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On some adjunctions in equivariant stable homotopy theory

PO HU

IGOR KRIZ

PETR SOMBERG

We investigate certain adjunctions in derived categories of equivariant spectra, in-
cluding a right adjoint to fixed points, a right adjoint to pullback by an isometry of
universes, and a chain of two right adjoints to geometric fixed points. This leads to a
variety of interesting other adjunctions, including a chain of six (sometimes seven)
adjoints involving the restriction functor to a subgroup of a finite group on equivariant
spectra indexed over the trivial universe.

55P91, 55P92, 55N91; 18A40

1 Introduction

In equivariant stable homotopy theory, we study, for a compact Lie group G , generalized
cohomology theories which are stable under suspensions by one-point compactifications
of finite-dimensional G–representations. Such theories are represented in the derived
category DG–U –spectra, where U is the complete universe (see Lewis, May, Stein-
berger and McClure [9]), ie a G–inner product space of countable dimension containing
infinitely many copies of all irreducible G–representations. Certain functors come up
naturally when studying these theories: for example, the fixed point functor .?/G, which
is used in calculating homotopy groups, and also the geometric fixed point functor ˆG,
which was quite important in the work of Hu and Kriz [7] on real-oriented Z=2–spectra,
as well as, later, in the solution by Hill, Hopkins and Ravenel [6] of the Kervaire
invariant 1 problem.

The left derived functor of the functor ˆG has a right adjoint, which again has a right
adjoint. (Throughout this paper, we will focus on the derived context, so this language
will often be omitted.) In a recent paper [1], Balmer, Dell’Ambrogio and Sanders
investigated a general framework in which certain “geometric functors” between tensor
triangulated categories have two right adjoints. In fact, they proved that under suitable
assumptions (see Section 2 below), only three possibilities arise, namely a chain of
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three, five or infinitely many adjoints on both sides. Geometric fixed points, in the case
of a complete universe, satisfy the assumptions of [1], and in this context (see also
Balmer and Sanders [2]), it seemed interesting to look at this example more closely.

In a recent paper [12], Sanders investigates another example of the 3–adjunction [1],
namely “inflation”, ie the fixed G–spectrum, indexed over the complete universe,
associated with a spectrum X . In fact, Sanders introduces a beautiful formalism which
enables an abstract treatment of the Adams isomorphism. The right adjoint of the
inflation functor on the level of derived categories is the fixed point functor .?/G of a
spectrum indexed over the complete universe. Again, by the work of [1], this functor
has an additional right adjoint on derived categories, which the authors of the present
paper also observed independently [8] in connection with their work on spectral Lie
algebras. Unlike the case of geometric fixed points, this functor, however, is much
harder to describe, and even now remains somewhat mysterious.

Inspecting this example more closely suggests looking beyond the case of a complete uni-
verse. The reason is that the fixed point functor .?/G on the derived category DG–U –
spectra really is a composition of two functors, the first of which is pullback i� via the
inclusion i W U G ! U from the trivial universe U G ŠR1 . On spectra indexed over
the trivial universe (which represent generalized cohomology theories only stable with
respect to ordinary suspensions), geometric and ordinary fixed points are the same thing.

A natural question then arises: Does the pullback i� with respect to an isometry
of universes also have a right adjoint on the level of derived categories? Are the
observations of the previous paragraphs also true for noncomplete universes? The
answer to the first question is yes, as is, for the most part, the answer to the second
question. It is important to note, however, that we are now leaving the world of the
assumptions of [1] since, for spectra indexed over a noncomplete universe, the important
assumption of [1] that compact objects be strongly dualizable precisely fails for those
triangulated categories.

Since inflation is a case of functoriality with respect to change of groups (the case
of a surjection), what about restriction, ie the case of an injection of groups? In this
case, for complete universes, we have the well-known Wirthmüller isomorphism [9],
which also was a part of the inspiration for [1] as well as, for example, Fausk, Hu and
May [4]. What happens in the case of noncomplete universes? It turns out that in this
case, which does not satisfy the assumptions of [1], we always have a chain of four
adjoints. However, in the case of a finite group and the trivial universe, we show that
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there is, in fact, a chain of six adjoints, and in the case of a finite abelian group and the
trivial subgroup for the trivial universe, there is a chain of seven adjoints. In special
cases, this can be worked out quite explicitly. We also have counterexamples showing
that, in general, these chains of adjunctions extend no further.

In a closely related case of the endofunctor of smashing with a finite spectrum, we
again have a chain of infinitely many adjunctions on both sides in the case of a complete
universe. Generally, we always have a chain of three adjoints, and for the case of a
finite group and the trivial universe, we have a chain of five adjoints (six adjoints in
the case of a primary cyclic group). In both cases, these chains extend no further in
general. These endofunctors, in fact, give us, at least in principle, a description of the
right adjoint to pullback along an isometry of universes.

The purpose of the present paper is to treat these situations as completely as we are, at
the moment, able, both in terms of positive statements and counterexamples, since they
appear to be important for the foundations of equivariant stable homotopy theory. Here
is a more detailed description of the situations we consider:

(A) Restriction It is a tradition from group cohomology to separate pullback with
respect to a homomorphism of groups into the case when the homomorphism is
injective (restriction) and surjective (inflation). For equivariant spectra too, the two
cases behave somewhat differently, and for this reason, we too treat them separately. The
forgetful functor resD resG

H
W DG–U –spectra!DH–U –spectra, where H �G is a

closed subgroup of a compact Lie group G and U is any G–universe (not necessarily
complete), is well known to have a left adjoint G ËH ? and a right adjoint FH ŒG; ?/.
We show that FH ŒG; ?/ also has a right adjoint „G

H
. The left projection formula in the

sense of [1, (3.11)] is well known to hold, but we show that the right projection formula
in the sense of [1, (2.16)] is false in general. It is well known that if U is the complete
G–universe, then the left and right adjoints to resG

H
are “shifts” of each other, and

hence the chain of adjunctions described extends to an infinite chain of adjunctions on
both sides. This is the Wirthmüller isomorphism. However, we show by example that
for a general universe, G ËH .?/ may not have a left adjoint, and „G

