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The homology of configuration spaces of trees with loops

SAFIA CHETTIH

DANIEL LÜTGEHETMANN

We show that the homology of ordered configuration spaces of finite trees with loops
is torsion-free. We introduce configuration spaces with sinks, which allow for taking
quotients of the base space. Furthermore, we give a concrete generating set for all
homology groups of configuration spaces of trees with loops and the first homology
group of configuration spaces of general finite graphs. An important technique in
the paper is the identification of the E1–page and differentials of Mayer–Vietoris
spectral sequences for configuration spaces.

55R80; 57M15

1 Introduction

For a topological space X and a finite set S, we define the configuration space of X
with particles labeled by S as

ConfS .X/ WD ff W S !X injectiveg �map.S;X/:

For n 2N we write n WD f1; 2; : : : ; ng and Confn.X/ WD Confn.X/. This is usually
called the nth ordered configuration space of X. Let G be a finite connected graph (ie
a connected 1–dimensional CW complex with finitely many cells). We are interested
in the homology of configurations of n ordered particles in G, that is, H�.Confn.G//.

A main ingredient in proving results about configurations in graphs is the existence of
combinatorial models for the configuration spaces. Abrams [1] introduced a discretized
model for the configuration space of n points in a graph which is a cubical complex,
allowing the spaces to be studied using techniques from discrete Morse theory and
connecting them with right-angled Artin groups (see Farley and Sabalka [8] and Crisp
and Wiest [6]). A similar discretized model for non-k–equal configuration spaces in a
graph, where up to k � 1 points are allowed to collide, was constructed in Chettih [5],
providing inspiration for the configuration with sinks introduced in this paper.
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Not long after the introduction of Abrams’ model, Świątkowski [13] introduced a
cubical complex which is a deformation retract of the space of unordered configurations
of n points in a graph. In this model, instead of the points moving discrete distances
along the graph, the points move from an edge to a vertex of valence at least two
or vice versa. This gives a sharper bound for the homological dimension of these
configuration spaces as the dimension of the complex is bounded from above by the
number of vertices in the graph (see Ghrist [9] and Farley and Sabalka [8] for proofs
that this bound also holds for Abrams’ model). An analogous model holds for ordered
configurations (see Lütgehetmann [10]), by keeping track of the order of points on an
edge. The combinatorial model for configurations with sinks has structure similar to
the latter models.

In order to describe the homology of Confn.G/, we will compare it to a modified
version of configuration spaces: we add “sinks” to our graphs. Sinks are special vertices
in the graph where we allow particles to collide. For ordinary configuration spaces, if
we collapse a subgraph H of G then this does not induce a map

Confn.G/Ü Confn.G=H/

because some of the particles could be mapped to the same point in G=H. If, however,
we turn the image of H under G!G=H into a sink, there is now an induced map on
configuration spaces.

Our first theorem shows that in the ordered case, there is no torsion and a geometric
generating system for a large class of finite graphs.

Definition 1 A finite connected graph G is called a tree with loops if it can be
constructed as an iterated wedge of star graphs and copies of S1 .

Definition 2 A homology class � 2Hq.Confn.G// is called the product of classes
�1 2Hq1.ConfT1.G1// and �2 2Hq2.ConfT2.G2// for q1Cq2D q if it is the image
of �1˝ �2 under the map

Hq.Confn.G1 tG2//!Hq.Confn.G//

induced by an embedding G1 tG2 ,!G. Analogously, iterated products are induced
by embeddings G1 tG2 t � � � tGn ,!G.

For k � 3 let Stark be the star graph with k leaves, H the tree with two vertices
of valence three and S1 a circle with one vertex of valence 2. We call a class
� 2Hq.Confn.G// a product of basic classes if � is an iterated product of classes in
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groups of the form Hj .Confni .Gi //, where j equals 0 or 1 and Gi is a star graph,
the H–graph, the circle S1 or the interval I.

