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The number of fiberings of a surface bundle over a surface

LEI CHEN

For a closed manifold M , let SFib.M / be the number of ways that M can be realized
as a surface bundle, up to �1–fiberwise diffeomorphism. We consider the case when
dim.M /D 4 . We give the first computation of SFib.M / where 1< SFib.M / <1

but M is not a product. In particular, we prove SFib.M /D 2 for the Atiyah–Kodaira
manifold and any finite cover of a trivial surface bundle. We also give an example
where SFib.M /D 4 .

57R22, 57M50; 57M10, 55N25

1 Introduction

Let M be a closed manifold and for any g > 1 let Sg denote a closed, connected,
orientable surface of genus g . We will call the following number the surface-fibering
number of M :

(1-1) SFib.M /D #
˚
surface bundles Sg!M !B W g> 1; B closed manifold

	
=�;

where two fiberings of M are equivalent if and only if they are �1–fiberwise diffeomor-
phic; ie if the fundamental groups of their fibers are the same subgroups of �1.M /. See
Section 2 for more details. The equivalence relation of �1–fiberwise diffeomorphism is
more natural than fiberwise diffeomorphism algebraically because it classifies fiberings
based on how �1.M / can be represented as an extension by �1.Sg/ for some g > 1.
Also �1–fiberwise diffeomorphism is finer than fiberwise diffeomorphism; so SFib.M /

is an upper bound for the number of fiberings up to fiberwise diffeomorphism.

In the case dim.M /D 3, Thurston [11] classified all possible surface bundle structures
on a fixed M using the Thurston norm. His theory implies that if M is a surface bundle
over S1 , then SFib.M /D1 if and only if dim.H 1.M IQ//> 1. Further, the nonzero
Z–points in the so-called “fibered cone” of H 1.M IR/ up to scalar multiplication are
in one-to-one correspondence with distinct fiberings.

In this paper we study the case where dim.M /D 4; in other words, the case where
M is a surface bundle over a surface. When the Euler characteristic �.M / is positive,
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F E A Johnson [5] proved that SFib.M / < 1. He also obtained an upper bound
for SFib.M / depending only on �.M /. For any N > 1, Salter [9] constructed an
example MN such that SFib.MN / >N . His work does not give the exact value of
SFib.MN / for any N . Salter [9; 10] proved that if the monodromy of a nontrivial
bundle Sg!M ! B is in the Johnson kernel, then SFib.M /D 1. He also proved
that if H 1.M IQ/ŠH 1.BIQ/ then SFib.M /D 1.

One beautiful example of a multifibered 4–manifold is the Atiyah–Kodaira manifold
MAK ; see Atiyah’s paper [1], Kodaira’s paper [6] or Section 3 for the construction. It
follows from the construction that MAK has at least two different fiberings:

S6!MAK! S129 and S321!MAK! S3:

It is natural to ask if there are any other fiberings. Our first theorem answers this
question in the negative.

Theorem 1.1 (surface-fibering number of MAK ) The Atiyah–Kodaira manifold has
precisely two fiberings up to �1–fiberwise diffeomorphism; that is, SFib.MAK/D 2.
In particular, MAK has precisely two fiberings up to fiberwise diffeomorphism.

As mentioned above, fiberwise diffeomorphism is implied by �1–fiberwise diffeomor-
phism. In particular, MAK has two fiberings up to fiberwise diffeomorphism because
the two fiberings of MAK have different fibers and thus are clearly not fiberwise
diffeomorphic. While MAK has been well-studied in the last 50 years by Atiyah,
Hirzebruch, Kodaira and many others, we will show that there are choices involved
in the construction, which are parametrized by elements in H 1.S129 �S3IZ/. See
Section 3 for details. At the end of Section 3.1, we will pose the question of whether
the different Atiyah–Kodaira manifolds we construct are diffeomorphic to one another
as smooth manifolds.

Denote the genus of a closed oriented surface S by g.S/. We can also compute the
surface-fibering number of a finite cover over a product B �F where B and F are
two surfaces with g.B/ > 1 and g.F / > 1.

Theorem 1.2 (finite cover of a trivial bundle) Let E be a regular finite cover of a
trivial bundle B �F where B and F are two surfaces with g.B/ > 1 and g.F / > 1.
Then SFib.E/D 2.
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Salter [9] constructed a certain 4–manifold MS by performing a section sum of two
copies of Sg � Sg ; see Section 6 for the construction. He provided four distinct
fiberings of MS ; so SFib.MS /� 4. Our next theorem classifies the fiberings of MS .

Theorem 1.3 (Salter’s 4–fibering example) Salter’s example MS has precisely four
fiberings up to �1–fiberwise diffeomorphism; that is, SFib.MS /D 4.

Unlike the Atiyah–Kodaira example, the four fiberings of MS are actually fiberwise
diffeomorphic to one another but not �1–fiberwise diffeomorphic to one another.