H
may not have a

right adjoint. Thus, we have a chain of four adjoints in general. We show however that
in the case when U DR1 is the “trivial” universe and G is finite, G ËH ? has two
more adjoints to the left (thus giving a chain of a total of six adjoints), and when G is
abelian and finite, G ËH ? has three adjoints to the left (thus giving a chain of seven
adjoints). In both cases, we have examples showing that this chain of adjoints may not
extend any further.
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(B) Smashing with a finite spectrum Let X be a retract of a finite cell G–U –
spectrum for any universe U . The functor X ^ ? W DG–U –spectra!DG–U –spectra
then has a right adjoint F.X; ?/. We show that this functor has a further right adjoint
R.X; ?/. In the case when U is a complete universe, F.X; ?/DDX ^ ?, and hence
R.X; ?/D X ^ ?. However, we show that in general, R.X; ?/ does not have a right
adjoint. On the other hand, we show that X ^ ? always has two left adjoints (leading
to a chain of at least five adjoints), and for G D Z=p it has exactly three (leading to a
chain of six adjoints).

(C) Change of universe For an isometry of G–universes i W U ! V for a compact
Lie group G , the universe change functor i�W DG–V –spectra!DG–U –spectra is
well known to have a left adjoint, which we denote by i] . We prove that it also has a
right adjoint, which we denote by i� . (In [9], i] was denoted by i� . However, in all
sorts of contexts of sheaf theory, i� is always the right adjoint, which is why we use
the alternate notation.) We show that in general, i] does not have a left adjoint, and i�

does not have a right adjoint. The right projection formula [1, (2.16)] is false. We have
a chain of three adjoints in this case.

(D) Inflation For a compact Lie group G , a G–universe U , and an onto homomor-
phism of compact Lie groups G! J DG=H for a closed normal subgroup H of G ,
we have the functor inf D infJ

G
D U infJ

G
W U H –J–spectra ! U –G–spectra. This

functor is most universal when U is an H–fixed universe, since in general we have

(1) U infJ
G D i] ı U H infJ

G ;

where i W U H !U is the inclusion. In the case when U is an H–fixed universe, infJ
G

has a left adjoint ?=H and a right adjoint .?/H which has a right adjoint AEŒH �^ infJ
G

,
which has a further right adjoint F.AEŒH �; ?/H . No further right or left adjoints exist,
so this is a chain of five adjoints. Further, the left and right projection formulas
[1, (3.11), (2.16)] hold and AEŒH � is the dualizing object in the sense of [1], even
though the assumptions of [1] are not satisfied. If U is an arbitrary universe, then
in general, U infJ

G
has no left adjoint, and its right adjoint .?/H has a right adjoint

i�.AEŒH � ^ infJ
G
/, which in general has no right adjoint, so this is a chain of three

adjoints. The right projection formula is true. In the case when U is a complete
universe, this case satisfies the assumptions of [1].

(E) Geometric fixed points For a compact Lie group G and any G–universe U ,
and J D G=H for a closed normal subgroup H � G , we may consider the functor
ˆH D Uˆ

H D .AEŒH � ^ ?/H W DG–U –spectra!DJ–U H–spectra. This functor is
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most universal when U is the largest universe with given U H (up to isomorphism),
since for a general embedding i W U ! V , where V H Š U H , we have

Uˆ
H
D Vˆ

H
ı i]:

In the case when U is a complete universe, the assumptions of [1] are satisfied, and a
3–duality therefore holds. In other words, Uˆ

H has a right adjoint, which again has
a right adjoint, and the projection formula holds. This adjunction in general extends
no further, so this is a case of 3–duality in the sense of [1]. If U is not a complete
universe, we still have a 3–duality, and the projection formula still holds.

Acknowledgement The authors acknowledge support by grant GA CR P201/12/G028.
Kriz also acknowledges the support of a Simons Collaboration Grant.

2 The main results

Let us begin by reviewing the setup of Balmer, Dell’Ambrogio and Sanders [1]. In the
greatest generality, they talk about triangulated categories. A triangulated category T

is called compactly generated if it has coproducts, and has a set of compact objects G

which generate T . To generate means that if for x 2 Obj.T /, for every z 2 G ,
T .z;x/ D 0, then x D 0. An object x of T is called compact if T .x; ?/ sends
coproducts in T to coproducts of abelian groups.

In this paper, we consider the derived categories of G–U –spectra, where G is a
compact Lie group, and U is a G–universe. These categories are compactly generated,
where the generators are (integral) suspensions of suspension spectra of orbits (by
closed subgroups). These spectra generate essentially by definition of the derived
category; see [9; 3]. The fact that these generators are compact is widely known and
widely used, but since we could not locate a proof in the literature, we present one in
the appendix.

The authors of [1] use the following two facts to construct adjoint functors:

Lemma 2.1 [1, Corollary 2.3] Let F W T ! S be an exact (triangle-preserving)
functor between triangulated categories, where T is compactly generated. Then

(a) F has a right adjoint if and only if it preserves coproducts,

(b) F has a left adjoint if and only if it preserves products.
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Lemma 2.2 [1, Lemma 2.5] Let F W T !S be left adjoint to GW S !T , where F

and G are exact functors between triangulated categories, and T is compactly gen-
erated. Then F preserves compact objects if and only if G preserves coproducts.

The authors of [1] consider a functor f �W T !S and investigate patterns of adjunction
of the forms

(2) f �

��
f .1/

��
f�

OO

and

(3) f �

��
f .1/

��
f.1/

OO
f�

OO
f.�1/

OO

Their assumption is that f �W T !S is an exact functor between compactly generated
tensor triangulated categories which preserves the symmetric monoidal structure, and
preserves coproducts. They additionally assume that both in T and S , compact
objects are strongly dualizable. Under these assumptions, they prove that (2) always
occurs, and additionally, one has the right projection formula stating that we have an
isomorphism

(4) x ^f�.y/
Š
�! f�.f

�.x/^y/;

where (4) is the canonical morphism. (We write the symmetric monoidal structure
as ^, since in the topological contexts we discuss, it is always the smash product.) The
dualizing object by definition is f .1/.1/, where 1 is the unit of the symmetric monoidal
structure (in all our cases, this is the sphere spectrum S in the appropriate category).
Then the authors of [1] prove that the additional right adjoint f.�1/ exists if and only
if the additional left adjoint f.1/ exists, leading to the (3) scenario. Additionally, if
that happens, they prove the left projection formula

(5) f.1/.f
�.x/^y/ Š�! x ^f.1/.y/;

where (5) is, again, the canonical morphism.