Theorem A Let G be a tree with loops and let n be a natural number. Then the
integral homology Hq.Confn.G/IZ/ is torsion-free and generated by products of basic
classes for each q � 0

A 1–class in S1 moves all particles around the circle, a 1–class in a star graph uses the
essential vertex to shuffle around the particles, and a 1–class in the H–graph uses one
of the vertices to reorder the particle and then undoes this reordering using the other
vertex. The proof of Theorem A will show that 2–classes in an H–graph are given by
sums of products of 1–classes in the two stars, and there are no higher-dimensional
classes in these three types of graphs.

The proof of Theorem A rests on an inductive argument on the number of essential
vertices of a graph. We construct a basis for the configuration space of a star graph with
loops such that the E1–page of the Mayer–Vietoris spectral sequence induced by our
gluing splits over that basis. We can identify a part of the homology of the E1–page
with configuration spaces where some of the points have been forgotten, and the rest
of the homology with a configuration space where the star graph has been collapsed
to a sink (see Section 2 for the definition of sink configuration spaces). The gluing
process does not create torsion, so torsion-freeness follows from explicit calculations
of the homology of ordered configurations in star graphs with loops. An explicit
generating set of homology classes with known relations is essential to our proof.
A basis for the homology of ordered configurations of two points in a tree was first
constructed in Chettih [5], which highlighted the role of basic classes of the H–graph in
the configuration space of wedges of graphs. See also Barnett and Farber [3] and Farber
and Hanbury [7] for descriptions of product structure in configurations of two points
on planar and nonplanar graphs. The Mayer–Vietoris principle was previously used to
compute the homology of (unordered) configuration spaces of graphs in Maciążek and
Sawicki [11].

For more general graphs, the analogous theorems do not hold:

Theorem B If G is any finite graph and n a natural number, then the first homology
group H1.Confn.G// is generated by basic classes. However, for each i � 2 there
exists a finite graph G and a number n such that Hi .Confn.G// is not generated by
products of 1–classes.
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We provide explicit examples for the second statement. Abrams and Ghrist were aware
of the second part of this result in 2002 [2], but their example does not generalize to
arbitrary dimensions. More specifically, they showed that Conf2.K5/ and Conf2.K3;3/
are homotopic to surfaces of genus 6 and 4, respectively, where K5 is the complete
graph on five vertices and K3;3 is the complete bipartite graph on 3C 3 vertices.

Both theorems above can be generalized to the case where arbitrary subsets of the
vertices are turned into sinks.

In between versions of this paper, Ramos [12] considered configurations where all the
vertices of a graph are sinks, approaching them through the lens of representation sta-
bility. His theorems concerning torsion-freeness and bounds on homological dimension
are special cases of the theorems above.

In an earlier version of this paper, we asserted torsion-freeness for arbitrary finite
graphs. However, our proof relied on a basis which we discovered does not split the
Mayer–Vietoris spectral sequence in the way we described it. Our investigation of
obstructions to constructing an appropriate basis led us to the counterexamples in
Theorem B. Such a basis may still exist, and we believe the following:

Conjecture 3 Let G be a finite graph and n a natural number. Then the integral
homology Hq.Confn.G/IZ/ is torsion-free for each q � 0.

To answer this question for general graphs, more work is needed on relations in the
homology of configuration spaces of graphs with many cycles.

The paper proceeds as follows: We introduce a combinatorial model for configurations
with “sinks” in order to calculate the homology of a few specific examples in Section 2.
After the Mayer–Vietoris spectral sequence is established in Section 2.3, we construct
our desired basis and argue inductively by gluing on stars with loops in Section 3. The
case of the first homology in an arbitrary graph comprises Section 4, with counter-
examples for higher homology. Our techniques in this section are substantially different
since we no longer have bases which split the spectral sequence.
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2 Quotient and Mayer–Vietoris constructions

In order to describe the homology of Confn.G/ we will compare it to a modified version
of configuration spaces: we add “sinks” to our graphs. Sinks are special vertices in the
graph where we allow particles to collide, and they enable us to collapse subgraphs
and get an induced map on configuration spaces. This does not work for ordinary
configuration spaces: if we collapse a subgraph H of G then this does not induce a
map

Confn.G/Ü Confn.G=H/

because some of the particles could be mapped to the same point in G=H.

