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Refinements of the holonomic approximation lemma

DANIEL ÁLVAREZ-GAVELA

The holonomic approximation lemma of Eliashberg and Mishachev is a powerful tool
in the philosophy of the h–principle. By carefully keeping track of the quantitative
geometry behind the holonomic approximation process, we establish several refine-
ments of this lemma. Gromov’s idea from convex integration of working “one pure
partial derivative at a time” is central to the discussion. We give applications of our
results to flexible symplectic and contact topology.

53DXX, 57R99; 57R45, 57R17

1 Introduction and main results

1.1 Classical holonomic approximation

We begin by briefly recalling the holonomic approximation lemma, which is the starting
point of our paper. Given a fiber bundle pW X !M, where X and M are smooth
manifolds, consider the bundle pr W X .r /

!M of r–jets of p . The fiber of pr over a
point x 2M consists of equivalence classes of germs of sections hW Op.x/!X of p ,
where two germs are identified if they agree up to order r at the point x . Throughout
we use Gromov’s notation Op.A/ to denote an arbitrarily small but unspecified open
neighborhood of a subset A �M. If X DM �N is a trivial bundle, then sections
of p are the same as maps from M to N , and we usually write X .r /

D J r .M;N /.

Given a section hW U !X of p defined over an open subset U �M, we denote by
j r .h/W U !X .r / the section of pr consisting of the r–jets of h. Sections of pr of
the form j r .h/ are called holonomic. It is generally impossible to globally approximate
an arbitrary section sW M ! X .r / of pr by a holonomic section. Nevertheless, the
approximation can always be achieved in a deformed neighborhood of any reasonable
stratified subset of positive codimension. For simplicity we restrict our discussion to
the following class of stratified subsets.

Definition 1.1 A closed subset K �M is called a polyhedron if it is a subcomplex
of some smooth triangulation of M.
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The classical holonomic approximation lemma was first stated and proved in [3]
by Eliashberg and Mishachev. They give numerous applications in their book [4].
Holonomic approximation is closely related to the method of flexible sheaves discovered
by Gromov in his thesis [6] and further explored in his book [8]. Both of these techniques
greatly generalize the immersion theory of Smale [12] and Hirsch [9]. The precise
statement that we wish to recall reads as follows.

Theorem 1.2 (holonomic approximation lemma) Let sW M !X .r / be a section of
the r–jet bundle of a fiber bundle pW X !M, and let K �M be a polyhedron of
positive codimension. Then there exists an isotopy Ft W M !M and a holonomic
section ysW Op.F1.K//!X .r / such that the following properties hold:

� ys is C 0–close to s on Op.F1.K//.

� Ft is C 0–small.

Remark 1.3 (1) More precisely, the C 0–closeness statement means that for any
choice of Riemannian metric on X and for any " > 0, there exist Ft and ys as in
the statement of the theorem such that distC 0.ys; s/ < " on Op.F1.K// with respect
to the choice of metric. Similar remarks apply below whenever we talk about the
C 0–closeness of two maps.

(2) We say that an isotopy Ft is C 0–small if it is C 0–close to the identity.

(3) The holonomic approximation lemma also holds in relative and parametric form;
see [4] for details.

1.2 Improved holonomic approximation

The holonomic approximation lemma (Theorem 1.2) is an extremely useful tool for
proving h–principles. However, it turns out that for certain applications a stronger
result is needed. The goal of this paper is to prove several refinements of the method
of holonomic approximation, which we formulate in this section. In Section 1.3 we
state the parametric versions. In Section 1.4 we explain how these refinements yield
new flexibility results in symplectic and contact topology.

Recall that for 0 � l < r there are maps pr
l
W X .r /

! X .l / which forget higher-
order information. The projection pr

l
gives X .r / the structure of a fiber bundle

over X .l /. Given a section sW A! X .r / of pr defined over any subset A�M, we
call s .l /

D pr
l
ı sW A!X .l / the l–jet component of s .
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Figure 1: The isotopy Ft is C 0–small but typically wiggles the subset K

wildly inside M.

Definition 1.4 A section sW U ! X .r / of pr defined over an open subset U �M

is called l–holonomic if s .l / is a holonomic section of pl.

Our first refinement of the holonomic approximation lemma states that if we start
with an l–holonomic section s of pr, then it is possible to carry out the holonomic
approximation process on s while ensuring global control of the l–jet component.

Theorem 1.5 (holonomic approximation lemma for l–holonomic sections) Let
sW M ! X .r / be a section of the r–jet bundle of a fiber bundle pW X ! M, and
let K �M be a polyhedron of positive codimension. Suppose that for some l < r the
section s is l–holonomic. Then there exists an isotopy Ft W M !M and a holonomic
section ysW M !X .r / such that the following properties hold:

� ys is C 0–close to s on Op.F1.K//.

� ys .l / is C 0–close to s .l / on all of M.

� Ft is C 0–small.

� Ft D idM and ys .l /
D s .l / outside of a slightly bigger neighborhood Op.K/�

Op.F1.K//.

Remark 1.6 (1) Every section sW M ! X .r / of pr is 0–holonomic. Therefore,
taking l D 0 in Theorem 1.5 we recover the classical Theorem 1.2.
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(2) Theorem 1.5 also holds in relative form. To be precise, if s is already holonomic
on Op.A/ for some closed subset A�M, then we can arrange it so that Ft D idM

and ys D s on Op.A/. The same comment applies to Theorem 1.8 below.

Our second refinement concerns a specific class of .r�1/–holonomic sections of pr,
which we call ?–holonomic. Informally, we can describe a ?–holonomic section as a
section of pr which differs from a holonomic section only by the formal analogue of
a pure order r partial derivative. We show that when the holonomic approximation
process is applied to a ?–holonomic section it is not only possible to globally control the
.r�1/–jet component, but it is also possible to globally control the order-r information
complementary to this formal pure order-r partial derivative. The precise statement
is most cleanly phrased in terms of the bundle X? , which we define below. This
bundle was first introduced by Gromov in [8] in the context of convex integration,
where the language of ?–jets is used to construct iterated convex hull extensions of
partial differential relations. A thorough exposition of the theory of convex integration,
including details on the geometry of X? , can be found in Spring’s book [13].

Let � �TM be a hyperplane field on M. We associate to � a bundle p?W X?!M in
the following way. The fiber of p? over a point x 2M consists of equivalence classes
of germs of sections hW Op.x/! X of p , where two germs are identified if their
.r�1/–jets yD j r�1.h/.x/2X .r�1/ at the point x are the same and, moreover, if the
restrictions of their tangent maps d.j r�1.h//W TxM ! TyX .r�1/ to the hyperplane
�x � TxM are the same. When X D M � N is a trivial bundle we also write
X?D J?.M;N /. Observe that X? lies between X .r / and X .r�1/ in the sense that
the bundle pr

r�1
W X .r /

!X .r�1/ factors as the composition of pr
?
W X .r /

!X? and
p?

r�1
W X?! X .r�1/. Given a section sW A! X .r / of pr defined over any subset

A � M, we call s? D pr
?
ı sW A! X? the ?–component of s . Given a section

hW U !X of p defined over an open subset U �M, we denote by j?.h/W U !X?

the section of p? formed by the ?–jets of h. Explicitly, j?.h/Dpr
?
ıj r .h/. Sections

of p? of the form j?.h/ are called holonomic.

Definition 1.7 A section sW U !X .r / of pr defined over an open subset U �M is
called ?–holonomic with respect to a hyperplane field � � TM if s? is a holonomic
section of p? .

Theorem 1.8 (holonomic approximation lemma for ?–holonomic sections) Let
sW M ! X .r / be a section of the r–jet bundle of a fiber bundle pW X ! M and
let K � M be a polyhedron of positive codimension. Suppose that the section s
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M

τ ⊆ TM

s:M → J   (M,   )2

s   = 0

Figure 2: The section s of the 2–jet bundle J 2.M;R/ is ?–holonomic with
respect to the hyperplane field � � TM. Indeed, s? D 0 is a holonomic
section of J?.M;R/ .

is ?–holonomic with respect to some hyperplane field � � TM. Then there exists an
isotopy Ft W M !M and a holonomic section ysW M !X .r / such that the following
properties hold:

� ys is C 0–close to s on Op.F1.K//.

� ys? is C 0–close to s? on all of M.

� Ft is C 0–small.

� Ft D idM and ys? D s? outside of a slightly bigger neighborhood Op.K/ �
Op.F1.K//.

Remark 1.9 In fact, the proof of Theorem 1.8 will produce a very specific isotopy Ft .
Informally, we can say that Ft wiggles K in such a way that the wiggles are parallel
to the hyperplane field � . More formally, we can arrange so that the pulled-back
hyperplane field F�t � is C 0–close to � for all t 2 Œ0; 1�; see Figure 3. An analogous
comment applies in the parametric version Theorem 1.12 below.

1.3 Parametric versions

Our main results Theorem 1.5 and Theorem 1.8 remain true in families. We take
our parameter space to be a compact manifold Z whose boundary @Z is possibly
nonempty. We consider families of sections parametrized by Z . For example, a family
of sections sz W M !X .r / depending on the parameter z 2Z is a smooth mapping
sW Z �M ! X .r / such that for every z 2Z the assignment x 7! s.z;x/ defines a
smooth section sz of pr. Additionally, we allow the polyhedron K to vary with the
parameter in the following way.
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Figure 3: The wiggles of the deformed subset F1.K/ are parallel to � � TM.

Definition 1.10 A closed subset K �Z �M is called a fibered polyhedron if it is
a subcomplex of a smooth triangulation of Z �M which is in general position with
respect to the fibers z �M for z 2Z .