The authors of [1] also prove that if either f.1/ admits a left adjoint or f.�1/ admits a
right adjoint, then (3) extends to an infinite chain of adjunctions on both sides.

The category DG–U –spectra for a compact Lie group G and a universe U is always
compactly generated, where the compact generators are (de)suspensions of suspension
spectra of orbits. Further, compact objects are strongly dualizable when U is a complete
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universe (ie contains representatives of all isomorphism classes of finite-dimensional
G–representations). However, compact objects are not strongly dualizable in general,
notably when G is nontrivial and U is the trivial universe, containing only copies of
the trivial representation. Therefore, the conclusions of [1] do not, strictly speaking,
apply to most of our situations. Nevertheless, Lemmas 2.1 and 2.2 have the immediate:

Corollary 2.3 If a functor f �W T ! S is an exact functor, where T ;S are com-
pactly generated triangulated categories, preserves compact objects and coproducts,
then it has a right adjoint f� which in turn has another right adjoint f .1/ , ie the
scenario (2) occurs.

Proof By Lemma 2.1, a right adjoint f� exists, and by Lemma 2.2, it preserves
coproducts. Additionally, since T is compactly generated, distinguished triangles
can be tested by long exact sequences on morphism groups from compact objects, so
f� preserves distinguished triangles by adjunction and by the fact that f � preserves
compact objects. Therefore, the additional right adjoint f .1/ exists by Lemma 2.2.

Comment When a triangulated category is compactly generated, compact objects are
precisely objects of the smallest thick subcategory generated by the compact generators.
Therefore, for the functor f � to preserve compact objects, it is sufficient to show that
it sends the compact generators to compact objects.

In the scenarios described in the introduction, the functors resG
H

of case (A), X ^ ? of
case (B), i] of case (C), infJ

G
of case (D) and Uˆ

G of case (E) are all exact functors
which preserve compact generators and coproducts, so Corollary 2.3 applies if we take
these functors for f �. In other words, a right adjoint f� exists which, in turn, has
again a right adjoint f .1/ . Interestingly, the functors f .1/ in this case do not appear
to have been noticed in most cases. In this note, we will consider some examples.

Before that, however, let us discuss the (3) scenario, ie the case of a chain of five
adjoints. It turns out that under our weaker assumptions, it is false that the existence of
one of the adjoints f.�1/ , f.1/ would imply the existence of the other. Nevertheless,
the existence of the functors f.1/ and f.�1/ can still be tested using the following:

Corollary 2.4 If f �W T ! S is an exact functor between compactly generated
triangulated categories which preserves coproducts and compact objects. Then the
functor f .1/ has a right adjoint if and only if f� preserves compact objects, and f �

has a left adjoint if and only if it preserves products.

Algebraic & Geometric Topology, Volume 18 (2018)



2426 Po Hu, Igor Kriz and Petr Somberg

Proof The first statement follows from Lemmas 2.2 and 2.1(a), and the second
statement follows from Lemma 2.1(b).

In case (A) and (B) of the introduction, the functor f.1/ exists, but in general the functor
f.�1/ does not. In case (C), in general neither f.1/ nor f.�1/ exists. In case (D) for a
trivial universe, both f.1/ and f.�1/ exist, and in cases (E) for the complete universe,
neither f.1/ nor f.�1/ exists in general.

Additionally, in cases (A), (C), (D) and (E), the functor f � preserves symmetric
monoidal structure, and hence we can ask about the projection formulas (4) and (5). In
case (A), the formula (5) holds, but the formula (4) is false in general. In case (C), the
formula (4) is false in general. In case (D) for a trivial universe, the formula (5) is false
in general, and the formula (5) is true for the trivial universe but false in general. In
case (E), the formula (4) for a complete universe holds (this follows from Theorem 2.15
of [1], since the assumptions in this case are satisfied). For a general universe, the
formula (4) is false in this case.

We now turn to discussing each case of the introduction individually in more detail.

2.1 Inflation for the case of an H –fixed universe

We discuss this part of case (D) first, since it will be used in our other discussions. Here
we have a normal subgroup H of G , J DG=H , and f � D infJ

G
W DJ–U –spectra!

DG–U –spectra, where U D U H is an H–trivial G–universe. Unless H D feg,
the assumptions of [1] are never satisfied, because the suspension spectrum of the
orbit G=feg is not strongly dualizable in DG–U –spectra. Nevertheless, we have
the “5–scenario” of [1]. A left adjoint of f � is f.1/ D ?=H (more precisely its left
derived functor, ie ? should be a cell spectrum). On the other hand, a right adjoint
is f� D ?H, which in turn has a right adjoint f .1/ D .infJ

G
.?// ^ AEŒH � , where

EŒH � D EF ŒH � is the classifying space of the family F ŒH � of closed subgroups
of G which H is not subconjugate to. (Note that since H is normal, this is just the
family of all subgroups not containing H .) Here zX means the unreduced suspension
of a G–space X . To see this, mapping a G–U –cell spectrum X to infJ

G
Y ^AEŒH � ,

where Y is a J–U –cell spectrum, the cells of X with isotropy superconjugate to H

(which cannot be attached to cells with isotropy not superconjugate to H , since U is
H–fixed) must map to Y , while there is no obstruction to mapping any other cells to
infJ

G
Y ^AEŒH � ; a similar argument applies to homotopies. The functor f .1/ has a right

adjoint f.�1/DF.AEŒH �; ?/H . It is also worth noting that not only the functor f � but
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also the functor f� is strongly symmetric monoidal, while f .1/ preserves the smash
product but not the unit.

The left projection formula (5) states that

(6) .infJ
G.X /^Y /=H �

�!X ^ .Y=H /;

which is true. In effect, both sides clearly preserve homotopy cofibers, so it suffices to
consider the case when X D J=KC for some closed subgroup K � J . Then letting zK
be the inverse image of K via the projection G! J , infJ

G
.X /DG= zKC . Now again

by preservation of homotopy cofibers, we may also assume that Y DG=�C for some
closed subgroup � �G , at which point (6) follows from the analogous consideration on
spaces (G–orbits). (We will show below in Section 2.5 that for a G–universe U which
is not H–fixed, inflation does not have a left adjoint, so the left projection formula
makes no sense.)