For a number n 2N , a graph G and a subset W of the vertices of G, we define the
following configuration space with sinks:

Confsink
n .G;W /D f.x1; : : : ; xn/ j for i ¤ j , either xi ¤ xj or xi D xj 2W g �Gn:

Looking at the collapse map G ! G=H again, there is now an induced map on
configuration spaces if we turn the image of H under G!G=H into a sink,

Confn.G/! Confsink
n .G=H;H=H/:

2.1 A combinatorial model

We can extend the techniques of [13; 10] to obtain a cube complex model of con-
figuration spaces with sinks. More precisely we will define a deformation retraction
r W Confsink

n .G;W /! Confsink
n .G;W / such that the image of r has the structure of a

finite cube complex. Each axis of such a cube will correspond to the combinatorial
movement of one particle. A combinatorial movement here is either given by the
movement from an essential nonsink vertex onto an edge or along a single edge from
one sink to the other. Each vertex and each such edge can only be involved in one of
those combinatorial movements at a time, so the dimension of this cube complex will
be restricted by the number of essential nonsink vertices and the edges connecting two
sinks.

Definition 4 (cube complex; see [4, Definition I.7.32]) A cube complex K is the
quotient of a disjoint union of cubes X D

F
�2ƒŒ0; 1�

k� by an equivalence relation �
such that the quotient map pW X !X=�DK maps each cube injectively into K and
we only identify faces of the same dimensions by an isometric homeomorphism.
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Remark 5 The definition above differs slightly from the original definition by Bridson
and Häfliger, in that it allows two cubes to be identified along more than one face. This
is a necessary property for the complex we wish to describe.

Proposition 6 Let G be a finite graph, W a subset of the vertices and n 2 N .
Then Confsink

n .G;W / deformation retracts to a finite cube complex of dimension
minfn; jV�2j C jEW jg, where V�2 is the set of nonsink vertices of G of valence
at least two and EW is the set of edges incident to two sinks.

Proof The naive approach would be to retract particles in the interior of an edge to
positions equidistant throughout the edge. However, this fails to be continuous as the
number of particles in the interior changes, such as when a particle moves off a vertex.
To fix this, we construct an additional parameter which controls the distance of the
outermost particles on an edge from the vertices.

Give G the path metric such that every edge has length 1. For this proof, we define half
edges in G : every edge consists of two distinct half edges h�e and h�e . For each half
edge h we denote by v.h/ the vertex incident to h and by e.h/ the edge corresponding
to h with the orientation determined by the half edge. If h is a half edge, then xh is the
other half of e.h/, and e.h/D�e.xh/.

The general idea is now the following: the retraction r only changes the position of
particles inside (closed) edges of the graph. We move as many particles of a given
configuration xD .x1; : : : ; xn/ as possible into the sinks, so that r.x/ has at most one
particle in the interior of any edge incident to a sink. Furthermore, the particles of r.x/
on each single edge will be equidistant, except for the outermost particles, which may
be closer to the vertices; see Figure 1. The main difficulty will be to define for each
configuration x and each half edge h the parameter th 2 Œ0; 1� determining the distance
of the particles from the corresponding vertex. Decreasing th to zero represents moving
the particle on the edge that is nearest to the vertex v.h/ towards that vertex. To avoid
multiple particles approaching the same vertex, we therefore require that for any pair
of half edges h¤ h0 with v.h/D v.h0/, only one of the two values th and th0 can be
strictly smaller than 1.