A consequence of this definition is that for every z 2 Z the subset Kz �M given
by K \ .z �M / D z �Kz is a polyhedron in M ; see Figure 4. If K has positive
codimension in Z �M, then Kz has positive codimension in M for all z 2Z . We
are now ready to formulate the parametric analogues of Theorems 1.5 and 1.8.

Theorem 1.11 (parametric holonomic approximation lemma for l–holonomic sec-
tions) Let sz W M !X .r / be a family of sections of the r–jet bundle associated to a
fiber bundle pW X!M parametrized by a compact manifold Z . Let K�Z�M be a
fibered polyhedron of positive codimension. Suppose that for some l < r the sections sz

are l–holonomic for all z 2 Z and that they are holonomic for z 2 Op.@Z/. Then
there exists a family of isotopies F z

t W M !M and a family of holonomic sections
ysz W M !X .r / such that the following properties hold:

� ysz is C 0–close to sz on Op.F z
1
.Kz//.

� ys .l /

z is C 0–close to s .l /

z on all of M.

� F z
t is C 0–small.

� F z
t D idM and ys .l /

z D s .l /

z outside of a slightly bigger neighborhood Op.Kz/�

Op.F z
1
.Kz//.

� F z
t D idM and ysz D sz for z 2 Op.@Z/.
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Z × M
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{ z}× K

{ z}× M

Figure 4: A typical fibered polyhedron K �Z �M

Theorem 1.12 (parametric holonomic approximation lemma for ?–holonomic sec-
tions) Let sz W M !X .r / be a family of sections of the r–jet bundle associated to a
fiber bundle pW X !M parametrized by a compact manifold Z . Let K � Z �M

be a fibered polyhedron of positive codimension. Suppose that the sections sz are
?–holonomic with respect to some family of hyperplane fields �z � TM for all z 2Z

and that they are holonomic for z 2 Op.@Z/. Then there exists a family of isotopies
F z

t W M !M and a family of holonomic sections ysz W M !X such that the following
properties hold:

� ysz is C 0–close to sz on Op.F z
1
.Kz//.

� ys?z is C 0–close to s?z on all of M.

� F z
t is C 0–small.

� F z
t D idM and ys?z D s?z outside of a slightly bigger neighborhood Op.Kz/�

Op.F z
1
.Kz//.

� F z
t D idM and ysz D sz for z 2 Op.@Z/.

Remark 1.13 (1) Observe that the formulation of the parametric Theorems 1.11
and 1.12 is relative with respect to the closed subset @Z of the parameter space Z .
In typical applications, taking .Z; @Z/D .Dm;Sm�1/ leads to a result about certain
relative homotopy groups vanishing, which can be rephrased in terms of the existence
of a homotopy equivalence (the h–principle).
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(2) Theorems 1.11 and 1.12 also hold in relative form with respect to a closed subset
A�M. The statement is analogous to the one phrased in Remark 1.6.

(3) Note that s?z is a section of the bundle X?z !M associated to the hyperplane
field �z � TIm, which varies with z 2Z . We can view the collection s?z as a single
section of the bundle X?

Z
!Z �M whose fiber over .z;m/ is X?z .

1.4 Applications to symplectic and contact topology

We begin with an example which illustrates the main point. For this section only we
will use freely the elements of symplectic topology, which the reader can review in [5]
by Eliashberg and Mishachev or in any other basic text on the subject. Suppose that
f W Ln!W 2n is a Lagrangian embedding of a manifold L into a symplectic manifold
.W; !/. The Weinstein neighborhood theorem states that a small tubular neighbor-
hood N of f .L/ in W is symplectomorphic to a neighborhood of the zero section in
the cotangent bundle .T �L; dp^dq/. We call such N a Weinstein neighborhood. Note
that J 1.L;R/D T �L�R (with the R factor corresponding to the 0–jet component)
and that graphical exact Lagrangian submanifolds of T �L correspond to holonomic
sections of J 1.L;R/. To keep track of the tangential data attached to the embedding
we must remember one more derivative, which we can do by considering holonomic
sections of J 2.L;R/. We will now show how our refinements of the holonomic
approximation lemma can be applied to this situation.

Denote by � W ƒn.W /!W the Grassmannian bundle of Lagrangian planes in TW .
The fiber of � over a point x 2 W consists of the linear Lagrangian subspaces of
the symplectic vector space .TxW; !x/. The Gauss map G.df /W L!ƒn.W / of the
embedding f is defined by G.df /.q/D df .TqM /� Tf .q/W .

Definition 1.14 A tangential rotation of f is a compactly supported deformation
Gt W L!ƒn.W /, t 2 Œ0; 1�, of the Gauss map G0 DG.df / such that � ıGt D f .

By compactly supported we mean that Gt D G.df / for all t 2 Œ0; 1� outside of a
compact subset of L. The following approximation result is a simple corollary of our
holonomic approximation lemma for l–holonomic sections.

Theorem 1.15 Let K�L be a polyhedron of positive codimension, and let Gt W L!

ƒn.M / be a tangential rotation of a Lagrangian embedding f W L!M. Then there
exists a compactly supported ambient Hamiltonian isotopy 't W W ! W such that
G.d.'t ıf // is C 0–close to Gt on Op.K/.
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G (df ) : L → Λ  (W)n

f  : L → W

G  : L → Λ  (W)n1

Figure 5: A tangential rotation Gt of a Lagrangian embedding f

Remark 1.16 (1) We can take 't to be C 0–close to the identity idM on all of M.

(2) Moreover, we can also arrange it so that 't D idM outside of an arbitrarily small
neighborhood of f .L/ in M.

(3) The statement holds in relative form. Namely, if Gt DG.df / on Op.A/�L for
some closed subset A�L, then we can take 't so that 't D idM on Op.f .A//�M.

(2) An analogous approximation result holds for tangential rotations of Legendrian
embeddings into a contact manifold .W 2nC1; �/. In this case � W ƒn.W /!W is the
Grassmannian bundle whose fiber over a point x 2W consists of the linear Lagrangian
subspaces of the symplectic vector space .�2n

x ; d˛x/, where �Dker.˛/ near the point x .

Proof Let N �W be a Weinstein neighborhood of f .L/. If we fix a Riemannian
metric on L we can choose N symplectomorphic to T �

ı
L for some ı > 0, where T �

ı
L

consists of the cotangent vectors p 2 T �L such that kpk< ı .

For small time t we can think of the tangential rotation Gt as a family of sections
st W L! J 2.L;R/ such that s0 D 0 and s .1/

t D 0. In fact, by first subdividing the
time interval finely enough, we can reduce to the case where st is defined for all
t 2 Œ0; 1�. The point here is that the planes Gt .q/ � Tf .q/W ' T.q;0/.T

�L/ must
remain graphical over TqL� T.q;0/.T

�L/.

The parametric version of the holonomic approximation lemma for l–holonomic sec-
tions can be applied to produce an isotopy Ft W L ! L and a family of functions
ht W L!R, h0D 0, such that j 2.ht / is C 0–close to st on Op.Ft .K// and such that
j 1.ht / is C 0–small on all of L. In particular, we may assume that kdhtk < ı for
all t 2 Œ0; 1�. Hence we can think of the composition ft D dht ıFt W L! T �

ı
L as a

compactly supported exact homotopy of Lagrangian embeddings ft W L!W . Every
such homotopy is induced by a compactly supported ambient Hamiltonian isotopy
't W M !M satisfying the required properties.
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Op(F (K ))t
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˜F (K )

L

t

(h )j 2 ∼t s t Op(F (K ))t
(h )j2 ∼t
˜ s t Op(F (K ))t

(h )j1
t

˜but no global control on 

Figure 6: The potential problem with the cutting off of ht after a naive
application of the classical holonomic approximation lemma

If we attempt to prove Theorem 1.15 using the classical holonomic approximation
lemma (Theorem 1.2) instead, we run into the following difficulty. The functions ht

produced by the holonomic approximation would a priori only be defined in open
subsets Op.Ft .K// � L. We would therefore need to extend ht to the whole of L

by hand. The most straightforward way of doing so is to choose a family of cutoff
functions  t W L!R supported on the domain of ht such that  t D 1 near Ft .K/.
The product zht D  t � ht W L!R is then well defined on all of L. It follows that the
composition ft Dd zht ıFt W L!T �L is an exact homotopy of Lagrangian embeddings
whose Gauss map provides the desired approximation near K .

If kd zhtk<ı on all of L, then ft has image contained in T �
ı

L and we can think of ft as
an exact homotopy of Lagrangian embeddings ft W L!W as before. Observe, however,
that there is no guarantee that d zht D  tdht C htd t has norm < ı , because  t will
typically have a very large derivative. Indeed, the wiggling by Ft is quite dramatic; see
Figure 6 for an illustration. Therefore, ft .L/ might escape our Weinstein neighborhood
T �
ı

L ' N . Hence ft does not correspond to an exact homotopy of Lagrangian
embeddings into W and our proof breaks down. Our holonomic approximation lemma
for l–holonomic sections with l D 1 precisely provides the necessary global control
on the 1–jet component so that this issue does not arise.

The parametric version of Theorem 1.15 also holds and is proved in the same way.

Theorem 1.17 Let K � Z � L be a fibered polyhedron of positive codimension
and let Gz

t W L! ƒn.M / be a family of tangential rotations of Lagrangian embed-
dings f z W L!M parametrized by a compact manifold Z such that Gz

t D G.df z/

Algebraic & Geometric Topology, Volume 18 (2018)



Refinements of the holonomic approximation lemma 2275

for z 2 Op.@Z/. Then there exists a family of compactly supported ambient Hamil-
tonian isotopies 'z

t W W !W such that G.d.'z
t ıf

z// is C 0–close to Gz
t on Op.K/

and such that 'z
t D idM for z 2 Op.@Z/.