The right projection formula (4) states that

X ^ .Y H / ��! .infJ
G.X /^Y /H ;

which is also true by a similar induction. (In fact, the right projection formula is true
even without assuming that U is H–fixed; see Section 2.5 below.)

The dualizing object in this case is the G–U –suspension spectrum of AEŒH � . The
functor f .1/ does not generally preserve compact objects since the dualizing object
is not compact. (For example for G DH D Z=2, and the trivial universe, it suffices
to show that EZ=2C is not compact, which, since ?=H preserves compact objects,
reduces to showing that BZ=2C is not a compact spectrum. This is well known and
also follows, for example, from Lemma A.1 of the appendix.) Thus, f.�1/ in general
does not have a right adjoint.

On the other hand, f.1/ does not in general preserve products. Again, for GDH DZ=2

and the trivial universe, consider the countable product of the spectra EZ=2C ^K

(where K is, say, the fixed K–theory Z=2–spectrum). The countable product of these
spectra still has trivial fixed points, so the canonical map

EZ=2C ^
Y
N

K!
Y
N

.EZ=2C ^K/

is an equivalence. Applying ?=.Z=2/ and using (6), we get

BZ=2C ^
Y
N

K �
�!

�Y
N

.EZ=2C ^K/

�.
Z=2!

Y
N

.BZ=2C ^K/;
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where the second map is the map which would be an equivalence if f.1/ preserved
products, while the composition is (33) of the appendix, which is not an equivalence
by Lemma A.1. Thus, in general, f.1/ does not have a left adjoint.

2.2 Restriction

Let f � D resG
H
W DG–U –spectra! DH–U –spectra be the forgetful functor, where

U is any G–universe. We have a left adjoint f.1/ D G ËH ? and a right adjoint
f� D FH ŒG; ?/. It is well known [9] that the left projection formula (5) holds. By
Corollary 2.3, f� always has another right adjoint, f .1/ . When U is the complete
universe, the assumptions of [1] are satisfied, of course, and in fact the classical
Wirthmüller isomorphism [9] asserts that we have an infinite chain of adjunctions. To
get a feel for what the functor f .1/ is like in general, let us consider an example.

Let us consider the case when GDZ=2, H Dfeg, and U DR1 is the trivial universe.
In this case, we can construct a cofibration sequence for an feg–spectrum X

(7) Z=2C ^X ! F.Z=2C;X /! AEZ=2 ^ inffegZ=2X

as follows: One has f �f�.X /DX �X since, nonequivariantly, G is a two-point set,
and the first map (7) is the adjoint to the canonical map X !X �f�g!X �X . The
first morphism (7) is an equivalence nonequivariantly by stability (as it is the canonical
morphism from the coproduct to the product of two copies of X ), but the source has
trivial fixed points, while the target has fixed points X (embedded diagonally). Thus,
the cofiber in (7) has fixed points X and is trivial nonequivariantly.

Now recall that the category DG–R1–spectra (naive G–spectra) for G finite is
equivalent to the diagram derived category of functors from the orbit category OG

into spectra. This folklore fact about G–R1–spectra is proved the same way as for
G–spaces: For G–spaces, the forgetful functor U from OOp

G
–spaces to G–spaces (by

taking X 7!XG=feg ) is left adjoint to the functor ‰ , where for a G–space X , we put
‰.X /.G=H / D X H (the right Kan extension). If we take objectwise equivalences
on OOp

G
–spaces, and let ‰ create equivalences on G–spaces, it is formal that the left

derived functor LU is an inverse to the total derived functor D‰ on derived categories.

Now since the first map (7) is an equivalence nonequivariantly, and the first term has
trivial fixed points, the homotopy cofiber of that map is trivial nonequivariantly and
has fixed points X . Thus (see [9, Section II.8]) it maps into AEZ=2 ^ inffegZ=2X , and
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the map induces an equivalence on fixed points as well as nonequivariantly, and thus,
is an equivalence.

Now (7) can be written in the framework (2) as

(8) f.1/.X /! f�.X /! AEZ=2 ^ inffegZ=2X:

By the results of Section 2.1, the last term of the cofibration sequence (8) is in fact the
right adjoint to the functor .?/Z=2 on derived categories.

In fact, while it is not crucial for what follows, it is interesting to realize that for X DS ,
the cofibration (7) can be realized geometrically by stabilizing the canonical cofibration
sequence

(9) Sn
_Sn

! Sn
�Sn

! Sn
^Sn;

where all terms are given the Z=2–equivariant structure with the generator of Z=2

switching factors. The last term is equivariantly homeomorphic to SnCn˛ , where ˛ is
the 1–dimensional real sign representation. Desuspending n times and taking a colimit
with n!1 (using the fact that S1˛ is a model for AEZ=2 ), the connecting map
of (9), after stabilization, gives a model of the connecting map of (7) for X D S .

The connecting map of (9) can then be described as a map

(10) SnCn˛
! Z=2C ^SnC1

given as the (trivial) suspension of the following map: In S2n�1 , consider an embedding
of Sn�1 �Sn�1 , thus splitting S2n�1 into two solid tori Sn�1 �Dn. Consider the
Z=2–equivariant structure where the generator swaps the two factors of Sn�1 �Sn�1 ,
and the two solid tori. Then we get a map into Sn_Sn by collapsing Sn�1�Sn�1 to
a point, and projecting each solid torus Sn�1�Dn to Dn (with the boundary collapsed
to a point). This map is equivariant when we consider on Sn_Sn the Z=2–equivariant
structure where the generator swaps factors.