For fixed .x1; : : : ; xn/ 2Confsink
n .G;W / we now define the image r.x/. The first step

is to construct the parameter th . Let v 2 V.G/ be a vertex and denote by Hv the set of
half edges h with v.h/D v . If Hv has only one element, then we set th D 1 because
we do not want to move particles towards a vertex of valence 1. Also, if v is occupied
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� � �

th�e � ce

ce ce

th�e � ce

Figure 1: Equidistant particles on e

by one of the particles xi , then we set th D 1 for all h 2Hv because we do not want
to move particles towards an occupied vertex.

Now assume that the valence of v is at least two and it is not occupied by a particle.
If for a half edge h 2 Hv the edge e.h/ contains no particles or v.h/ is a sink, set
th D 1. Otherwise, the particles on e.h/ cut the edge into segments, and we order
these segments according to the orientation of e.h/ given by h. Let `h be the quotient
of the length of the first segment by the length of the second segment, capped to the
interval Œ0; 1�, unless v.xh/ is a sink. If it is a sink, let `h be the length of the first
segment. We treat these cases differently because particles on edges incident to sinks
move from vertex to vertex instead of from edge to vertex. We now define

th WDmin
�
1;

`h

minh02Hv�fhg `h0

�
:

Notice

� if `h D `h0 , then th D th0 D 1,

� if only one of the `h goes to zero, then also th goes to zero, and

� at most one of the th for h 2Hv is strictly smaller than 1.

Given these parameters th for all half edges h, we now construct the configuration
r..x1; : : : ; xn//. The particles on the vertices are not moved by the retraction, so it
remains to describe the change of position for the particles in the interior of an edge e .
We will not change the order of the particles but only their position within the edge,
and to make the description more concise we choose once and for all an isometric
identification of each edge e with Œ0; 1� such that v.h�e/D 0.

� If e is not incident to a sink vertex, the new position of the j th vertex on e will be
given by .th�e C j � 1/ � ce , where ke � 1 is the number of particles in the interior of e
and ce WD .th�eCke�1C th�e /

�1 will be the distance between the particles on that edge.
This gives all particles on the edge the same distance and only modifies the distances
from the vertices; see Figure 1. It remains to be shown that the positions of the particles
on the edge vary continuously as th goes to 0. This is true when th�e > 0, and notice
that for th�e D 0 the images of the particles will be the same as if we considered the first
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particle to be on v.h�e/ and th�e D 1: this would change th�e from 0 to 1 and reduce
ke by 1, so that ce will be exactly the same. The analogous result also holds for h�e .
This shows that the position of the particles on this closed edge after applying r is
continuous in the original configuration.

� If e is incident to precisely one sink vertex then we can assume that this sink vertex
corresponds to 0 2 Œ0; 1�. All particles on e except the last one are then moved to 0;
the last particle is moved to 1� th�e 2 Œ0; 1�.

� If both vertices incident to e are sinks, we slide all particles away from 1
2
2 Œ0; 1�

with speed given by their distance from 1
2

until at most one particle is left in the interior
.0; 1/ of the interval. This gives a configuration having one particle on e and the rest
on the sinks.

The map described above is continuous and a retraction, ie satisfies r2 D r . In the
description we only changed the positions of particles on individual edges, so there
is an obvious homotopy from the identity to r by just adjusting the positions of the
particles on each edge individually.

The image of r has the structure of a cube complex: the 0–cells are configurations
where all particles in the interior of each interval cut the interval into pieces of equal
length, and additionally no particle is in the interior of an edge with one or two sinks.
A k–cube is given by choosing such a 0–cell, k distinct particles which are either
outermost on their edge or on a sink and move them to an adjacent vertex. Such a choice
of k movements determines a k–cube if and only if we can realize the movements
independently, namely if

� no two particles move along the same edge,

� no two particles move towards the same nonsink vertex, and

� no particle moves towards an occupied nonsink vertex.