All the known examples have SFib.M / a power of 2. We conjecture that all the
examples that Salter built in [9] have SFib.M / a power of 2. Therefore, we ask the
following question.

Question 1.4 (3–fiberings construction) Is there a surface bundle over a surface with
total space M such that SFib.M / is not a power of 2?

Acknowledgements The author would like to thank Nick Salter, Ben O’Connor and
Nir Gadish for their discussions related to this topic and for correcting the paper. She
is grateful to the referees, to Justin Lanier and to Dan Margalit for many helpful
suggestions. She would also like to extend her warmest thanks to Benson Farb for
asking the question, for his extensive comments and for his invaluable support from
start to finish.

2 Definition of equivalent fiberings and a criterion for
two fiberings

In this section we will introduce the definition of �1–fiberwise diffeomorphism, which
is the equivalence relation we use in defining fibering numbers. We will also give a
cohomological criterion for a 4–manifold M to have SFib.M / D 2. In this article,
we only discuss surface bundles rather than general fiber bundles. Thus we will use
“fiberings” to mean “surface-fiberings”. When we talk about fundamental groups in
this paper, we omit the base point.

Definition 2.1 (�1–fiberwise diffeomorphism) Given any closed manifold M , two
fiberings F1!M

p1
�!B1 and F2!M

p2
�!B2 are �1–fiberwise diffeomorphic if

they satisfy the following conditions:
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(1) There exists a diagram
M

a
//

p1

��

M

p2

��

B1
b
// B2

where a; b are both diffeomorphisms.

(2) We have a�.�1.F1//D �1.F1/, where a�W �1.M /! �1.M / is the induced
map on the fundamental groups.

As equivalence relations, �1–fiberwise diffeomorphism is finer than fiberwise diffeo-
morphism or bundle diffeomorphism, where we do not assume the second condition
in Definition 2.1. In other words, the numbering of fiberings of M up to fiberwise
diffeomorphism is at most SFib.M /. To further classify the fiberings up to fiberwise
diffeomorphism, we only need to check all the equivalence classes under �1–fiberwise
diffeomorphism. We use �1–fiberwise diffeomorphism because it is more natural on
the group-theoretic level. Two fiberings F1!M

p1
�!B1 and F2!M

p2
�!B2 are

�1–fiberwise diffeomorphic if and only if �1.F1/ and �1.F2/ are the same subgroups
in �1.M /. From now on, we call two fiberings equivalent if they are �1–fiberwise
diffeomorphic. We have the following lemma of Salter [9, Lemma 3.3].

Lemma 2.2 Given any closed 4–manifold M , if there are two fiberings M
p1
�!B1

and M
p2
�!B2 that are not equivalent, then p�

1
.H 1.B1IQ//\p�

2
.H 1.B2IQ//D f0g.

The following lemma is a cohomological criterion for a 4–manifold M to have
SFib.M /D 2.

Lemma 2.3 (criterion for SFib.M /D2) Let Sh1
!M

p1
�!Sg1

and Sh2
!M

p2
�!Sg2

be two surface bundles over a surface where h1;g1; h2;g2> 1 and p1 is not equivalent
to p2 . Let .p1;p2/W M ! Sg1

�Sg2
be the product. If

.p1;p2/
�
W H 1.Sg1

�Sg2
IQ/!H 1.M IQ/

is an isomorphism and if

.p1;p2/
�
W H 2.Sg1

�Sg2
IQ/!H 2.M IQ/

is injective, then SFib.M /D 2.
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Proof Suppose there exists a third fibering F!M
p
�!B such that p is not equivalent

to p1 or p2 . By Lemma 2.2, for any nonzero element x 2 H 1.BIQ/, we have
that p�.x/ 62 p�

1
H 1.Sg1

IQ/ and p�.x/ 62 p�
2
H 1.Sg2

IQ/. Therefore, there exist
a¤ 0 2 p�

1
H 1.Sg1

IQ/ and b ¤ 0 2 p�
2
H 1.Sg2

IQ/ such that

p�.x/D aC b 2 p�1H 1.Sg1
IQ/˚p�2H 1.Sg2

IQ/ŠH 1.M IQ/:

Since �.M / > 0 and �.F / < 0, we have �.B/ < 0, implying g.B/ > 1. Therefore,
there is an element y ¤ 0 2H 1.BIQ/ which is not a multiple of x but satisfies

x ^ y D 0 2H 2.BIQ/:

Suppose that

p�.y/D cC d 2 p�1H 1.Sg1
IQ/˚p�2H 1.Sg2

IQ/ŠH 1.M IQ/:

Since x ^ y D 0,

.aC b/ ^ .cC d/D 0 2 .p1;p2/
�H 2.Sg1

�Sg2
IQ/�H 2.M IQ/:

By the Künneth formula

H 2.Sg1
�Sg2

IQ/ŠH 2.Sg1
IQ/˚

�
H 1.Sg1

IQ/˝H 1.Sg2
IQ/

�
˚H 2.Sg2

IQ/;

we have a^ dCb^ c D 0. By skew-commutativity of cup product, a^ d D c ^ b .
By the property of the tensor product of vector spaces, the only possibility is that cDka

and d D kb for some k 2Q. Hence y is a multiple of x , which is a contradiction.
The result follows.