We can see that the connecting map is nontrivial by observing that applying .?/=.Z=2/
to the first morphism (7), we obtain the canonical map

(11) X ! Sp2.X /;

which does not split for X D S by considering Steenrod operations; see [11; 10].
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Let us study the cofibration sequence (7) in more detail. The second morphism in (7)
was constructed using obstruction theory. More explicitly, we have

(12) F.Z=2C;X /
Z=2
DX D . AEZ=2 ^ inffegZ=2X /Z=2;

and resZ=2
feg

. AEZ=2 ^ inffegZ=2X / is contractible, and hence for a cell feg–spectrum X ,
the (nonequivariant) space QX of Z=2–equivariant morphisms

F.Z=2C;X /! AEZ=2 ^ inffegZ=2X

extending the morphism (12), is contractible. Now for each ˛ 2QX , the composite
morphism

(13) Z=2C ^X
�
�! F.Z=2C;X /

˛
�! AEZ=2 ^ inffegZ=2X;

where � is the first morphism of (7), is null-homotopic (since the source has trivial
fixed points), and for the same reason, the space SX of pairs .˛; h/, where h is a
null-homotopy of (13), is also contractible. Note that specifying an element of SX is
equivalent to specifying a morphism of Z=2–R1–spectra

(14) C.�/! AEZ=2 ^ inffegZ=2X

extending the identification (12) (where C denotes the mapping cone). Thus, the
space of such morphisms is contractible. Further, every such morphism (14) is a
Z=2–equivariant equivalence.

Similarly, one also sees that the space of morphisms

(15) AEZ=2 ^ inffegZ=2X ! C.�/

which are the identity on fixed points (using the identification (12)) is contractible, and
that each of those morphisms is an equivalence. Even more generally, if we denote the
morphism � of (13) more specifically by �X , then for any morphism of feg–spectra

(16) f W X ! Y;

the space of all morphisms

AEZ=2 ^ inffegZ=2X ! C.�Y /

which restrict to f on fixed points is contractible. This implies, in particular, that the
morphism (15), and hence its composition

(17) AEZ=2 ^ inffegZ=2X !†Z=2C ^X
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with the canonical natural morphism

C.�/!†Z=2C ^X;

is natural in the derived category. (See [9, Section II.8] for further discussion of this
method.)

Now the natural transformation (17) in DZ=2–R1–spectra has a right adjoint

(18) �.resZ=2
feg

Z/! F. AEZ=2;Z/Z=2

(here Z is a Z=2–R1–spectrum, and (18) is a morphism of feg–spectra). Continu-
ing (17) to the right, we get a sequence of functors in DZ=2–R1–spectra

AEZ=2 ^ inffegZ=2X !†Z=2C ^X !†F.Z=2C;X /;

which is a cofibration sequence objectwise. Therefore, we have a right adjoint sequence

(19) �F. AEZ=2;Z/!�.resZ=2
feg

Z/! F. AEZ=2;Z/Z=2;

where the composition of the two maps (19) is 0, since the adjoint of the 0 morphism
is 0. Additionally, however, (19) induces a long exact sequence on homotopy groups
by the adjunction, and thus is a cofibration sequence objectwise.

Using stability, we have a natural sequence of right adjoints on the level of derived
categories:

(20) F. AEZ=2;Z/Z=2! f .1/.Z/! f �.Z/;

where Z is a Z=2–R1–spectrum. It is worth noting that it is not obvious how
to conclude this directly on the level of triangulated categories: We may define a
distinguished triangle of functors

A! B! C !†A

as a sequence of natural transformations which is a distinguished triangle on every
object. However, it is then not obvious that if A and one of the functors B or C have a
right or left adjoint, so does the third. Additionally, even if this occurs, ie A, B and C

have right (or left) adjoints A0 , B0 and C 0 , it is then not obvious that the adjoint triangle

C 0! B0!A0!†C 0

is distinguished. (This seems, in fact, like an interesting problem.)

Algebraic & Geometric Topology, Volume 18 (2018)



2432 Po Hu, Igor Kriz and Petr Somberg

This is the reason why a modern algebraic topologist seldom works fully in the triangu-
lated category directly, and always, implicitly or explicitly, has the underlying “point
set-level” (ie nonderived) category of spectra in mind. We shall see more examples of
this technique below.

Note that from the cofibration sequence (20) it follows that in this case f .1/ does not
have a right adjoint, since f� does but F. AEZ=2; ?/Z=2 does not, as already shown in
Section 2.1. In effect, by Corollary 2.4, it suffices to observe that in (8), f� does not
preserve compact objects, since f.1/ preserves them and AEZ=2 ^ inffegZ=2? does not
(since F. AEZ=2; ?/Z=2 has no derived right adjoint).

However, using the same method, from formula (7), we see that inductively, Z=2C ^ ?

has as many left adjoints as the last term of the cofibration AEZ=2 ^ inffegZ=2?. They
key point is that the homotopy fiber F functor from the category of morphisms of
(nonderived) spectra has a left adjoint, namely the homotopy cofiber (ie mapping cone)
functor C . Additionally, for a morphism f W X ! Y in the nonderived category of
spectra, if we denote by i W Y ! Cf the canonical natural morphism, then we have a
canonical natural morphism X!Fi , which is an equivalence if X , Y are cell. Similar
comments apply to G–U –spectra for any G , U . Thus, starting from a homotopy
cofiber sequence of functors on the nonderived level, we may replace it by a homotopy
fiber sequence on the nonderived level, which has a left adjoint, which is a homotopy
cofiber sequence. Additionally, if the functors in question preserve homotopy, we
get a corresponding adjunction on the derived level. Provided two of the left adjoint
functors have again left adjoints on the nonderived level, we can iterate this procedure,
starting at every stage on the nonderived level, and noting we have a corresponding
adjunction on the left derived level. Applying this to (7), when AEZ=2 ^ inffegZ=2? has
no further iterated left adjoints, by Corollary 2.4, it does not preserve products, and
hence the corresponding iterated left adjoint of Z=2C ^ ? does not, as the remaining
term of the (co)fiber sequence does. (More details could be given here, but below we
will actually compute these functors explicitly.) As we showed in Section 2.1, the left
derived functor of AEZ=2 ^ inffegZ=2? has a sequence of a total of three left adjoints, and
not more.

Thus, in this case, precisely the functors f.�1/ , f.2/ , f .�2/ exist, leading to a chain
of a total of seven adjoints. In fact, these functors can be described geometrically by
taking successive left adjoints of (7): we have

f .�1/X D resZ=2
feg

X=X Z=2:
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Additionally, f.2/Y is the fiber of the canonical morphism Z=2C ^ Y ! inffegZ=2Y ,

and f .�2/X is the cofiber of a morphism

X=.Z=2/! resZ=2
feg

X=X Z=2;

which is a variant of the transfer. Again, we see that this functor has no left adjoint.