Remark 1.18 Analogous observations to the ones made in Remark 1.16 apply.

The following h–principle for directed embeddings follows immediately from the above
approximation results. First, we recall the following definition of Gromov.

Definition 1.19 Given subsets D � ƒn.W / and S � L, we say that a Lagrangian
embedding f W L!W is D–directed along S if G.df /.S/�D .

Theorem 1.20 Let f W L!W be a Lagrangian embedding, let K �L be a polyhe-
dron of positive codimension and let D � ƒn.W / be an open subset. Suppose that
there exists a tangential rotation Gt W L!ƒn.W / of f such that G1.K/�D . Then
there exists a compactly supported Hamiltonian isotopy 't W W !W such that '1 ıf

is D–directed along Op.K/.

Remark 1.21 (1) This h–principle also holds in C 0–close, relative and parametric
versions. We leave it to the reader to formulate the appropriate statements.

(2) We can choose the Hamiltonian isotopy so that 't D idW outside of an arbitrarily
small neighborhood of f .K/ in W .

(3) An analogous h–principle holds for Legendrian embeddings into a contact manifold
.W 2nC1; �/ that are D–directed along a polyhedron of positive codimension.

Analogous problems in geometric topology have been studied by several authors. In [8],
Gromov proved an h–principle for D–directed smooth embeddings of an open manifold
into some ambient manifold which holds for any open subset D of the Grassmannian of
the ambient manifold. See Spring [14] for a discussion of Gromov’s argument. Rourke
and Sanderson gave two independent proofs of this result in [10; 11]. Another proof
was obtained by Eliashberg and Mishachev [3] using their holonomic approximation
lemma. For embeddings of a closed manifold one cannot hope to prove an h–principle
for D–directed embeddings when D is an arbitrary open subset of the Grassmannian.
However, for certain special subsets D , called ample, Gromov proved in [7; 8] that
an h–principle does hold. In a different direction, Eliashberg and Mishachev showed
in [5] that an h–principle for D–directed embeddings of a closed manifold hold for an
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arbitrary open D , but provided that we relax the notion of an embedding to that of a
wrinkled embedding. In [1] we prove a symplectic and contact analogue of this last
result using the tools developed in the present paper in a crucial way.

Example 1.22 Let � � TW be a distribution of k–planes in a symplectic or con-
tact manifold W . Set Dx D fPx 2 ƒn.W /x W Px t �xg for each x 2 W . Then
D D

S
x2W Dx is an open subset of ƒn.W /. We obtain a full h–principle for La-

grangian or Legendrian embeddings which are transverse to an ambient distribution
near a given subset of positive codimension. In the particular case where �D ker.d�/
for �W W ! B a Lagrangian or Legendrian fibration, we can rephrase the result as
an h–principle for Lagrangian or Legendrian embeddings whose front is nonsingular
along a given subset of positive codimension.

The main application (and source of motivation) for our holonomic approximation
lemma for ?–holonomic sections, as well as its parametric version, is given in [1].
The control on the ?–jet component is a key ingredient in the proof of the h–principle
for the (global) simplification of singularities of Lagrangian and Legendrian fronts.
Indeed, when attempting to apply a holonomic approximation argument near the .n�1/–
skeleton of a Lagrangian or Legendrian submanifold, difficulties similar to the one
illustrated in the proof of Theorem 1.15 above inevitably arise. The situation is in fact
much more subtle because we need to respect a certain decomposition of a tangential
rotation into so-called simple tangential rotations. Theorems 1.8 and 1.12 provide the
precise control needed to make the proof work.

1.5 Idea of the proof

The strategy of proof is to carry out a sequence of reductions which simplify our refined
holonomic approximation lemmas for l– and ?–holonomic sections to a problem
described by a concrete local model. We can then keep track of the geometry behind
the holonomic approximation process in this carefully chosen model and establish the
necessary estimates to achieve the desired global control. The outline of the paper is
roughly as follows.

In Section 2 we reduce our global results to the local relative statements corresponding to
the jet space J r .Rm;Rn/ over the unit cube ImD Œ�1; 1�m. In Section 3 we study the
space J r .Rm;Rn/ and reduce the holonomic approximation lemma for l–holonomic
sections to the holonomic approximation lemma for ?–holonomic sections. For a
section which is ?–holonomic with respect to a hyperplane field � , we construct in
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Section 5 a holonomic approximation with controlled ?–component by wiggling the
polyhedron K in a way such that the wiggles are parallel to the hyperplanes in � .
However, we cannot implement such a wiggling near the region where � is almost
tangent to K . A preliminary adjustment is therefore necessary in this region. This
adjustment is performed in Section 4.

We should note that it is possible to prove the holonomic approximation lemma for
l–holonomic sections in a more direct manner. One can extend by hand the holonomic
approximation formulas written down in [4] or appeal to abstract extension results to
reach the desired conclusion. However, we choose to deduce the holonomic approxi-
mation lemma for l–holonomic sections as a corollary of the holonomic approximation
lemma for ?–holonomic sections.

The main reason for doing so is that such a reduction involves decompositions of .r�1/–
holonomic sections into so-called primitive sections, which we define in Section 2.1.
A similar strategy appears in Gromov’s work [8] and is developed further in Spring’s
book [13], related to the construction of iterated convex hull extensions in the theory
of convex integration. Moreover, primitive sections play a crucial role in the proof of
our h–principle for the simplification of singularities of Lagrangian and Legendrian
fronts [1], where they correspond to a particularly simple type of tangential rotation.
We hope that the general idea of working one pure partial derivative at a time may
have further applications to the philosophy of the h–principle and so have attempted to
present the elements of the strategy as clearly as possible.
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of the h–principle. I am indebted to the ANR Microlocal group who held a workshop in
January 2017 to dissect an early version of the paper and in particular to Hélène Eynard-
Bontemps for spotting various errors and making useful suggestions for fixing them. I
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2 Localization of the problem

2.1 Holonomic trivialization

For a general fiber bundle pW X mCn!M m, the bundle of r–jets pr W X .r /
!M can

be messy to work with globally. However, global h–principle type problems can often
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be reduced to a local relative statement. In this section we explain how this reduction
is accomplished for our refined holonomic approximation lemmas. We choose to work
with the unit cube Im D Œ�1; 1�m �Rm as our local model. In what follows we use
the language of l– and ?–holonomic sections introduced in Section 1.2. We begin by
recalling from [4] the following simple but crucial observation.

Remark 2.1 (holonomic trivialization) Let ysW M !X .r / be a holonomic section
of pr , and let Q�M be an embedded cube Q'Im. Then there exists a neighborhood
N �X .r / of the image Im.ys/ such that .pr /�1.Q/\N ' J r .Rm;Rn/jI m .

Proof Since the section ys is holonomic, we have ys D j r .h/ for some section
hW M !X of p . Observe that the fibration pW X !M is trivial over the contractible
subset Q. Hence a neighborhood of the image h.Q/�X in p�1.Q/ is diffeomorphic
to Q�Rn. It follows that a neighborhood of the image ys.Q/�X .r / in .pr /�1.Q/

is diffeomorphic to J r .Q;Rn/' J r .Rm;Rn/jI m .

Under the above identification, sections sW M ! N � X .r / such that s D ys on
Op.M n int.Q// correspond to sections � W Im ! J r .Rm;Rn/ such that � D 0 on
Op.@Im/. The section s is holonomic if and only if the section � is holonomic. The
section ys itself corresponds to the zero section � D 0.

Similarly, l–holonomic sections sW M!N �X .r / such that sDys on Op.M nint.Q//
and such that s .l /

D ys .l / on all of M correspond to sections � W Im! J r .Rm;Rn/

such that � D 0 on Op.@Im/ and such that � .l /
D 0 on all of Im.

Fix a hyperplane field � � TM. Then ?–holonomic sections sW M !N �X .r / such
that s Dys on Op.M n int.Q// and such that s? Dys? on all of M (with respect to � )
correspond to sections � W Im! J r .Rm;Rn/ such that � D 0 on Op.@Im/ and such
that �? D 0 on all of Im (with respect to the hyperplane field associated to � under
the identification Q' Im ). This last remark motivates the following definition, which
we will use repeatedly in what follows.

Definition 2.2 A section � W Im! J r .Rm;Rn/ is called primitive with respect to a
hyperplane field � � TIm if �? D 0.

2.2 The local relative statements

The global versus local dictionary described in the previous subsection leads us to
formulate the following local relative versions of our main results. We first state the
nonparametric versions.
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Theorem 2.3 (localized holonomic approximation lemma for l–holonomic sections)
Fix k <m. Let � W Im! J r .Rm;Rn/ be a section such that

� � D 0 on Op.@Im/,

� � .l /
D 0 on all of Im for some l < r .

Then there exists an isotopy Ft W I
m!Im and a holonomic section y� W Im!J r.Rm;Rn/

such that the following properties hold:

� y� is C 0–close to � on Op.F1.I
k//.

� y� .l / is C 0–small on all of Im.

� Ft is C 0–small.

� Ft D idI m and y� D 0 on Op.@Im/.

Theorem 2.4 (localized holonomic approximation lemma for ?–holonomic sections)
Fix k <m. Let � W Im! J r .Rm;Rn/ be a section such that

� � D 0 on Op.@Im/,

� �? D 0 on all of Im with respect to some hyperplane field � � TIm.

Then there exists an isotopy Ft W I
m!Im and a holonomic section y� W Im!J r.Rm;Rn/

such that the following properties hold:

� y� is C 0–close to � on Op.F1.I
k//.