3 Description of MAK and the uniqueness problem

In this section we will describe the Atiyah–Kodaira manifold MAK and its monodromy
representation. While MAK has been studied intensively in the last 50 years, we will
show below that there are choices involved in the construction, which are parametrized
by elements in a cohomology group. At the end, we will pose the question of whether
the different choices involved determine diffeomorphic manifolds.

3.1 The geometric construction of MAK

We now construct the Atiyah–Kodaira manifold MAK , following Morita [8, Chapter 4.3].
Let S3 be a surface of genus 3 and let � be a free Z=2Z–action on S3 , as in Figure 1.
The trivial bundle S3�S3 has two sections: �id , the graph of the identity, and �� , the
graph of � .
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B B0

180ı

a1 a2 a3

b1 b2 b3

Figure 1: Involution �

Since the action is free, the two sections are disjoint. The kernel of the surjective
homomorphism �1.S3/!H1.S3IZ=2/ gives a finite cover i W S129! S3 . We have
the exact sequence

1! �1.S129/
i�
�!�1.S3/!H1.S3IZ=2/! 1:

The pullback surface bundle i�.S3�S3/ŠS129�S3 also has two sections, SiD i�.�id/

and S� D i�.�� /. We have Si D graph.i/ and S� D graph.� ı i/. The plan now is
to characterize Z=2–branched covers over S129 �S3 with branch locus Si [S� . We
begin by computing the Poincaré dual of the homology class ŒSi �C ŒS� �. The Künneth
formula gives us

H2.S129 �S3IZ=2/

ŠH2.S129IZ=2/˚
�
H1.S129IZ=2/˝H1.S3IZ=2/

�
˚H2.S3IZ=2/:

Let ŒS129� and ŒS3� be the fundamental classes of H2.S129IZ=2/ and H2.S3IZ=2/,
respectively. Pick points p0 2 S129 and q0 2 S3 . Define maps

e1W S129! S129 �S3

x 7! .x; q0/
and

e2W S3! S129 �S3

y 7! .p0;y/:

By the computation in [7, Chapter 11] and the fact that i� induces the zero map on
H1.�IZ=2/, we have ŒSi �D e1�ŒS129� and ŒS� �D e1�ŒS129� in H2.S129 �S3IZ=2/.
Therefore

ŒSi �C ŒS� �D e1�ŒS129�C e1�ŒS129�D 0 2H2.S129 �S3IZ=2/:

Denote the Poincaré dual of ŒSi �C ŒS� � by PD.ŒSi �C ŒS� �/. By Poincaré duality,

PD.ŒSi �C ŒS� �/D 0 2H 2.S129 �S3IZ=2/:
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Let M WD S129 �S3�Si �S� . We have the long exact sequence in cohomology of
the relative pair .S129 �S3;M /:

(3-1) H 1.S129 �S3;M IZ=2/!H 1.S129 �S3IZ=2/!H 1.M IZ=2/
�
�!H 2.S129 �S3;M IZ=2/

T
�!H 2.S129 �S3IZ=2/:

By the Thom isomorphism theorem, we have

H 1.S129 �S3;M IZ=2/D 0

and
H 2.S129 �S3;M IZ=2/Š Z=2˚Z=2:

Let T and � be the homomorphisms in the exact sequence (3-1). Now T .1; 0/DPDŒSi �

and T .0; 1/D PDŒS� �. Therefore

T .1; 1/D 0 2H 2.S129 �S3IZ=2/:

So ��1.1; 1/ is not empty in H 1.M IZ=2/. By the isomorphism

Hom.�.M /;Z=2/ŠH 1.M IZ=2/;

we have that H 1.M IZ=2/ classifies Z=2–covers of M . Therefore ��1.1; 1/ classifies
the Z=2–branched covers of S129 �S3 with branch locus Si [S� . Let MAK be one
of them. These branched covers are characterized by a subset of H 1.M IZ=2/, which
is an affine space over H 1.S129�S3IZ=2/ by the exact sequence (3-1). Later we will
analyze how an element of H 1.S129�S3IZ=2/ affects the monodromy. We also pose
a question about the Atiyah–Kodaira construction.

Question 3.1 (uniqueness of Atiyah–Kodaira example) After fixing the trivial bundle
S129�S3 and the two sections Si and S� , there are many choices of branched covers of
S129�S3 with branch locus Si[S� . Are the different branched covers diffeomorphic
as smooth manifolds?

3.2 The monodromy description of MAK

In this subsection, we provide a second construction of MAK from the point of view of
the monodromy representation. For g > 1, the monodromy representation determines
an Sg–bundle uniquely; see eg Farb and Margalit [4, Chapter 5.6].