One can also see that the right projection formula (4) fails for the case G D Z=2,
H D feg and the trivial universe. In effect, if this formula were true, it would say
(putting Y D S ) that for a Z=2–R1–spectrum X , the canonical morphism

(21) X ^F.Z=2C;S/! F.Z=2C; inffegZ=2resZ=2
feg

X /

is an equivalence. Since the analogous statement replacing F.Z=2C; ?/ by Z=2C ^ ?

holds, this is equivalent to the canonical morphism

(22) AEZ=2 ^X ! AEZ=2 ^ inffegZ=2resZ=2
feg

X

being an equivalence (since AEZ=2 ^X � AEZ=2 ^ .X Z=2/fixed , the canonical mor-
phism (22) is induced by the canonical morphism X Z=2!Efeg , which is also (22) on
fixed points). Thus, (22) is not an equivalence when X is not fixed, and hence neither
is (21).

What in this example can be generalized? Let us specialize to the case of a finite
group G and the trivial universe. (The main significance of the finiteness being that
the orbit category is finite.) In this case, the cofiber sequence (7) generalizes to

(23) G ËH X ! FH ŒG;X /!CEF .H / ^FH ŒG;X /;

where F .H / is the family of all subgroups of G subconjugate to H . The cofibration
sequence (23) can be used to gain information on both left and right adjoints. Recall
that for a subgroup K of G which is not subconjugate to H , we have

FH ŒG;X /
K
�

Y
a2KnG=H

X H\a�1Ka:

Denote, as usual, by N.K/ the normalizer of K , and W .K/ D N.K/=K . Recall
that, for a general (not necessarily normal) subgroup K of G , we have a functor
.?/K W DG–R1–spectra !DW .K/–R1–spectra. As a W .K/–spectrum,

(24) FH ŒG;X /
K
�

_
Œa�2N.K /nG=H

FW .K ;H /ŒW .K/;X H\a�1Ka/;
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where

W .K;H /D
a�1Ka �H \ a�1N.K/a

a�1Ka
:

We can express CEF .H /^FH ŒG;X / as a finite homotopy (co)limit of G–R1–spectra
of the form

G ËN.K / .FH ŒG;X /
K /;

where K is not subconjugate to H , so by (24) and (23), we can, in principle, inductively
write down a model for the right adjoint of FH ŒG;X / (since jW .K/j< jGj).

On the other hand, formula (23) can also be used to construct two left adjoints to
G ËH X . By induction, again, it suffices to prove that the functor BEF ŒH � ^ ? has two
left adjoints. This follows from the following general fact, which can be traced back
to [9].

Proposition 2.5 For any family F of subgroups of a finite group G , the functor

(25) eEF ^ ? W DG–R1–spectra!DG–R1–spectra

has two left adjoints.

Proof Recall that the category DG–R1–spectra is equivalent to the diagram derived
category of OOp

G
–spectra (ie with objectwise equivalences), where OG is the orbit

category of G . We can identify a family F with a full subcategory of OG on the
subgroups which belong to the family, and the corresponding cofamily �F with the full
subcategory of OG on all the remaining subgroups.

For an F Op–spectrum X , a G–R1–spectrum eEF ^ X is well defined, and if
we denote this functor by �� , it is right adjoint to the forgetful functor �� from
G–R1–spectra (DOOp

G
–spectra) to �F Op–spectra. This functor then has a left adjoint

�] DOOp
G

Ë�F ?. The left adjoint to (25) is �]��.

To show that a further left adjoint exists, by Corollary 2.4, it suffices to show that the
functor �]�� preserves products. This follows from the following result.

Lemma 2.6 Let C be a finite category in which every endomorphism has an inverse,
and let F be a contravariant functor from C to the category of finite sets. Suppose that
C .x;x/ acts freely (from the right) on F.x/ for every x 2 Obj.C /. Then the functor

(26) B^.FC;CC; ?/W C–spectra! Spectra

preserves products.
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Proof In the case when C is a group, under our assumptions, the functor (26) is
just a “sum of finitely many copies”, so it preserves products. In the general case, it
arises from the corresponding functors for the automorphism groups of C by a finite
homotopy colimit over a poset, so the conclusion follows from stability.

It is not difficult to give an example of an inclusion of finite group H � G where
the functor G ËH ? from H–R1–spectra to G–R1–spectra does not have three left
adjoints. Let G D Z=4 and H D Z=2. In this case, (23) becomes

(27) .Z=4/ËZ=2 X ! FZ=2ŒZ=4;X /! BEŒZ=4� ^X Z=2;

so again by induction, the existence of three left adjoints to .Z=4/ËZ=2? would be
equivalent to the existence of three left adjoints to BEŒZ=4�^X Z=2 . We know however
that the left adjoint to that functor is inffegZ=2.?/

Z=4 , whose left adjoint, in turn, is
inffegZ=4.?=.Z=2//. This functor does not preserve products, since ?=.Z=2/ does not,
and inffegZ=4 has a left inverse ?Z=4 , which preserves products. Thus, inffegZ=4.?=.Z=2//

has no left adjoint, as claimed.

On the other hand, if G is finite abelian, the functor GË? from spectra to G–R1–spectra
does have three left adjoints (and hence resG

feg
has four left adjoints, leading to a chain

of seven adjoints). Again, it suffices to show that the rightmost term of the cofibration
sequence (23), which in this case is eEG ^F ŒG; ?/, has three left adjoints. Again, we
can model eEG as a finite homotopy colimit of AEŒH � for subgroups feg ¤H � G ,
and therefore it suffices to show that AEŒH � ^F ŒG; ?/�AEŒH � ^F ŒG; ?/H has three
left adjoints. However, for a spectrum X , F ŒG;X /H is a sum of (finitely many) copies
of X , so we are reduced to showing that AEŒH � ^X from spectra to G–R1–spectra
has three left adjoints. But the left adjoint to that functor is .resG

H
?/H, which we

already know has two left adjoints.