� y�? is C 0–small on all of Im.

� Ft is C 0–small.

� Ft D idI m and y� D 0 on Op.@Im/.

The global holonomic approximation lemmas for l– and ?–holonomic sections,
Theorems 1.5 and 1.8, follow from the local relative statements, Theorems 2.3 and 2.4,
by induction over the skeleton of the polyhedron K , working one cube at a time.
At each step we use the holonomic trivialization (Remark 2.1) to reduce the global
problem to a local problem. Observe that the relative versions of the global holonomic
approximation lemmas for l– and ?–holonomic sections (see Remark 1.6) also follow
from the above local relative statements.

Similarly, the parametric global holonomic approximation lemmas, Theorems 1.11
and 1.12, including the corresponding relative versions, follow from the parametric
local relative statements phrased below. In this case we also localize with respect to
the parameter space, setting Z D Iq, the unit q–dimensional cube Œ�1; 1�q.
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Theorem 2.5 (parametric localized holonomic approximation lemma for l–holonomic
sections) Fix k <m. Let �z W I

m!J r .Rm;Rn/ be a family of sections parametrized
by the unit cube Iq such that

� �z D 0 on Op.@Im/,

� � .l /

z D 0 on all of Im for some l < r ,

� �z D 0 on all of Im for z 2 Op.@Iq/.

Then there exists a family of isotopies F z
t W I

m ! Im and a family of holonomic
sections y�z W I

m! J r .Rm;Rn/ such that the following properties hold:

� y�z is C 0–close to �z on Op.F z
1
.Ik//.

� y� .l /

z is C 0–small on all of Im.

� F z
t is C 0–small.

� F z
t D idI m and y�z D 0 on Op.@Im/.

� F z
t D idI m and y�z D 0 on all of Im for z 2 Op.@Iq/.

Theorem 2.6 (parametric localized holonomic approximation lemma for ?–holonomic
sections) Fix k <m. Let �z W I

m!J r .Rm;Rn/ be a family of sections parametrized
by the unit cube Iq such that

� �z D 0 on Op.@Im/,

� �?z D 0 on all of Im with respect to some family of hyperplane fields �z � TIm,

� �z D 0 on all of Im for z 2 Op.@Iq/.

Then there exists a family of isotopies F z
t W I

m ! Im and a family of holonomic
sections y�z W I

m! J r .Rm;Rn/ such that the following properties hold:

� y�z is C 0–close to �z on Op.F z
1
.Ik//.

� y�?z is C 0–small on all of Im.

� F z
t is C 0–small.

� F z
t D idI m and y�z D 0 on Op.@Im/.

� F z
t D idI m and y�z D 0 on all of Im for z 2 Op.@Iq/.

The remainder of the paper is devoted to the proofs of the local relative theorems,
Theorems 2.3, 2.4, 2.5 and 2.6.
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3 Geometry of jet spaces

3.1 Jets as Taylor polynomials

The reduction carried out in Section 2 leads us to study the local space J r .Rm;Rn/.
We begin by giving an explicit description of this space in terms of Taylor polynomials.
This description is useful both for intuition and for the explicit computations to be
carried out later on.

Given a point x 2Rm and given n real polynomials p1.X /; : : : ;pn.X / 2RŒX � in m

variables X D .X1; : : : ;Xm/ of degree � r , set s.x/ 2 J r .Rm;Rn/ to be the r–jet
at x of the germ

y 7! .p1.y �x/; : : : ;pn.y �x// 2Rn; y 2 Op.x/�Rm:

This assignment yields a trivialization J r .Rm;Rn/'Rm � .Pr /
n given by s.x/$

.x;p1.X /; : : : ;pn.X //, where Pr D fp.X / 2 RŒX � W deg.p.X // � rg. Indeed, if
hW Op.x/ � Rm ! Rn is the germ of a smooth function at the point x 2 Rm and
.p1.X /; : : : ;pn.X // is its linear Taylor approximation of order r centered at x , then
the above construction yields s.x/D j r .h/.x/. In this way we think of an arbitrary
section sW Im! J r .Rm;Rn/ as a family s.x/ of Taylor polynomials of degree � r

parametrized by the point x 2 Im.

Observe that for l < r we obtain an induced trivialization .pr
l
/�1.0/'Rm � .Pl;r /

n,
where we recall the fiber bundle pr

l
W J r .Rm;Rn/! J l.Rm;Rn/ given by � 7! � .l /,

and we denote by Pl;r � Pr the space of real polynomials in m variables X D

.X1; : : : ;Xm/ which are sums of monomials of degree strictly greater than l and at
most r . If we further denote by Hj D Pj�1;j the space of homogeneous polynomials
in m variables X D .X1; : : : ;Xm/ of degree exactly j , then from the degree splitting
Pr D H0 � H1 � � � � � Hr , we obtain an induced decomposition J r .Rm;Rn/ '

Rm�.H0/
n�.H1/

n�� � ��.Hr /
n into homogeneous components. By the homogeneous

component of order j of an r–jet s.x/ 2 J r .Rm;Rn/ at x 2 Rm we will mean the
.Hj /

n entry corresponding to s.x/ under the above decomposition. The projection pr
l

simply forgets the homogeneous components of degree > l , and so we have a similar
decomposition .pr

l
/�1.0/'Rm � .HlC1/

n � � � � � .Hr /
n.

We next consider the trivialization J r .Rm;Rn/'Rm�.Pr /
n in the context of primitive

sections, as defined in Section 2.1. Let � �T Rm be a hyperplane field. We can specify
a coorientation of � by choosing a family of unit vectors ux 2Rm which are orthogonal
to �x with respect to the Euclidean inner product h � ; � i. Set lx W Rm!R to be the linear
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function lx. � /D h � ;uxi. Given a point x 2Rm and a vector v D .v1; : : : ; vn/ 2Rn,
define s.x/ 2 J r .Rm;Rn/ to be the r–jet at the point x 2Rm of the germ

y 7! .lx.y �x//r � .v1; : : : ; vn/ 2Rn; y 2 Op.x/�Rm:

In other words, we repeat the above construction s.x/$ .x;p1.X /; : : : ;pn.X // with
the polynomials pj .X /D vj � .lx.X //

r, which are all multiples of the r th power of
a linear function with kernel �x . Observe that the resulting r–jet satisfies s.x/? D 0

with respect to the hyperplane field �x . In fact, the choice of coorientation ux de-
termines a trivialization of the space of sections which are primitive with respect
to � , namely .pr

?
/�1.0/ ' Rm �Rn , s.x/$ .x; v/, where we recall the fibration

pr
?
W J r .Rm;Rn/! J?.Rm;Rn/, � 7! �? .

3.2 Linear structure

For a general fiber bundle pW X!M we have fiber bundle structures pr
l
W X .r /

!X .l /

for each l < r , but in general we cannot invariantly define inclusions X .l /
� X .r / .

The reason is that the chain rule for derivatives of order r involves all derivatives of
order � r and therefore a change of coordinates will mix up the jet components of
different orders.

Nevertheless, in the case X .r /
D J r .Rm;Rn/ we have a canonical linear structure

arising from the linear structure on Rn. Explicitly, if s.x/; �.x/ 2 J r .Rm;Rn/ are
r–jets at the point x 2 Rm corresponding to germs h;gW Op.x/ � Rm! Rn and if
a; b2R are any two real numbers, then we can define a�s.x/Cb��.x/2J r .Rm;Rn/ to
be the r–jet at the point x2Rm corresponding to the germ ahCbgW Op.x/�Rm!Rn.
We can therefore equip the r–jet bundle pr W J r .Rm;Rn/! Rm with the structure
of a vector bundle. Similarly, for all l < r we can endow each of the projections
pr

l
W J r .Rm;Rn/ ! J l.Rm;Rn/ with vector bundle structures. However, we will

reserve the addition sign to denote the linear structure on the bundle pr. In terms of the
trivialization J r .Rm;Rn/'Rm � .Pr /

n, this linear structure corresponds to addition
of polynomials in Pr .

3.3 Reduction to the l D r � 1 case

In order to deduce the localized holonomic approximation lemma for l–holonomic
sections (Theorem 2.3) as a corollary of the localized holonomic approximation lemma
for ?–holonomic sections (Theorem 2.4), it is useful to first reduce to the case lD r�1.
This reduction is accomplished by the following inductive argument.
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Lemma 3.1 Suppose that there exists 1< j � r such that Theorem 2.3 holds for all
r and l such that r � l < j . Then it also holds for all r and l such that r � l < j C 1.

Remark 3.2 Before we dive into the proof, we recall the notion of pullbacks and
pushforwards in jet spaces. Suppose that F W Rm!Rm is a diffeomorphism, F.x/Dy

and hW Op.y/ ! Rn is a germ of a smooth function at the point y 2 Rm. Then
hıF W Op.x/!Rn is a germ of a smooth function at x 2Rm. This assignment defines
a pullback map F�W J r .Rm;Rn/! J r .Rm;Rn/ which covers F�1 . Similarly, we
define the pushforward F� D .F

�1/�W J r .Rm;Rn/! J r .Rm;Rn/ which covers F .

Proof of Lemma 3.1 Let � W Im ! J r .Rm;Rn/ be a section such that � D 0 on
Op.@Im/ and � .r�j /

D 0 on all of Im. Let �D � .r�1/
W Im! J r�1.Rm;Rn/ be its

.r�1/–jet component. Then we also have �D 0 on Op.@Im/ and �.r�j /
D 0 on all

of Im. Observe that r�j D .r�1/�.j �1/ and therefore by assumption there exists a
C 0–small isotopy Ht W I

m! Im such that Ht D idI m on Op.@Im/ and a holonomic
section y�W Im! J r�1.Rm;Rn/ such that y� is C 0–close to � on Op.H1.I

k//, such
that y�.r�j / is C 0–small and such that �D 0 on Op.@Im/.

