immediate and the n > 0 case follows by arguing
using the “2-out-of-3 property”, just as in the penultimate paragraph of the proof of [5,
Proposition 6.7].

Standard arguments (setting AD∅ or Y D � just as in [5, Proposition 6.7] or as at
the end of the proof of Theorem 7.4) finish the proof.

Combining the previous result with (8.14) now yields the following.

Corollary 8.21 Let pW X ! Y be a G–inner fibration between G-1–operads such
that � i�.X H ! Y H / is a categorical fibration for all H �G . Then, for any anodyne
extension of simplicial sets K!L,

X .L/
! Y .L/ �Y .K/ X .K /

is a trivial fibration in dSetG .

We now obtain our sought generalization of [5, Theorem 6.10].

Theorem 8.22 A G–dendroidal set X is J–fibrant if and only if it is a G-1–operad.
Further, a G–inner fibration pW X ! Y between G-1–operads is a J–fibration if and
only if � i�.X H ! Y H / is a categorical fibration for all H �G .
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Proof It suffices to prove the “further” claim. Moreover, the “only if” direction is
a direct consequence of [12, Corollary 1.6]. Unwinding definitions and adjunction
properties it thus remains to show that

X Jd ! Y Jd �Y f0g X f0g

is a trivial fibration in dSetG if � i�.X H!Y H / is a categorical fibration for all H �G .
We now note that since any map Jd !Z necessarily factors through k.Z/, the map

u�.X
Jd ! Y Jd �Y f0g X f0g/

coincides with the map

X .Jd /! Y .Jd / �Y .f0g/ X .f0g/;

which is a trivial fibration in dSetG by Corollary 8.21. The result now follows since
dSetG is a reflexive subcategory of dSetG , so that u�.f / is a trivial fibration if and
only if f is.

The following follows exactly as in [5, Corollary 6.11].

Corollary 8.23 The class of weak equivalences in dSetG is the smallest class that
contains the inner G–anodyne extensions and the trivial fibrations and is closed under

“2-out-of-3”.

9 Indexing system analogue results

In this section we follow the lead of [2] and build variant model structures on dSetG

associated to indexing systems, a notion originally introduced in [2, Definition 3.22],
which we repackage (and slightly extend) in Definition 9.5.

Definition 9.1 A G–graph subgroup of G�†n is a subgroup K �G�†n such that
K\†n D �.

Remark 9.2 G–graph subgroups are graphs of homomorphisms G �H !†n .

Definition 9.3 A G–vertex family is a collection

F D
a
n�0

Fn;

where each Fn is a family of G–graph subgroups of G �†n closed under subgroups
and conjugation.

Algebraic & Geometric Topology, Volume 18 (2018)



Equivariant dendroidal sets 2241

Further, an H–set X for a subgroup H �G is called an F–set if for some (and hence
any) choice of isomorphism X ' f1; : : : ; ng the graph subgroup of G �†n encoding
the H–action on f1; : : : ; ng is in F .

Definition 9.4 Let F be a G–vertex family. A G–tree T is called an F–tree if for
all edges e 2 T with isotropy H one has that the H–set e" is an F–set.

It is clear that whenever T ! S is either an outer face or a quotient, S being an
F–tree implies that T is also. However, the same is typically not true for inner faces
and degeneracies.

Definition 9.5 A G–vertex family F is called a weak indexing system if F–trees form
a sieve of �G , ie if for any map T ! S with S an F–tree, T is also an F–tree. In
this case we denote the sieve of F–trees by �F ��G .

Additionally, F is called an indexing system if every Fn contains all subgroups H���

G �†n for H �G and n� 0.

Remark 9.6 Closure under degeneracies is simply the statement that F1 contains all
subgroups H DH �†1 �G �†1 for H �G .