2.3 Smashing with a finite spectrum

Here we are not dealing with symmetric monoidal functors, so there is no discussion of
projection formulas. The functor X ^? has a right adjoint F.X; ?/ for any spectrum X ,
which passes on to derived categories. Additionally, by Corollary 2.4, on derived
categories, F.X; ?/ has an additional right adjoint if and only if X ^ ? preserves
compact objects, which happens if and only if X is itself compact. If U is a complete
universe, we of course have F.X; ?/ D DX ^ ?, so there is an infinite chain of
adjunctions in both directions.
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Note that if X is of the form G=HC , where H is a closed subgroup of G , on the level
of derived categories, X ^ ? is isomorphic to G Ë .resG

H
?/, so we already know that it

has two right adjoints. In the case when X is finite, therefore, the cellular filtration
on X gives a filtration on the second right adjoint, where the associated graded pieces
can, in principle, be described by the methods of Section 2.2.

We can show the right adjoint to the endofunctor F.Z=2C; ?/ in DZ=2–R1–spectra
has no right adjoint. In effect, considering Corollary 2.4, if F.Z=2C; ?/ preserved
compact objects, F.Z=2C; inffegZ=2 ?/ (ie the middle term of (7)) would. So, since the
first term of (7) preserves compactness, it would follow that AEZ=2^ inffegZ=2 ? preserves
compactness, which we already showed is not the case.

Regarding left adjoints, it follows from what we showed in Section 2.2 that the end-
ofunctor G Ë .resG

H
?/, and hence the endofunctor X ^ ? for X a finite spectrum, in

DG–R1–spectra with G finite has two left adjoints (again, we consider the functors
on the nonderived level, and take strictly functorial homotopy (co)fibers, working induc-
tively on the number of cells of X ), thus leading to a chain of five adjoints involving
X ^ ?. Furthermore, for G D Z=p , since the only orbits are trivial and Z=p , also by
the results of Section 2.2, we have a third left adjoint, leading to a chain of six adjoints.

In the case when G D Z=2 and U DR1 , we can show that no further left adjoints
exist. In effect, by the results of Section 2.2, the first left adjoint to Z=2 Ë resZ=2

feg
X is

Z=2 Ë .resZ=2
feg

X=X Z=2/, and hence the second left adjoint is the fiber of the canonical
morphism

(28) Z=2 Ë .resZ=2
feg

X=X Z=2/! inffegZ=2.resZ=2
feg

X=X Z=2/:

Since the first one of these functors has two left adjoints, it suffices to show that the
second one does not. Now the left adjoint to the second functor (28) is the cofiber of

Z=2 Ë .X=.Z=2//! inffegZ=2.X=.Z=2//;

which does not preserve products (for example, applying resZ=2
feg

, we get X=.Z=2/

again, which we already showed does not preserve products). Thus, we have a chain of
precisely six adjoints in this case.

In the case when G D Z=4, U DR1 and X D .Z=4/=.Z=2/C , we can show that a
third left adjoint does not exist, thus leading to a chain of precisely five adjoints. In
effect, by (27), it suffices, again, to work with the endofunctor BEŒZ=4�^.resZ=4

Z=2X /Z=2
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instead. Its left adjoint is Z=4ËZ=2 inffegZ=2.X
Z=4/, which we can represent as the fiber

of the morphism

FZ=2ŒZ=4; inffegZ=2.X
Z=4//! BEŒZ=4� ^ .inffegZ=2.X

Z=4//Z=2:

The second functor is BEŒZ=4�^X Z=4 , which we already know has two left adjoints, so
it suffices to show that FZ=2ŒZ=4; inffegZ=2.X

Z=4// does not. In effect, its left adjoint is
inffegZ=4..resZ=4

Z=2X /=.Z=2//. This functor does not preserve products: since inffegZ=4 has a
left inverse resZ=4

feg
which preserves products, it suffices to show that .resZ=4

Z=2X /=.Z=2/

does not preserve products, but that follows from the same example as before.

2.4 Change of universe

Let i W U !V be an isometry of G–universes. Then recall [9, Section II.1] that a G–V –
spectrum Y as an object of the derived category can be described by describing the
G–U –spectra i�†V Y , where V runs through finite-dimensional G–representations
contained in V (and it suffices to consider those representations V which do not have
irreducible summands in U ). Thus, to describe i� , it suffices to describe i�†V i� ,
which is right adjoint to

(29) i�†�V i]X D�
V i�i]X D hocolim

W
�WCV†W X;

where, again, W runs through subrepresentations of V with no irreducible summand
contained in U . But we know that �W has right adjoint RW D R.SW ; ?/, so the
right adjoint to (29) is

(30) i�†V i�X D holim
W

�W RWCV X:

From this point of view, we have a description of the functor i� .

Regarding additional adjoints, in general, i] does not preserve products, and thus does
not have a left adjoint. To see this, let us consider again the case G D Z=2, where
U DR1 is the trivial universe and V is the complete universe. We will show that the
functor

.i�.i].inffegZ=2///
Z=2
W DSpectra!DSpectra

does not preserve products, which is sufficient, since the functors .?/Z=2 , i� and
inffegZ=2 do preserve products. In effect, it is well known that we have a cofibration
sequence

BZ=2C ^X ! .i�.i].inffegZ=2X ///Z=2!X

Algebraic & Geometric Topology, Volume 18 (2018)



2438 Po Hu, Igor Kriz and Petr Somberg

(see eg [9, Section II.7] or, even, much more explicitly, and generally, Section V.11),
where the third term preserves products, and again, the connecting map is natural (it
is, in fact, in this case 0), so it suffices to prove that the first term does not, which is
Lemma A.1.

For the same reason, i� does not preserve compact objects (since the functors .?/Z=2

and inffegZ=2 do), so i� does not have a right adjoint.

The right projection formula (4), for x D Z=2C and y D S (where G D Z=2, U is
the trivial universe and V is the complete universe), would say that

Z=2C ^ i�.S/� i�.Z=2C/:

We know that the right-hand side has fixed points by the Wirthmüller isomorphism,
while the left-hand side does not. Therefore, (4) is false.