Since y� is holonomic, we have y�D j r�1.h/ for some function hW Im!Rm. There
exists a unique section �W Im! J r .Rm;Rn/ such that � .r�1/

D 0 and such that the
homogeneous order-r component of � is equal to the homogeneous order-r component
of the section ��j r .h/. Observe that the pullback .H1/

�� by the diffeomorphism H1

also has zero .r�1/–jet component. We can therefore apply once again our inductive
hypothesis (which includes the case l D r �1 since j > 1) to ensure the existence of a
C 0–small isotopy zHt W I

m! Im such that zHt D idI m on Op.@Im/ and a holonomic
section y�W Im! J r .Rm;Rn/ such that y� is C 0–close to .H1/

�� on Op. zH1.I
k//,

such that y� .r�1/ is C 0–small and such that y� D 0 on Op.@Im/.

Set Ft D Ht ı
zHt and y� D j r .h/C .H1/�.y�/. Then we can rephrase our above

conclusions by stating that Ft is C 0–small isotopy such that Ft D idI m on Op.@Im/

and that y� is a holonomic section of J r .Rm;Rn/ such that y� is C 0–close to � on
Op.F1.I

m//, such that y� .r�j / is C 0–small and such that y� D 0 on Op.@Im/. This
is exactly what we wanted.

Lemma 3.1 also holds in families, with the same proof. The only difference is that
one needs to add a parameter everywhere in the notation. Therefore, it also suffices to
prove the parametric local relative Theorem 2.5 in the case l D r � 1.
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Figure 7: Wiggling the wiggles with Ft DHt ı
zHt

3.4 Decomposition into primitive sections

To reduce the l D r � 1 case of the localized holonomic approximation lemma for l–
holonomic sections to the localized holonomic approximation lemma for ?–holonomic
sections we need to consider decompositions of r–jet sections with zero .r�1/–jet
component into sums of primitive sections. The following discussion closely resembles
the theory of principal decompositions in jet spaces invented by Gromov in [8] in the
context of convex integration and further fleshed out by Spring in [13].

Given a fixed holonomic section ysW M !X .r / of the r–jet bundle of a fiber bundle
pW X !M, recall that primitive sections are the local analogues of ?–holonomic
sections whose ?–jet equals ys? . We repeat the precise definition for convenience.

Definition 3.3 A section � W Im! J r .Rm;Rn/ is called primitive with respect to a
hyperplane field � � TIm if �? D 0.

We are particularly interested in sections which are primitive with respect to the
hyperplane fields �ˇ D ker.dxˇ1

C � � �C dxˇk
/, where ˇ ranges over all multi-indices

such that 1� ǰ �m and such that jˇj D k � r , up to permutation. There are of course
redundancies among the �ˇ , but this is not important. We remark that the hyperplane
fields �ˇ are constant and hence integrable. Given a section � W Im! J r .Rm;Rn/

such that � .r�1/
D 0, our goal is to obtain a decomposition � D

P
ˇ �ˇ where each

section �ˇ is primitive with respect to �ˇ ; see Figure 8. Moreover, we want this
decomposition to be well behaved in a sense that is made precise below.

For this purpose we invoke the following simple polynomial identity, which the author
found in [2] but which may well be classical. Consider the formula

X1X2 � � �Xr D
.�1/r

r !

X
U

.�1/jU j
�X

u2U

Xu

�r

;
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= +

Figure 8: We can decompose the homogeneous degree-2 polynomial x2�y2

into the sum of the monomials x2 and �y2.

where the sum ranges over all subsets U � f1; 2; : : : ; rg. Recall from Section 3.1
that we can think of an r–jet �.x/ 2 J r .Rm;Rn/ at the point x 2 Im such that
� .r�1/ .x/D 0 as a homogeneous Taylor polynomial .p1.X /; : : : ;pn.X // of degree r

centered at x . Each such polynomial pj .X / can be written uniquely as a sum of
monomials: pj .X / D

P
˛ a˛X˛1

� � �X˛r
, where ˛ ranges through all multi-indices

˛ D .˛1; : : : ; ˛r / such that 1� j̨ �m, up to permutation. Hence we can write

pj .X /D
X
˛

a˛X˛1
� � �X˛r

D

X
˛

.�1/r a˛

r !

X
U

.�1/jU j
�X

u2U

X˛u

�r

D

X
ˇ

� X
.˛u/Dˇ

.�1/rCjˇja˛

r !

�
.Xˇ1
C � � �CXˇk

/r ;

where the inner sum ranges over all pairs .˛;U / such that .˛u/u2U D ˇ . Observe
that the homogeneous degree-r monomial .Xˇ1

C� � �CXˇk
/r corresponds to an r–jet

which is primitive with respect to �ˇ D ker.dxˇ1
C � � � C dxˇk

/. We have therefore
proved the following.

Lemma 3.4 Given a section � W Im!J r .Rm;Rn/ such that � .r�1/
D0, we can write

�D
P
ˇ �ˇ for sections �ˇW Im!J r .Rm;Rn/ such that the following properties hold:

� Each section �ˇ is primitive with respect to �ˇ .

� Each section �ˇ depends smoothly on � .

� If � D 0 on Op.A/ for some closed subset A� Im, then �ˇ D 0 on Op.A/ for
all ˇ .

Remark 3.5 Observe that the number of indices ˇ appearing in the sum only depends
on m and r .
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3.5 Reduction to the primitive case

We are now ready to reduce the localized holonomic approximation lemma for l–
holonomic sections (Theorem 2.3) to the localized holonomic approximation lemma for
?–holonomic sections (Theorem 2.4). Recall first that by the discussion of Section 3.3,
we only need to prove Theorem 2.3 in the case l D r � 1. Let us therefore assume
that Theorem 2.4 holds and let � W Im! J r .Rm;Rn/ be a section such that � D 0 on
Op.@Im/ and such that � .r�1/

D 0 on all of Im. Lemma 3.4 gives us a decomposition
� D

P
ˇ �ˇ , where �ˇW Im! J r .Rm;Rn/ is a section such that �ˇ D 0 on Op.@Im/

and such that �?
ˇ
D 0 with respect to the hyperplane field �ˇ � TIm defined in

Section 3.4. We will inductively construct holonomic approximations for the partial
sums of the decomposition � D

P
ˇ �ˇ . The main point in the following argument is

that if an r–jet section has a C 0–small ?–jet component, then in particular it also has
a C 0–small .r�1/–jet component.

Let ˇ1; ˇ2; : : : ; ˇN be an ordering of the multi-indices ˇ appearing in the decom-
position � D

P
ˇ �ˇ and denote by �1; : : : ; �N and �1; : : : ; �N the corresponding

sections �ˇ and hyperplane fields �ˇ . We begin by applying Theorem 2.4 to the
section �1 . We obtain a C 0–small isotopy F1

t W I
m! Im such that F1

t D idI m on
Op.@Im/ and a holonomic section y�1W I

m! J r .Rm;Rn/ such that y�1 is C 0–close
to �1 on Op.F1.I

k//, such that y� .r�1/

1
is C 0–small and such that y�1D0 on Op.@Im/.

This concludes the base case of the induction.

Suppose that for some j <N we have constructed a C 0–small isotopy F
j
t W I

m! Im

such that F
j
t D idI m on Op.@Im/ and a holonomic section y�j W I

m! J r .Rm;Rn/

such that y�j is C 0–close to
P

i�j �i on Op.Fj
1
.Ik//, such that y� .r�1/

j is C 0–small
and such that y�jD0 on Op.@Im/. Apply Theorem 2.4 to the section .Fj

1
/��jC1W I

m!

J r .Rm;Rn/, which satisfies .Fj
1
/��jC1D 0 on Op.@Im/ and .Fj

1
/��?

jC1
D 0 on all

of Im with respect to the hyperplane field .Fj
1
/��jC1 . We obtain a C 0–small iso-

topy zFt W I
m ! Im such that zFt D idI m on Op.@Im/ and a holonomic section

z� W Im! J r .Rm;Rn/ such that z� is C 0–close to .Fj
1
/��jC1 on Op. zF1.K//, such

that z� .r�1/ is C 0–small and such that z� D 0 on Op.@Im/. Set F
jC1
t D F

j
t ı
zFt and

y�jC1 D y�j C .F
j
1
/�z� . This completes the inductive step.

At the last step we obtain a C 0–small isotopy Ft DFN
t W I

m!Im such that Ft D idI m

on Op.@Im/ and a holonomic section y�Dy�N such that y� is C 0–close to �D
PN

iD1 �i

on Op.F1.I
k//, such that y� .r�1/ is C 0–small and such that y� D 0 on Op.@Im/.
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This is exactly what we wanted. We have thus successfully reduced Theorem 2.3 to
Theorem 2.4.

It remains to discuss the reduction of the parametric localized holonomic approximation
lemma for l–holonomic sections (Theorem 2.5) to the parametric localized holonomic
approximation lemma for ?–holonomic sections (Theorem 2.6). However, the proof
only differs in notation, namely one just needs to add a parameter everywhere. The key
point here is that given a family �z W I

m!J r .Rm;Rn/ of sections such that � .r�1/

z D0,
the decomposition given by Lemma 3.4 depends smoothly on the parameter z .