Let Sg;n be a genus-g surface with n punctures. Let PModg;n (resp. Modg;n ) be
the pure mapping class group of Sg;n , ie the group of isotopy classes of orientation-
preserving diffeomorphisms of Sg that fix n points individually (resp. as a set). We
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omit n when nD 0. Let PConfn.S/, the pure configuration space of a surface S , be
the space of ordered n–tuples of distinct points on S . We have a generalized Birman
exact sequence [4, Theorem 9.1]

1! �1.PConfn.Sg//
Push
��! PModg;n!Modg! 1:

The two disjoint sections of the bundle S3�S3 give us a map .id; �/W S3!PConf2.S3/,
and hence a monodromy representation

�� W �1.S3/! �1.PConf2.Sg//
Push
��! PMod3;2 :

Let B 2 S3 and B0 D �.B/. The Z=2–branched covers of S3 with branch points B

and B0 are parametrized by a subset of H 1.S3;2IZ=2/. Pick any Z=2–branched cover
� W S6! S3 with a deck transformation � and branch points fB;B0g.

Let PMod�6;2 be the centralizer of � in PMod6;2 . We have a map p� W PMod�6;2!
Mod3;2 . By the construction, �1.S129/ acts trivially on H 1.S3;2IZ=2/; this can also
be seen by computing the �� .�1.S3//–action on H 1.S3;2IZ=2/. The monodromy

�0� WD �� j�1.S129/W �1.S129/! �1.S3/!Mod3;2

admits a lift to PMod�6;2 as in the diagram

(3-2)

PMod�6;2

p�

��

f
// Mod6

�1.S129/
�0�

//

�

99

�AK

44

Mod3;2

ie there exists � such that p� ı � D �
0
� . Let f W PMod6;2!Mod6 be the forgetful

map and let �AK D � ı f be the monodromy representation of a lift. The geometric
construction depends on some noncanonical parameters; similarly, this phenomenon
reappears when we consider the monodromy representation.

Remark 3.2 The lift � in diagram (3-2) is not unique! Let fgi ; hig be the generators
of �1.S129/ such that �1.S129/ D

˝
gi ; hi j

Q
i Œgi ; hi � D 1

˛
. Because � commutes

with any element in the set fGi D �AK.gi/;Hi D �AK.hi/g, we could multiply �
with a subset of fGi ;Hig to obtain a new monodromy representation. For example,
fGi�;Hig is a new monodromy representation. Among all the different monodromy
representations, are the total spaces of the surface bundles diffeomorphic to each other?
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4 The proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by computing H 1.MAKIQ/.

4.1 The lift of a square of a point push

In this subsection, we will determine the lifts of some elements of �1.S129/ to Mod6

under the branched cover. For any simple closed curve c , we denote the Dehn twist
about c by Tc . For any loop L at the base point B , denote the point-pushing map
on L by Push.L/. Let a be the loop in Figure 2. We have Push.a/D TxT �1

y ; see eg
[4, Fact 4.7].

B B0

a

x

y

Figure 2: Point-pushing. The lighter colors (green and red) represent x and y

and the darker color (black) represents a .

Since B is one of the branched points of the Z=2–cover � W S6 ! S3 , one of the
curves x or y will lift to two copies and the other will lift to a single copy. The
curve a will have two lifts, which we call a� and aC . Since Push.a/2 acts trivially
on H1.S3;2IZ=2/, the action Push.a/2 lifts to an action on S6 . Let Lift.Push.a/2/
be the lift of the point-pushing action on S6 . For any two curves c1; c2 , let i.c1; c2/

B B0

y˙

aC

xC

a�

x�

Figure 3: Lifts of a;x;y with the same colorings as Figure 2
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be the algebraic intersection number of c1 and c2 . In the following computation, we
will use the letters a;x;y to represent either the curves or the homology classes that
the curves represent.

Lemma 4.1 Pick a direction on a and assign directions on aC; a� accordingly. For
any c 2H1.S6IQ/, there are two possibilities for the action of Lift.Push.a/2/ on c :

Lift.Push.a/2/.c/D c˙ i.c; aC� a�/.aC� a�/

or
Lift.Push.a/2/.c/D ��.c˙ i.c; aC� a�/.aC� a�//:

Proof Suppose without loss of generality that Lift.x/D xC[x� and Lift.y/D y˙ .
By looking at the action locally, we have that Lift.T 2

x /DT 2
x�T 2

xC
and Lift.T 2

y /DTy˙ .
Therefore

Lift.Push.a/2/D Lift.T 2
x T �2

y /D T 2
x�T 2

xC
T �1

y˙
:

Since xC and x� are homotopic to aC and a� on S6 , respectively, we have xCD aC

and x� D a� as homology classes. Since xC;x�;y˙ bound a pair of pants, there
exists an orientation of y˙ such that as a homology class, y˙ D aCC a� . Thus we
have the following computation on the action of the homology:

(4-1) T 2
xC

T 2
x�T �1

y˙
.c/D c� i.c;y˙/y˙C i.c;xC/2xCC i.c;x�/2x�

D c� i.c;aCCa�/.aCCa�/C i.c;aC/2aCC i.c;a�/2a�

D cC i.c;a��aC/.a��aC/:

In the case where Lift.y/D yC[y� and Lift.x/D x˙ , we have

Lift.Push.a/2/.c/D c � i.c; aC� a�/.aC� a�/:

Since every element has two lifts that differ by the deck transformation � , we have the
second possibility.