2.5 Inflation: the general case

By formula (1), the general case of the inflation reduces to the case of an H–fixed
universe, and change of universes. However, it remains to resolve the question of how
many adjoints we have, and the question of a projection formula.

In the case when G D Z=2 and U is the complete universe, we have, again, for a
spectrum X , a cofibration sequence

BZ=2C ^X ! .inffegZ=2X /Z=2!X;

thus showing that .?/Z=2 does not preserve compact objects, since inffegZ=2 does. There-
fore, the right adjoint to .?/Z=2 in this case does not have a further right adjoint by
Corollary 2.4. On the other hand, this situation actually satisfies the assumptions of [1],
and therefore, we also know that the functor inffegZ=2 does not have a left adjoint.

We also know from [1] that in the case of inflation from a complete universe to a
complete universe, the right projection formula (4) is satisfied. However, it turns out to
be true in general, which is curious, since it is false for change of universe. In effect,
in the general case, the right projection formula asserts an equivalence

(31) X ^ .Y H / ��! ..infJ
GX /^Y /H :

Since both sides are stable under desuspensions by finite subrepresentations of U H,
it suffices to consider the case when X is a J–space. In that case, however (when
applied to a cell spectrum Y ), the V th space of both sides for V fixed under the action
of H is the colimit of �W .X ^YVCW / over finite subrepresentations W of U .
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2.6 Geometric fixed points

As already remarked, the most universal case is the case of a complete universe. In that
case, the assumptions of [1] are satisfied, so we know that there are two right adjoints,
and the right projection formula (4) holds. This turns out to be the case in general. In
fact, the geometric fixed point functor coincides with the fixed point functor in the case
of an H–fixed universe, so this case also generalizes the rightmost three functors of
the chain of five adjoints for inflation in the case when U is H–fixed. By the same
arguments, then, one shows that in general, the right adjoint to ˆH is

(32) AEŒH � ^ infJ
G.?/;

which, in turn, has the right adjoint .F.AEŒH �; ?//H . It is easy to see that in the case
of a complete universe with G D Z=2 and H D feg, (32) does not preserve compact
objects, since AEZ=2 is not compact (as EZ=2C is not). Therefore, the second right
adjoint to ˆZ=2 does not have an additional right adjoint in this case, and by [1], ˆZ=2

does not have a left adjoint. Thus, in this case, we have the “3–scenario” of [1].

In the case of a complete G–universe U , we have the right projection formula by [1], but
in fact, again, it is true in general: it asserts an equivalence (for cell spectra) of the form

X ^AEŒH � ^ infG
J Y �
�!ˆH X ^AEŒH � ^Y;

which holds for the same reason as in the case of an H–fixed universe.

Appendix

We record here some auxiliary results, which we consider known, but for which we
could not find an easy reference.

Lemma A.1 Let K denote (nonequivariant complex) periodic K–theory. Then the
canonical morphism

(33) BZ=2C ^

�Y
N

K

�
œ
�!

Y
N

.BZ=2C ^K/

is not an equivalence.

Proof We are trying to show that in a particular case, Borel homology does not
preserve products. Since Borel cohomology preserves products, it suffices to work
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with Tate cohomology instead (recall the bottom row of the Tate diagram, which
gives a cofibration sequence between Borel homology, Borel cohomology and Tate
cohomology; for background on this, see [5]). Now the Borel cohomology of K has
coefficients (in dimension 0) Z˚Z2 where the Euler class maps the first summand
to the second, so the Tate cohomology is Q2 . Similarly, the Tate cohomology of a
countable product of copies of K is 2�1

�Q
N Z2

�
, the canonical map of which intoQ

N Q2 is not an isomorphism (because of nonuniformity of denominators).

Lemma A.2 Let Y be a T1–space and suppose we have an indexing set I , and for
each F �� I (meaning a finite subset) a subspace YF �Y (with the induced topology)
such that

(1) Y D
S

F��I YF (with the colimit topology),

(2) YF \YG D YF\G for F;G �� I ,

(3) F �G D) YF � YG .

Suppose f W X ! Y is a continuous map, where X is compact. Then there exists
F �� I such that f .X /� YF .

Proof If there exists no F ��I with F.X /�YF , then by induction, we can construct
sets

∅D F0 � F1 � F2 � � � � �� I

and points
yn 2 .YFn

\f .X //XYFn�1

for nD 1; 2; : : : . (Once we have constructed Fn�1 , our assumption f .X /ª YFn�1

implies there is a point yn 2 f .X /X YFn�1
. By assumption (1), yn 2 YF for some

F �� I , and we can take Fn WD Fn�1[F .)

Claim If G �� I and S is an infinite subset of f0; 1; 2; : : : g, then fys j s 2Sgª YG .

Proof of claim To see this, select such a G and S . Then there is a natural number n

such that

G \

�[
n

Fn

�
DG \Fn:

Assuming that ynC1 2 YG , we would have, by assumptions (2) and (3),

ynC1 2 YG \YFnC1
D YG\FnC1

D YG\Fn
� YFn

;

which is a contradiction.
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It follows from the claim and assumption (1) that for every n, the set

Tn D fyn;ynC1; : : : g � Y

is closed in Y . (Indeed, for any F �� I , the set Tn\YF must be finite.) Hence

f �1.T1/� f
�1.T2/� � � �

are nonempty closed subsets of X , whereas\
f �1.Tn/D f

�1

�\
Tn

�
D f �1.∅/D∅;

contradicting the compactness of X .

Corollary A.3 Shift suspensions and desuspensions of suspension spectra of orbits
are compact objects in the category DG–U –spectra for any compact Lie group G and
any universe U .

Proof Consider G–U –cell spectra Zi for i 2 I . The assumptions of Lemma A.2 are
satisfied first for a wedge of based spaces, and hence are also satisfied for

Y D colim
W

�W

�_
i2I

.Zi/VCW

�
and YF D colim

W
�W

�_
i2F

.Zi/VCW

�
:

Now recall from [9, Sections I.2, I.3] that the spaces Y and YF are the constituent
spaces of coproducts of the spectra Zi over I and F . Additionally, maps from shift
suspensions and desuspensions of suspension spectra of orbits into a spectrum are,
by adjunction, the same thing as maps from suspensions of orbits into the constituent
spaces, at which point we can apply Lemma A.2.
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