4 Transversality adjustment

4.1 The transversality condition

By the reductions carried out in Sections 2 and 3, we are left with the task of proving
Theorems 2.4 and 2.6, the local relative holonomic approximation lemmas for ?–
holonomic sections. The strategy of proof, as in classical holonomic approximation, is
to take advantage of the room provided by the positive codimension of Ik in Im, where
k <m. This room is used to interpolate between the Taylor polynomials determined
by the nonholonomic section that we wish to approximate. More precisely, the idea is
to wiggle the subset Ik � Im back and forth in the ambient space Im and interpolate
between Taylor polynomials along the wiggles. However, in order to obtain the fine
estimates needed for the desired control on the ?–jet component, our wiggles must be
parallel to the hyperplane field � under consideration. We therefore run into difficulties
when � is tangent to the subset Ik which we want to wiggle. In this section we will
perform yet another reduction, so that we only need to consider hyperplane fields �
which are transverse to Ik.

The idea is to further localize the problem by subdividing the cube Im into very small
subcubes, on each of which the hyperplane field � is almost constant. We show in
Section 4.2 below that on the subcubes where the hyperplane field � is almost tangent
to Ik, the desired holonomic approximation can be explicitly constructed by hand.
Moreover, in this case no wiggling is necessary. The accuracy of the approximation
will depend on the extent to which � is almost tangent to Ik, but given a fixed degree
of accuracy desired we can always restrict our attention to those subcubes on which
the angle between � and Ik is sufficiently small. We explain precisely how to achieve
this transversality adjustment in Section 4.3. On the remaining cubes, the hyperplane
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I m

I k

F1

τ  Ik

I kwiggle      parallel to τ

perform transversality
adjustment

Figure 9: The two steps, a transversality adjustment and a wiggling parallel
to � � TIm

field � is transverse to Ik and therefore we can perform the wiggling parallel to �
described in the previous paragraph. This last step is carried out in Section 5. We
illustrate our strategy in Figure 9.

4.2 Almost tangent hyperplane fields

Let V;W �Rm be two linear subspaces of the same dimension. Recall that the angle
].V;W / between V and W is defined as ].V;W /D supw2W n0.infv2V n0 ].v; w//.
When dim V < dim W , we set ].V;W / D infU ].V;U /, where the infimum is
taken over all linear subspaces U � W such that dim U D dim V . Equivalently,
we have ].V;W / D infU ].U;W /, where the infimum is taken over all subspaces
U � V such that dim U D dim W . For any two distributions �; � � TIm we define
].�; �/D supx2I m ].�x; �x/. The main goal of this section is to establish the following
local calculation, where we think of the hyperplane H DRm�1�0�Rm as a constant
hyperplane field on Im.

Lemma 4.1 Fix k <m. Let � W Im! J r .Rm;Rn/ be a section and let � � TIm be
a hyperplane field such that

� �? D 0 with respect to � ,

� � D 0 on Op.@Im/.

Then for every ı > 0 there exists a holonomic section y� W Im! J r .Rm;Rn/ such that
the following properties hold:

� distC 0.y�; �/� Ck�kC r .].�;H /C ı/ on Op.Ik/.

� ky�?kC 0 � Ck�kC r .].�;H /C ı/ on all of Im.

� y� D 0 on Op.@Im/.
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Remark 4.2 (1) The constant C > 0 only depends on m and r . We can extract an
explicit upper bound for C from the proof if we so desire, but this is not important.

(2) To be more precise, for a function germ hW Op.x/ � Rm ! R we define
kj r .h/.x/k D sup k@˛h.x/k, where the supremum is taken over all multi-indices ˛
of order j˛j � r . Similarly, we define kj?.h/.x/k D sup k@�.@˛h/.x/k, where the
supremum is taken over all multi-indices ˛ of order j˛j< r and over all unit vectors
� 2 �x . For a section sW Im ! J r .Rm;Rn/ we set kskC 0 D supx2I m ks.x/k and
ks?kC 0 D supx2I m ks?.x/k. These are the C 0 norms which appear in the statement
of the lemma. There are of course many other equivalent definitions, but they all differ
by a constant which can be absorbed into C .

(3) We can define the C r norm in a similar way. Think of � as a family of germs
y 7! hx.y/, y 2 Op.x/, parametrized by x 2 Im. We can differentiate the vector
hx.y/ 2Rn with respect to x or with respect to y . Set

k�kC r D sup
 @

@xˇ

@

@y˛
hj.x;x/

;
where the supremum is taken over all multi-indices ˛; ˇ of orders j˛j; jˇj � r and all
points x 2 Im.

Proof Throughout the proof C >0 will denote a constant, depending only on m and r ,
but which might be replaced with a bigger such constant whenever necessary. Assume
without loss of generality that the angle between � and H is small, say ].�;H / < �

3
.

Let ux 2Rm, x 2 Im, be the unique field of unit vectors such that for every x 2 Im

we have ux ? �x and ].�x;Hx/D].ux; @m/, where @m D .0; : : : ; 0; 1/ 2Rm (the
first condition determines ux up to sign and the second condition determines the sign).
From Section 3.1, for every x 2 Im, we know that �.x/ 2 J r .Rm;Rn/ is the r–jet
at x of a germ

y 7! .lx.y �x//r � .v1.x/; : : : ; vn.x// 2Rn; y 2 Op.x/�Rm;

where lx WRm!R is the linear function lx. � /Dh � ;uxi and vD .v1; : : : ;vn/W I
m!Rn

is a function such that v D 0 on Op.@Im/. Fix once and for all a cutoff function
 W R! R such that  .t/D 1 when jt j < 1

2
and  .t/D 0 when jt j > 1. For ı > 0

small, set  ı.t/ D  .t=ı/. Define a holonomic section y� W Im ! J r .Rm;Rn/ by
y� D j r .h/, where hW Im!Rn is the function

h.x/D  ı.xm/ �x
r
m � .v1.x/; : : : ; vn.x//; x D .x1; : : : ;xm/ 2 Im:
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To verify the desired properties for y� , we introduce an auxiliary section sW Im !

J r .Rm;Rn/ whose r–jet s.x/ 2 J r .Rm;Rn/ at the point x D .x1; : : : ;xm/ 2 Im

corresponds to the germ

y 7! .ym�xm/
r
� .v1.x/; : : : ; vn.x// 2Rn; y D .y1; : : : ;ym/ 2 Op.x/�Rm:

Indeed, ].u; @m/D].�;H /, and hence distC 0.s; �/�Ck�kC r ].�;H / on all of Im.
On the other hand, dist.y�; s/ � Ck�kC r ı on

˚
jxmj <

1
2
ı
	
� Rm and we are free to

choose ı as small as desired. This proves the first property stated in Lemma 4.1. The
third property holds by inspection. It remains to prove the second property.

We compute explicitly the partial derivatives @˛h for a multi-index ˛ of order j˛j � r

at a point x 2 Im. Write ˛ D .ˇ;  /, where ˇ consists of N indices 1� ǰ <m and
 consists of M indices j Dm. Then we have the formula

@˛h.x/D

MX
jD0

�M

j

��� jX
iD0

� j

i

�
 

.j�i /

ı
.xm/ �

r !

.r�i/!
xr�i

m

�
� .@M�j

m @ˇ v/.x/

�
with

j 
.j�i /

ı
.xm/j D

ˇ̌̌
1

ıj�i
 .j�i /

�xm

ı

�ˇ̌̌
�

1

ıj�i
k kC r :

For M < r we can therefore bound k@˛hkC 0 � Ck�kC r ı on all of Im. In particular
this bound holds for all multi-indices ˛ of order j˛j < r . For the multi-index ˛ D
.m; : : : ;m/ of order j˛j D r corresponding to the pure r th derivative @r

m we have
k@˛hkC 0 � Ck�kC r . Hence the inequality ky�kC 0 � Ck�kC r holds.

Fix an index ˛ of order j˛j< r and let � 2 �x be a unit vector. Write � D
P

j aj@j in
terms of the standard basis @1; : : : ; @m of Rm. Observe that

jamj D jh�; @mij D jh�; @m�uxij � k@m�uxk � ].�;H /:

It follows that

k@�.@˛h/.x/k � kam@m.@˛h/.x/kC

m�1P
jD1

aj@j .@˛h/.x/


� jamjky�kC 0 C

s
m�1P
jD1

.@j .@˛h/.x//2

and therefore that j@�.@˛h/.x/j � Ck�kC r .].�;H /C ı/. But the point x 2 Im, the
multi-index ˛ of order j˛j< r and the unit vector � 2 �x were all chosen arbitrarily, and
therefore we have proved the remaining inequality ky�?kC 0 � Ck�kC r .].�;H /C ı/.
See Figure 10 for an illustration of the argument.
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I m

x   ∙ v (x)r
m

I k τ Ik

σ  Ik

Ih: →m n

(           )σ: I
= 0

→m J ,r m n

σ

Figure 10: The error in the transversality adjustment is proportional to the
angle between � and H .

By adding a subscript everywhere in the above proof we deduce the following parametric
version of Lemma 4.1. Observations analogous to the ones made in Remark 4.2 apply.

Lemma 4.3 Fix k <m. Let �z W I
m! J r .Rm;Rn/ be a family of sections and let

�z � TIm be a family of hyperplane fields parametrized by the unit cube Iq such that

� �?z D 0 with respect to �z ,

� �z D 0 on Op.@Ik/,

� �z D 0 on all of Im for z 2 Op.@Iq/.

Then for every ı >0 there exists a family of holonomic sections y�z W I
m!J r .Rm;Rn/

such that the following properties hold:

� distC 0.y�z; �z/� Ck�zkC r .].�z;H /C ı/ on Op.Ik/.

� ky�?z kC 0 � Ck�zkC r .].�z;H /C ı/ on all of Im.