4.2 The eigendecomposition of the action of �� on H 1.S6I Q/

In this subsection, we will discuss the eigendecomposition of the action of �� on
H 1.S6IQ/ and determine the image of ��W H 1.S3IQ/!H 1.S6IQ/ induced from
the Z=2–branched cover � W S6 ! S3 . The action of the deck transformation �

on S6 induces a decomposition of H1.S6IQ/ by the eigenvalues of the ��–action
on H1.S6IQ/. Since � is an involution, the eigenvalues of �� are f˙1g. Let HC
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be the eigenspace of � associated with eigenvalue C1 and H� the eigenspace of �
associated with eigenvalue �1. Then there is a direct sum

H1.S6IQ/DH�˚HC:

Via the universal coefficient theorem, f 2 H 1.S6IQ/ corresponds to a functional
f W H1.S6IQ/!Q.

Claim 4.2 A functional f W H1.S6IQ/!Q belongs to ��H 1.S3IQ/ if and only if
H� � ker.f /.

Proof It is classical that ��W H 1.S3IQ/!H 1.S6IQ/
Z=2 is an isomorphism; see

eg [2, Theorem III.2.4]. Then

f 2H 1.S6IQ/
Z=2
() ��.f /D f

() ��.f /.x/D f .x/ for any x 2H1.S6IQ/

() f .��.x/�x/D 0 for any x 2H1.S6IQ/:

Since �� is an involution, we know that the subspace of H1.S6IQ/ that is spanned
by f��.x/�x W x 2H1.S6IQ/g is H� . Therefore f 2 ��H 1.S3IQ/ if and only if
H� � ker.f /.

In Figure 4, we have a geometric description of a basis faC
1
; a�

1
; : : : g of H1.S6IQ/

where aCi and a�i or bCi and b�i are each other’s images under the �� action.

B

B0

180ı

bC
1

bC
2

bC
3

b�
1

b�
2

b�
3

aC
1

aC
2

aC
3

a�
1

a�
2

a�
3

Figure 4: Deck transformation �
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4.3 The �1.S129/–invariant cohomology

Let a1 be a simple loop based at B as in Figure 1. Since a1 does not intersect
�.a1/, the monodromy action of a1 on S3;2 is the product of point-pushings at B

and B0 of a1 and �.a1/. By the monodromy description of MAK , we have that
�AK.a

2
1
/D Lift.Push.a1/

2 Push.�.a1//
2/.

Lemma 4.3 Let f 2H 1.S6IQ/
�1.S129/ be an invariant cohomology class. Then f

satisfies f .aC
1
� a�

1
/D 0 and f .aC

3
� a�

3
/D 0.

Proof By Lemma 4.1, Push.a1/
2 Push.�.a1//

2 has two possible lifts that differ by
the deck transformation � .

Case 1 For any c 2H1.S6IQ/,

�AK.a
2
1/.c/D c˙ i.c; aC

1
� a�1 /.a

C

1
� a�1 /˙ i.c; aC

3
� a�3 /.a

C

3
� a�3 /:

Since f is invariant under the action of �AK.a
2
1
/, we have f .�AK.a

2
1
/.c//D f .c/ for

any c 2H1.S6IQ/. After evaluating f on both sides, we obtain

f .c/D f .c/˙ i.c; aC
1
� a�1 /f .a

C

1
� a�1 /˙ i.c; aC

3
� a�3 /f . za3� aC

3
/:

Equivalently,

i.c; aC
1
� a�1 /f .a

C

1
� a�1 /˙ i.c; aC

3
� a�3 /f .a

C

3
� a�3 /D 0:

However, aC
1
� a�

1
and aC

3
� a�

3
are independent elements in H1.S6IQ/, so we can

find c such that i.c; aC
1
� a�

1
/D 0 and i.c; aC

3
� a�

3
/D 1. Therefore we must have

f .aC
3
� a�

3
/D 0. By the same argument, f .a�

1
� aC

1
/D 0.