Remark 9.7 Since Definition 9.5 may at first seem to be quite different from the
original [2, Definition 3.22], we now address the equivalence between the two. To
an H–set with orbital decomposition H=K1 q � � � qH=Kn one can associate the
G–corolla with orbital representation as follows:

G=KnG=K1

G=H

Note that for any of its roots r one has that r" is a G–conjugate of the H–set
H=K1q� � �qH=Kn . The conditions (see [2, Definition 3.22]) that indexing systems
are closed under disjoint unions [2, Definition 3.19] and subobjects [2, Definition 3.21]
of F–sets are then encoded by taking inner faces of F–trees of the form

G= xKmG= xK1

G=H

G=KnG=K1

G=H

G=H

G=Kn

G=K2
G=K1

G=H
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while the closure under self-induction [2, Definition 3.20] is similarly encoded by
F�trees as on the left below:

G=LnG=L1

G=K

G=H

G=K\H gnG=K\H g1

G=K

G=H

Closure under cartesian products [2, Definition 3.22] is in fact redundant, as the double
coset formula H=K �H=L '

`
Œg�2LnH=K H=K\Lg allows such H–sets to be

built using self-inductions as displayed by the rightmost tree above (the case of products
of sets with multiple orbits being then obtained via disjoint units).

Definitions 6.3, 6.11 and 6.12 admit weak indexing system analogues.

Definition 9.8 Let F be a weak indexing system.

An F–boundary inclusion (resp. F–inner horn inclusion) is a boundary inclusion
@�ŒT �!�ŒT � (resp. inner horn inclusion ƒGe ŒT �!�ŒT �) with T 2�F .

A monomorphism is called F–normal (resp. F–anodyne) if it is in the saturation of
F–boundary inclusions (resp. F–inner horn inclusions) under pushouts, transfinite
compositions and retracts.

Finally, a G–dendroidal set X is called an F-1–operad if it has the right lifting
property with respect to all F–inner horn inclusions:

ƒGe ŒT � X

�ŒT �

We now list the necessary modifications to extend the results in this paper to the
indexing system case.

A direct analogue of Proposition 6.5 yields that X 2 dSetG is F–normal (ie ∅!X is
an F–normal monomorphism) if and only if all dendrices x 2X.T / have F–isotropy,
ie if and only if they all have isotropies � �G�†T that are graph subgroups for partial
homomorphisms G �H !†T such that the induced G–tree G �H T is an F–tree.

It then follows that, much like normal dendroidal sets, F–normal dendroidal sets form
a sieve; ie for any map X ! Y with Y an F–normal dendroidal set then so is X .
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Noting that the subtrees of S ˝T are F–trees whenever S and T are F–trees (since
the generating vertices/broad relations of S ˝T are induced from those of S and T ),
it follows that �ŒS �˝�ŒT � is then F–normal so that the sieve condition implies that
Proposition 7.25 generalizes to the F–normal case.

Likewise, the key results Theorem 7.1 and 7.2 immediately generalize by replacing the
terms “G–tree” and “G–anodyne” with “F–tree” and “F–anodyne”. This is because
their proofs, while long, ultimately amount to identifying suitable edge orbits of suitable
subtrees of S ˝T and then attaching the corresponding equivariant horns.

Likewise, Proposition 7.53 generalizes to the F case for the same reason, and hence
so does Theorem 7.4, since its proof is an application of Proposition 7.53.

We can now prove Theorem 2.2.

Proof of Theorem 2.2 The proof of the existence of the model structure follows just
as in Section 8.1. The only notable changes are as follows: in defining JF–anodyne
extensions one uses only F–inner horns and those maps in (8.1) for T 2�F ; the term
“normal” is replaced with “F–normal” throughout (note that any monomorphism over
an F–normal dendroidal set is an F–normal monomorphism).

The characterization of the JF–fibrant objects as being the F-1–operads follows by
repeating the arguments in Section 8.2, though some care is needed when adapting
the definitions preceding Theorem 8.15. Firstly, letting �F ��G denote the sieve of
F–trees, one sets dSetF D dSet�

op
F , leading to an adjunction

u�W dSetF � dSetG Wu�

allowing for the F–normal monomorphisms of dSetF to be defined from the F–normal
monomorphisms in dSetG just as in Definition 8.10.

For an F-1–operad and simplicial set K , one defines X .K / 2 dSetF just as in
Notation 8.11 while for A2 dSetG an F–normal dendroidal set and an F-1–operad X

one defines k.A;X / 2 sSet just as in Notation 8.13.

The proofs of Theorem 8.15, Proposition 8.17 and Theorem 8.22 now extend mutatis
mutandis by using the F versions of Theorems 7.2 and 7.4.
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