� y�z D 0 on Op.@Im/.

� y�z D 0 on all of Im for z 2 Op.@Iq/.

Of course, there is nothing special about the hyperplane Rm�1 � 0�Rm, which was
only fixed for concreteness. In fact, Lemmas 4.1 and 4.3 hold in the following more
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general form. Observe first that we may replace the constant hyperplane field H by
any hyperplane field zH � TIm such that Rk � 0m�k � zHx at all points x 2 Im. To
see this it suffices to consider a local change of coordinates near the subset Ik � Im

which fixes Ik pointwise and which sends Hx to zHx for all x 2 Op.Ik/ nOp.@Im/.
It follows from this observation that in the statement of Lemma 4.1 we may replace
the angle ].�;H / with the angle ].�; Ik/ formed by the distributions � jI k and TIk

along Ik. Indeed, ].�; Ik/ D inf ].� jI k ; zH jI k /, where the infimum is taken over
all hyperplane fields zH � TIm such that Rk � 0m�k � zHx at all points x 2 Im. In
the parametric case, we also allow the hyperplane field zHz � TIm to vary with the
parameter z 2 Iq. Therefore in the statement of Lemma 4.3 we may replace the angle
].�z;H / with the angle ].�z; I

k/.

4.3 Reduction to the transverse case

We are ready to reduce Theorem 2.4 to the case where the hyperplane field is transverse
to the subset Ik � Im. Fix an arbitrary hyperplane field � � TIm. Let � W Im !

J r .Rm;Rn/ be a section such that �? D 0 with respect to � and such that � D 0

on Op.@Im/. Fix " > 0 small, the desired accuracy for the C 0–approximation we
must construct. Consider the cubical stratification of the subset Ik � Im in which the
j –dimensional stratum consists of the union of the j –dimensional faces of the cubes

QN .j1; : : : ; jk/D

�
j1

N
;
j1C 1

N

�
�� � ��

�
jk

N
;
jk C 1

N

�
�Ik ; �N �j1; : : : ; jk <N:

Let � > 0 be small enough so that Ck�kC r � < ", where C > 0 is the constant which
appears in the statement of Lemma 4.1. Choose N 2N big enough that for each cube
QDQN .j1; : : : ; jk/ we have ].�x; �y/ <

1
2
� for all x;y 2 Op.Q/� Im. Consider

the polyhedron RD
Sk

jD0Rj � Ik, where the stratum Rj consists of the union of all
the j –dimensional faces F of the cubes QDQN .j1; : : : ; jk/ such that ].�x;F /� �

at all points x 2 F . The hyperplane field � is almost tangent to the faces F in R and
transverse to all other faces F in the cubical stratification of Ik under consideration.
Indeed, for all faces F not in R we have ].�x;F /�

1
2
� at all points x 2 F .

We proceed inductively to construct a holonomic approximation of � over the cubical
skeleton of R, working one face at a time as in Section 2. At each stage we apply
Lemma 4.1. Since ].�;F / � � for each face F under consideration, the resulting
holonomic approximation has C 0–error < ". On the remaining faces F which are not
in R, we have � t F . The following result will be proved in Section 5, where we
think of the hyperplane V D 0�Rm�1 �Rm as a constant hyperplane field on Rm.
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Theorem 4.4 Let � W Im! J r .Rm;Rn/ be a section such that

� � D 0 on Op.@Im/,

� �? D 0 on all of Im with respect to V .

Then there exists an isotopy Ft W I
m!Im and a holonomic section y� W Im!J r.Rm;Rn/

such that the following properties hold:

� y� is C 0–close to � on Op.F1.I
k//.

� y�? is C 0–small on all of Im.

� Ft is C 0–small.

� Ft D idI m and y� D 0 on Op.@Im/.

� V is invariant under Ft .

Remark 4.5 The more accurate the C 0–approximation desired, the bigger the deriva-
tive dFt will need to be. However, for a fixed C 0–accuracy we can arrange it so that
distC 0.Ft ; idI m/ is arbitrarily small and so that Ft D idI m outside of an arbitrarily
small neighborhood of Ik in Im while keeping kdFtkC 0 uniformly bounded. This
scale invariance follows from the explicit construction of y� and Ft which is carried
out in Section 5.

Assuming Theorem 4.4, we continue the inductive process over the rest of the skeleton
of Im to obtain a global holonomic "–approximation of � . Indeed, given a face F

not in R, we can approximate the hyperplane field � jF by a constant hyperplane field
along F ; see Figure 11. We pay a price, of course, but the error can be made arbitrarily
small by taking N sufficiently big. We can therefore reduce the problem at each
face F to the local model considered in Theorem 4.4. Observe that the last property
stated in Theorem 4.4 and the a priori bound on kdFtkC 0 provided by Remark 4.5 are
needed to show that after each step of the inductive process the approximation of � by
a piecewise-constant hyperplane field has not been ruined by the corresponding isotopy.
To be more precise, the distortion produced by each isotopy can be made arbitrarily
small by taking N sufficiently big.

We have successfully reduced Theorem 2.4 to the transverse local model Theorem 4.4
above. The same argument also works in families, using Lemma 4.3 instead of
Lemma 4.1. Thus we can also reduce the parametric Theorem 2.6 to a parametric
transverse local model. The only difference in the reduction is that we must also
subdivide the parameter space Iq, as well as the domain Im, into small enough
subcubes. The parametric version of Theorem 4.4 reads as follows.

Algebraic & Geometric Topology, Volume 18 (2018)



2294 Daniel Álvarez-Gavela

I m
τ  Ik

I m

piecewise constant approximation

I m
I minductive wiggling of 

F (I   )k
1

Figure 11: Approximation of � by a piecewise-constant hyperplane field and
the corresponding wiggling

Theorem 4.6 Let �z W I
m! J r .Rm;Rn/ be a family of sections parametrized by the

unit cube Iq such that

� �z D 0 on Op.@Im/,

� �?z D 0 on all of Im with respect to V ,

� �z D 0 on all of Im for z 2 Op.@Iq/.

Then there exists a family of isotopies F z
t W I

m ! Im and a family of holonomic
sections y�z W I

m! J r .Rm;Rn/ such that the following properties hold:

� y�z is C 0–close to �z on Op.F z
1
.Ik//.

� y�?z is C 0–small on all of Im.

� F z
t is C 0–small.

� F z
t D idI m and y�z D 0 on Op.@Im/.

� F z
t D idI m and y�z D 0 on all of Im for z 2 Op.@Iq/.

� V is invariant under F z
t .

We note that there also is an priori bound on kdF z
t kC 0 depending on the desired

accuracy of the C 0–approximation, just as in Remark 4.5. We have now completed all
preparatory reductions.
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I m

I k

I m

(           )σ: I
= 0

→m J ,r m n

σ
V = 0 × m−1

Figure 12: A typical section � which is primitive with respect to the hyper-
plane field V

5 Holonomic approximation with controlled cutoff

5.1 The transverse local model

We begin by establishing some simple estimates which will be crucial in the quantitative
holonomic approximation process described below. We exploit the concreteness of the
local models considered in Theorems 4.4 and 4.6 by writing down the main objects
explicitly, differentiating them by hand and thereby deducing the necessary bounds.
We once again use C > 0 to denote a constant, which only depends on m and r , but
which will be replaced with a bigger such constant whenever necessary.

Consider a section � W Im!J r .Rm;Rn/ such that �?D 0 with respect to the constant
hyperplane field V D 0�Rm�1 . In the spirit of Section 3.1, we can give an explicit
description of � . Each r–jet �.x/ 2 J r .Rm;Rn/ at a point x D .x1; : : : ;xm/ 2 Im

corresponds to a germ

y 7!hx.y/D .y1�x1/
r
� .v1.x/; : : : ; vn.x//2Rn; yD .y1; : : : ;ym/2Op.x/� Im:

If � D 0 on Op.@Im/, then the function v D .v1; : : : ; vn/W I
m ! Rn also satisfies

v D 0 on Op.@Im/. We must control the derivatives of the function h.x;y/D hx.y/

with respect to both x and y . For this purpose, let ˛ and ˇ be multi-indices such
that j˛j C jˇj � r . Write ˛ D .�;  /, where � consists of M indices �j D 1 and 
consists only of indices 1 < j � m. Similarly, write ˇ D .�; �/, where � consists
of N indices �j D 1 and � consists only of indices 1 < �j � m. We compute the
following formula for the derivatives of h.x;y/:
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@

@x˛

@

@yˇ
hj.x;y/

D

MX
jD1

NX
iD1

�M

j

��N

i

�
.�1/j

r !

.r�j�i/!
.y1�x1/

r�j�i
� .@

M�j�i
1

@�@ v/.x/:

We therefore obtain the estimate @

@x˛

@

@yˇ
h
� Ck�kC r ır�.MCN / for y 2 fjy1�x1j< ıg � Im:

We next give a local model for the wiggling. Many other choices work just as well, of
course, but we want to write down an explicit model for concreteness. Given "; ı > 0

small such that ı � " to an extent which will be made precise later, consider the
sinusoidal curve

w.u/D
"

2
sin
�
�u

2ı

�
; u 2R:

Fix a cutoff function  W R! R such that  .u/D 0 for juj < 1
2

and  .u/D 1 for
juj > 3

4
. For " > 0 small enough that supp.�/ � Œ�1C "; 1� "�m, define an isotopy

Ft W I
m! Im by the formula

Ft .x1; : : : ;xm/D .x1; : : : ;xmC't .x//;

't .x/D t 
�

1�jx1j

"

�
� � � 

�
1�jxmj

"

�
w.x1/:

Observe that distC 0.Ft ; idI m/ < ". We also have the following estimate for the
derivative dFt of the isotopy Ft , where we note that the ratio "=ı will typically be

∼δr

∼δ

Figure 13: The estimate khk � Ck�kC r ır
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F1FtF id=0 I m

Figure 14: The isotopy Ft

very big but remains invariant by a simultaneous scaling of " and ı :

kdFtkC 0 � C
"

ı
:

In Section 5.2 we apply the same method of proof as Eliashberg and Mishachev
in [4] to produce a holonomic approximation j r .g/ of the section � . The domain
of definition of the function g is the wiggled neighborhood of Ik � Im given by
U D Ft

�˚
jxmj <

1
4
"
	�
� Im. To extend our holonomic approximation to the whole

of Im, we multiply the function gW U !Rn by a cutoff function supported in U . We
must control the derivatives of such a cutoff function, so we now write down an explicit
model together with the appropriate estimate.