Case 2 For any c 2H1.S6IQ/,

�AK.a
2
1/.c/D ��.c˙ i.c; aC

1
� a�1 /.a

C

1
� a�1 /˙ i.c; aC

3
� a�3 /.a

C

3
� a�3 //:

Since f is invariant under the action of a2
1

, we have f .�AK.a
2
1
/.c//D f .c/. After

evaluating f on both sides, we obtain

f .c/D f .��.c//˙ i.c; a�1 � aC
1
/f .��.a

�
1 � aC

1
//˙ i.c; aC

3
� a�3 /f .��.a

C

3
� a�3 //:

If we set c D a�
1

and c D a�
3

, respectively, we obtain

f .a�1 /D f .a
C

1
/ and f .a�3 /D f .a

C

3
/:

This allows us to determine the full invariant cohomology H 1.S6IQ/
�1.S129/ .
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Lemma 4.4 We have the isomorphism

H 1.S6IQ/
�1.S129/ ŠH 1.S3IQ/:

Proof By using the same argument as in Lemma 4.3 on .b1/
2 and .b2a1/

2 , we obtain
that f .bC

3
� b�

3
/D 0, f .bC

1
� b�

1
/D 0 and

f ..b2C a1/
C
� .b2C a1/

�/D 0:

Since we already have f .aC
1
� a�

1
/D 0, we obtain that f .bC

2
� b�

2
/D 0.

From the above discussion, any f 2H 1.S6IQ/
�1.S129/ is zero on the 5–dimensional

space spanned by

aC
1
� a�1 ; bC

1
� b�1 ; bC

3
� b�3 ; bC

3
� b�3 ; bC

2
� b�2 :

Therefore dim.H 1.S6IQ/
�1.S129//� 7. Since ��H 1.S3IQ//�H 1.S6IQ/

�1.S129/ ,
we have that dim.H 1.S6IQ/

�1.S129//� 6. Via the Serre spectral sequence of the fiber
bundle S6!MAK! S129 , we have

1!H 1.S129IQ/!H 1.MAKIQ/!H 1.S6IQ/
�1.S129/! 1:

This implies

dim.H 1.MAKIQ//D dim.H 1.S129IQ//C dim.H 1.S6IQ/
�1.S129//:

As a branched cover of an algebraic surface along an algebraic curve, the manifold
MAK is itself an algebraic surface; thus MAK is a Kähler manifold. Therefore,
dim.H 1.MAKIQ// must be an even number. So we have dim.H 1.S6IQ/

�1.S129//D6,
which shows

H 1.S6IQ/
�1.S129/ ŠH 1.S3IQ/:

4.4 Finishing the proof of Theorem 1.1

Proof of Theorem 1.1 Since MAK
P
�!S129�S3 is a finite branched cover, the induced

map P�W H 4.S3�S129IQ/!H 4.MAKIQ/ is an isomorphism. By Poincaré duality,
P�W H k.S3 �S129IQ/!H k.MAKIQ/ is injective for any k . Via Lemma 4.4, we
also have

H 1.MAKIQ/ŠH 1.S3IQ/˚H 1.S129IQ/:

Therefore MAK satisfies the assumption of Lemma 2.3, and hence SFib.MAK/D 2.
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5 Fibering number of a finite cover of a trivial bundle

In this section, we will prove Theorem 1.2. Let E be a regular finite cover of B �F

where B and F are surfaces with g.B/ > 1 and g.F / > 1. Let p1W E ! B and
p2W E!F be the projections. Denote the image of p1�W �1.E/!�1.B/ by Im.p1/

and the image of p2�W �1.E/! �1.F / by Im.p2/.

Lemma 5.1 With the above definitions and assumptions, we have

H 1.EIQ/ŠH 1.Im.p1/IQ/˚H 1.Im.p2/IQ/:

Proof All spaces involved here are K.�; 1/ spaces; we will sometimes switch between
cohomology of groups and that of spaces. Let �1. zF / be the kernel of p1�W �1.E/!

Im.p1/. Since �1.E/ is a finite-index normal subgroup of Im.p1/ � Im.p2/, we
have that �1. zF / is a finite-index normal subgroup of Im.p2/. We have the following
commutative diagram:

(5-1)

1 // �1. zF / //

��

�1.E/ //

��

Im.p1/ //

D

��

1

1 // Im.p2/ // Im.p1/� Im.p2/ // Im.p1/ // 1

The group �.E/ acts on H 1. zF IQ/ by conjugation. Since Im.p1/ commutes with
Im.p2/ and p1�W �1.E/! Im.p2/ is surjective, we have that

H 1. zF IQ/Im.p2/ ŠH 1. zF IQ/�1.E/:

Since �1. zF / is a finite-index subgroup of Im.p2/, we have that

H 1. zF IQ/Im.p2/ ŠH 1.Im.p2/IQ/:

By the top exact sequence of (5-1), we obtain

0!H 1.Im.p1/IQ/!H 1.EIQ/!H 1. zF IQ/�.E/ ŠH 1.Im.p2/IQ/! 0:

The lemma follows.

Proof of Theorem 1.2 Since �1.E/ is a finite-index subgroup of Im.p1/� Im.p2/,
we obtain that H 4.Im.p1/�Im.p2/IQ/!H 4.EIQ/ is an isomorphism. By Poincaré
duality, H k.Im.p1/� Im.p2/IQ/!H k.EIQ/ is injective for every k . More specif-
ically, H 2.Im.p1/� Im.p2/IQ/�H 2.EIQ/. Therefore E satisfies the assumptions
of Lemma 2.3, which shows that SFib.E/D 2.
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6 An example with exactly four fiberings

Now we deal with an example of Salter [10] and we prove that it has exactly four
fiberings. As we mentioned before, the equivalence relation we choose is �1–fiberwise
diffeomorphism, not fiberwise diffeomorphism. Under fiberwise diffeomorphism, MS

only has one fibering.

Let 4 be the diagonal in Sg�Sg . Let MS D .Sg�Sg�4/[� .Sg�Sg�4/, where
� is the identification of the boundaries of the two copies of Sg �Sg �4. Each copy
of Sg �Sg �4 has two fiberings, p1 and p2 , where pi is the projection onto the i th

coordinate. Therefore MS has four obvious fiberings: f.pi ;pj / W i; j D 1; 2g.

There is a subtlety in defining .p1;p2/ and .p2;p1/ in the smooth category, but the
details will be immaterial here. See [10, Section 2].

Lemma 6.1 With the notation as in the previous paragraph and for g � 2,

H 1.Sg �Sg �4IQ/Š p�1 .H
1.SgIQ//˚p�2 .H

1.SgIQ//:

Proof By the Thom isomorphism theorem, H 1.Sg �Sg;Sg �Sg �4IQ/D 0. The
long exact sequence of relative cohomology

0!H 1.Sg�SgIQ/!H 1.Sg�Sg�4IQ/!H 1.Sg�Sg;Sg�Sg�4IQ/D 0

tells us that H 1.Sg �SgIQ/ŠH 1.Sg �Sg �4IQ/. By the Künneth formula,

H 1.Sg �Sg �4IQ/Š p�1 .H
1.SgIQ//˚p�2 .H

1.SgIQ//:

This completes the proof.

Let

addW H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/!H 1.SgIQ/

be the addition of elements in the abelian group H 1.SgIQ/.

Lemma 6.2 For g > 1, we have the following exact sequences:

(6-1) 0!H 1.MS IQ/
E1

�!H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/
add
��!H 1.SgIQ/! 0

and

0!H 2.MS IQ/
E2

��!H 2.Sg �Sg �4IQ/˚H 2.Sg �Sg �4IQ/:
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Proof Let M1 and M2 be the two copies of Sg�Sg�4 in the construction of MS .
Define N WDM1\M2 ; this is a circle bundle over Sg . The circle bundle N has Euler
number 2�2g¤ 0. By the Serre spectral sequence of the circle bundle S1!N !Sg ,
we have

H 1.N IQ/DH 1.SgIQ/:

The map

H1.N IQ/DH1.SgIQ/!H1.Sg �SgIQ/DH1.SgIQ/˚H1.SgIQ/

is induced by the diagonal embedding. Therefore

H 1.Sg �SgIQ/DH 1.SgIQ/˚H 1.SgIQ/!H 1.N IQ/DH 1.SgIQ/

is the addition of the two elements (dual to the diagonal map). Consequently, we have
a long exact sequence coming from the Mayer–Vietoris pair .M1;M2/:

(6-2) 0!H 1.MS IQ/
E1

��!H 1.Sg�Sg�4IQ/˚H 1.Sg�Sg�4IQ/

s�

�!H 1.N IQ/!H 2.MS IQ/
E2

��!H 2.Sg�Sg�4IQ/˚H 2.Sg�Sg�4IQ/:

We know s� is surjective, therefore E1 and E2 are injective.

By the short exact sequence (6-1), we identify H 1.MS IQ/ as a subspace of

H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/:

We use x;y; z; w to represent the coordinates. Therefore any element a2H 1.MS IQ/

can be written as

aD .x;y; z; w/ 2H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/˚H 1.SgIQ/

such that xC yC zCw D 0 2H 1.SgIQ/. We also identify H 1.Sg �Sg �4IQ/

with H 1.SgIQ/˚H 1.SgIQ/ by Lemma 6.1. Any element a0 2H 1.Sg�Sg�4IQ/

can be written as a0 D .x;y/ 2H 1.SgIQ/˚H 1.SgIQ/.

We will need the following algebraic lemma [3, Lemma 3.7] on the cup product structure
of H�.Sg �Sg �4IQ/.