In terms of the function  fixed above, define �W Im!R by �.x/D 1� .4jymj="/,
where F1.y/D x . Note that �D 1 near F1.I

k/ and that supp.�/�U ; see Figure 16.
The following bound holds for the derivatives of � . Let ˛ be a multi-index of order
j˛j � r . Write ˛D .ˇ;  /, where ˇ consists of N indices 1< ǰ �m and  consists
of M indices j D 1. Then we have

j@˛�j � C
1

"N ıM
:

5.2 The holonomic approximation process

We are ready to construct the holonomic approximation y� of � . We use the isotopy
Ft W I

m! Im and the cutoff function �W Im!R defined in Section 5.1, which depend
on two parameters " and ı . We will obtain an arbitrarily good C 0–approximation y�
by choosing "; ı > 0 arbitrarily small such that the ratio ı=" is also arbitrarily small.
Fix a function �W R!R such that
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Figure 15: The sinusoidal subset U � Im in a neighborhood of the origin

I m

(I  )F1
k U φ : I   →m supp (φ) ⊆ U

(I  )F1
kφ = 1 near

Figure 16: The cutoff function �

� �.u/D�1 for u< �1,

� 1� �.u/� 1 for �1� u� 1,

� �.u/D 1 for u> 1.

We construct y� by writing down an explicit formula on each of the rectangles

Rj D
�
.2j�1/ı; .2jC1/ı

�
� Im�2

� Œ�"; "�� Im

such that Rj is contained in the support of � . Suppose first that j 2N is even. Define
a function

gW Rj !Rn; g.x/D h.p.x/;x/;
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1ε
4− 1ε

4
0

(2 j +1) δ

2 jδ

(2 j −1) δ

b (u) = (2 jδ) +δη(    )4 u
ε

Figure 17: The basepoint-interpolating function b

where

p.x/D
�
.2j ı/C ı�

�
4xm

"

�
;x2; : : : ;xm�1; 0

�
; x D .x1; : : : ;xm/ 2Rj :

Let b.u/D .2j ı/C ı�.4u="/, so that p.x/D .b.xm/;x2; : : : ;xm�1; 0/. We note for
future reference the following bound on the derivatives of the function b :

jb .i /
j � C

ı

"i
:

Remark 5.1 Observe that:

(1) On Rj \
˚
xm < �

1
4
"
	

we have p.x/D ..2j � 1/ı;x2; : : : ;xm�1; 0/.

(2) On Rj \
˚
xm >

1
4
"
	

we have p.x/D ..2j C 1/ı;x2; : : : ;xm�1; 0/.

(3) On Rj \
˚
jxmj<

1
4
"
	

the point p.x/ interpolates between

..2j � 1/ı;x2; : : : ;xm�1; 0/ and ..2j C 1/ı;x2; : : : ;xm�1; 0/:

Similarly, if j 2N is odd, we define a function

gW Rj !Rn; g.x/D h.p.x/;x/;

where

p.x/D
�
.2j ı/� ı�

�
4xm

"

�
;x2; : : : ;xm�1; 0

�
; x D .x1; : : : ;xm/ 2Rj :

The difference in sign corresponds to the fact that on the interval
�
.2j�1/�

2
; .2jC1/�

2

�
the function u 7! sin.u/ is increasing for j even and decreasing for j odd. Note that the
locally defined functions gW Rj!Rn do not glue together on fjxmj<"gD

S
j Rj �Im.
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(2 j +1) δ (2 j +2) δ (2 j +3) δ2 jδ(2 j −1) δ

R → n
jg :

U→ ng :

R → n
j+1g :

Figure 18: The glued-up function gW U !Rn

However, they do glue together on the wiggled neighborhood U D F1

�˚
jxmj<

1
4
"
	�

of F1.I
k/; see Figure 18. We therefore obtain a globally defined function gW U !Rn.

Set f .x/D �.x/ �g.x/. Since supp.�/� U , the function f W Im!R is defined on
all of Im. The holonomic section y� D j r .f / is the desired holonomic approximation
to � . It remains to prove that for an adequate choice of the parameters " and ı all
of the properties listed in Theorem 4.4 are satisfied. The last three properties can be
verified by inspection. In the next section we carry out the calculation required to
establish the other two.

5.3 Conclusion of the proof

Let ˛ be a multi-index of order j˛j � r . Write ˛ D .ˇ; ; �/, where ˇ consists of
I indices ǰ D 1,  consists of J indices 1 < j <m and � consists of K indices
�j Dm. Then we compute

@

@x˛
gjx D

X�
@i

@xi
1

@

@x

@I

@yI
1

@j

@yj
m

hj.p.x/;x/

�
b .k1 / .xm/ � � � b

.ki / .xm/;

where the sum is taken over all nonnegative integers such that j C k1C � � �C ki DK .
From the estimates established in Section 5.1 we deduce that @

@x˛
g
� Ck�kC r

X
ır�.iCI /

�
ı

"k1

�
� � �

�
ı

"ki

�
D Ck�kC r

X ır�I

"k1C���Cki

� Ck�kC r
ır�I

"K
:
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Suppose first that ˛ is a multi-index such that I < r . Observe that ır�I � ıKCJ � ıK.
It follows that we have  @

@x˛
g
� Ck�kC r

ı

"
;

and therefore we can make this derivative arbitrarily small by ensuring that the ratio ı="
is arbitrarily small. When I D r , the multi-index ˛ D .1; : : : ; 1/ corresponds to the
pure r th derivative @r

1
. Observe that in this case the sum collapses to

@r

@xr
1

gjx D
@r

@yr
1

hj.p.x/;x/:

Since kx�p.x/k � C ", it follows that @r

@yr
1

hj.p.x/;x/�
@r

@yr
1

hj.x;x/

� Ck�kC r ":

Hence we deduce the inequality

distC 0.y�; �/� Ck�kC r

�
"C

ı

"

�
on the smaller neighborhood of F1.I

k/ in U where � D 1, so f D g and y� D j r .g/.
This proves that the C 0–approximation can be made arbitrarily accurate by choosing
"; ı > 0 arbitrarily small such that the ratio ı=" is also arbitrarily small.

It remains to show that for such a choice of " and ı we can also ensure that y�? is
small on all of Im. We again must explicitly compute some derivatives. Let ˛ be a
multi-index of order j˛j � r . Then we have

@

@x˛
f D

X
ˇCD˛

�
@

@xˇ
�
��

@

@x
g
�
:

Suppose that j̨ D 1 for exactly N indices, where N � r . Invoking the estimates
established in Section 5.1 we deduce that @

@x˛
f
� Ck�kC r

�
ı

"

�r�N
:

It follows that with the exception of the case N D r we have @

@x˛
f
� Ck�kC r

ı

"
:

Since the ?–jet y�? consists of all derivatives @˛f for multi-indices ˛ of order j˛j � r

such that N < r , we obtain the inequality

ky�?kC 0 � Ck�kC r
ı

"
:
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This concludes the proof of Theorem 4.4.

5.4 The parametric case

The above calculation also works in families, by adding a parameter everywhere. We
spell out the details for completeness. Let �z W I

m ! J r .Rm;Rn/ be a family of
sections parametrized by the unit cube Iq such that �?z D 0 with respect to V D

0 � Rm�1 , such that �z D 0 on Op.@Im/ and such that �z D 0 on all of Im for
z 2Op.@Iq/. We think of �z as a family of germs .z;x;y/ 7! h.z;x;y/2Rm , where
x 2 Im, y 2 Op.x/ and z 2 Iq.

We can define a family of functions gz as before by setting gz.x/D h.z;p.x/; z/ on
each rectangle Rj . The domain of definition of gz is Uz D F z

1

�˚
jxmj<

1
4
"
	�
� Im ,

where for each z D .z1; : : : ; zq/ 2 Iq we have an isotopy F z
t W I

m! Im given by

F z
t .x1; : : : ;xm/D .x1; : : : ;xmC'

z
t .x//;

where

'z
t .x/D t 

�
1�jx1j

"

�
� � � 

�
1�jxmj

"

�
 
�

1�jz1j

"

�
� � � 

�
1�jzqj

"

�
w.x1/:

We use the same functions  and w as in the nonparametric case. We also use the
corresponding family of cutoff functions �z W I

m!R, satisfying �z D 1 near F z
1
.Ik/

and supp.�z/� Uz , which are given by

�z.x/D 1� 
�

4jymj

"

�
; F z

1 .x/D y:

Set fz.x/D �z.x/ �gz.x/ and y�z D j r .fz/ to obtain the desired holonomic approx-
imation. The computation carried out in Section 5.2 shows that by taking " and ı
arbitrarily small such that the ratio ı=" is also arbitrarily small, all of the properties
stated in Theorem 4.6 are satisfied.
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