Lemma 6.3 Let r; s2H 1.Sg�Sg�4IQ/ be two independent elements. If r^sD0,
then r; s 2 p�i .H

1.SgIQ// for some i 2 f1; 2g.
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Proof of Theorem 1.3 From the naturality of cup product, we have the following
commutative diagram:

(6-3)

ƒ2H 1.MS IQ/
ƒ2E1

//

cup
��

ƒ2
�
H 1.Sg �Sg �4IQ/˚H 1.Sg �Sg �4IQ/

�
cup
��

H 2.MS IQ/
E2

// H 2.Sg �Sg �4IQ/˚H 2.Sg �Sg �4IQ/

Let Sh!E
p
�!B be some fibering. Since �.MS />0 and �.Sh/<0, we compute that

�.B/ < 0, and hence that g.B/ > 1. Define H WD p�.H 1.BIQ//. Since g.B/ > 1,
there exist linearly independent b; b0 2H 1.BIQ/ such that b ^ b0 D 0. Let

p�.b/D .x;y; z; w/; p�.b0/D .x0;y0; z0; w0/ 2H:

By Lemma 6.2 and diagram (6-3), p�.b/ ^ p�.b0/D 0 if and only if both

.x;y/ ^ .x0;y0/D 0 2H 2.Sg �Sg �4IQ/;

.z; w/ ^ .z0; w0/D 0 2H 2.Sg �Sg �4IQ/:

By Lemma 6.3, we have the following possibilities: one of (1) and (10) must be true
and one of (2) and (20) must be true.

(1) .x;y/ and .x0;y0/ are dependent in H 1.Sg �Sg �4IQ/.

(10) x D x0 D 0 or y D y0 D 0.

(2) .z; w/ and .z0; w0/ are dependent in H 1.Sg �Sg �4IQ/.

(20) z D z0 D 0 or w D w0 D 0.

In the original four fiberings, the subspaces f.pi ;pj /
�.H 1.SgIQ// W i; j D1; 2g satisfy

the following:

� .p1;p1/
�.H 1.SgIQ// contains all elements with y D 0 and w D 0.

� .p1;p2/
�.H 1.SgIQ// contains all elements with y D 0 and z D 0.

� .p2;p1/
�.H 1.SgIQ// contains all elements with x D 0 and w D 0.

� .p2;p2/
�.H 1.SgIQ// contains all elements with x D 0 and z D 0.

If (10) and (20) are true for p�.b/, then p�.b/ belongs to one of the four spaces above.
By Lemma 2.2, the fibering Sh!E

p
�!B must be one of the four original fiberings.

Thus to conclude the proof of Theorem 1.3, it suffices to prove the following claim:
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Claim 6.4 There exists an element in the subspace H satisfying (10) and (20).

We now prove the claim. We assume that no element in H satisfies (10) and (20). Since
g.B/ > 1, for any element a 2H , the dimension of the subspace fh 2H W a^ hD 0g

is at least 3. We break our discussion into three cases.

Case 1 There is an element a D .x;y; z;w/ 2 H such that x , y , z and w are
all nonzero Find b 2 H such that b ^ a D 0. Via Lemma 6.3, we have that
aD .kx; ky; lz; lw/ for k; l 2Q. However, the subspace f.kx; ky; lz; lw/ W k; l 2Qg

is only 2–dimensional; this contradicts the fact that the dimension of the subspace
fh 2H W a^ hD 0g is at least 3.

Case 2 There exists an element a D .x;y; z;w/ 2 H such that x D y D 0 and
z;w¤ 0 We know that zCw D 0 by Lemma 6.2. Let b D .x0;y0; z0; w0/ 2H . If
b^aD0, then .z0; w0/Dk.z; w/ for k2Q by Lemma 6.3. The dimension of the space
f.0; 0;mz;mw/ Wm2Qg is 1, so there exists bD .x0;y0; kz; kw/2fh2H Wa^hD0g

such that x0 or y0 is nonzero. Since zCw D 0, we have that x0C y0 D 0. Thus x0

and y0 are both nonzero. Let l 2 Q such that l C k ¤ 0. The linear combination
laC b D .x0;y0; .l C k/z; .l C k/w/ 2H has all coordinates nonzero; this reduces to
Case 1.

Case 3 Every nonzero element .x;y; z;w/2 H has exactly one coordinate equal
to zero If two elements a; b 2 H have different coordinates zero, we could find a
linear combination kaC lb 2H for k; l 2Q such that all coordinates of kaC lb are
nonzero; this reduces to Case 1. Therefore all elements in H have the same coordinate
equal to zero.

Assume without loss of generality that every element .x;y; z; w/ 2 H only has
w D 0. There are independent elements a D .x;y; z; 0/, b D .x0;y0; z0; 0/ 2 H

such that a^ b D 0. By Lemma 6.2 and Lemma 6.3, we have .x0;y0/D k.x;y/ for
k 2Q. Since a; b are independent, we know that z0 ¤ kz . Then the nonzero element
k.x;y; z; 0/� .x0;y0; z0; 0/D .0; 0; kz� z0; 0/ 2H only has one coordinate nonzero.
This is a contradiction to the assumption of Case 3.

This completes the proof of the claim, hence the theorem.
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