Each direction of the cube corresponds to the movement of one of the particles. By
the description of the choices involved for finding k–cubes, we immediately get the
restriction on the dimension. For more details about the general construction of the
cube complex (without sinks), see [10].

It will be useful for subsequent proofs to have a notion for pushing in new particles
from the boundary of the graph.
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Definition 7 Let G be a graph and e be a leaf. For a finite set S and an element
s 2 S, define the map

�e;sW Confsink
S�fsg.G;W / ,! Confsink

S .G;W /

by slightly pushing in the particles on e and putting s onto the univalent vertex of e .

Definition 8 Let G be a graph. For finite sets S 0 � S, define the map

�S 0 W Confsink
S .G;W /! Confsink

S 0 .G;W /

by forgetting the particles S �S 0. If S 0 D fsg then we write instead �s WD �fsg .

Notice that the composition �S�fsg ı �e;s is homotopic to the identity.

Definition 9 Let X D †i˛iXi be a cellular chain in the combinatorial model of
Confsink

S .G;W /. The particle s is called a fixed particle of X if there exists a cell c of
the graph G such that �s.Xi / is contained in the interior of c for all Xi . Here, the
interior of a vertex is the vertex itself.

Notice that fixed particles may still move inside their edge to preserve equidistance,
but they never leave their edge or vertex.

2.2 The homology for small graphs

For later use we calculate the homology of some of these configuration spaces with
sinks.

Proposition 10 We have

Hi .Confsink
n .I;¿//D

�
Z†n if i D 0;
0 else;

Hi .Confsink
n .S1;¿//D

�
Z.†n=shift/Š Z.n�1/Š if i D 0; 1;
0 else;

Hi .Confsink
n .I; f0g//D

�
Z if i D 0;
0 else;

Hi .Confsink
n .I; f0; 1g//D

8<:
Z if i D 0;
Z.n�2/2

n�1C1 if i D 1;
0 else;

Hi .Confsink
n .S1; f0g//D

8<:
Z if i D 0;
Zn if i D 1;
0 else:
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Proof The first two are clear. The interval with one sink has contractible configuration
space: we can just gradually pull all particles into the sink. For the last two cases, note
that the spaces are obviously connected by pulling all particles onto one of the sinks.
Furthermore, by Proposition 6 they are homotopic to 1–dimensional cube complexes.
Computing the Euler characteristic gives the described ranks:

�.Confsink
n .I; f0; 1g// There is a 0–cube for every distribution of particles onto the

two sinks, which means that there are 2n of them. We have a 1–cell for each choice of
one moving particle and every distribution of the remaining ones onto the two sinks, so
there are n2n�1 many 1–cells. Notice that this is the 1–skeleton of the n–dimensional
cube. Thus, the Euler characteristic is .2�n/2n�1 , which determines the rank of the
first homology group.

�.Confsink
n .S 1; f0g// There is precisely one 0–cell, namely the one where all parti-

cles are on the sink. There is one 1–cell for each choice of one particle moving along
the edge, giving n 1–cells and therefore the Euler characteristic 1�n. Notice that this
is a bouquet of circles.

Remark 11 Cycles in H1.Confsink
n .I; f0; 1g// can be regarded as cycles in the ordi-

nary configuration space of the H–graph Confn.H/; see Figure 2. Replace both spaces
by their combinatorial models and define a continuous map as follows: take a 0–cell
of the configuration space with sinks and replace particles sitting on a sink vertex
with them sitting on the corresponding lower leaf of the H–graph in their canonical
ascending order. Moving a particle x from one sink vertex to the other is then given by
moving all particles blocking the path of x to the vertex to the upper leaf, moving x
onto the horizontal edge, moving the particles on the upper leaf back to the lower leaf
and repeating the same game on the other side in reverse. This determines a continuous
map between combinatorial models and thus induces a map on cellular 1–cycles.

3
5
6

2
4

1 !

6
5

3
4

2
1

Figure 2: Comparing Confsink
n .I; f0; 1g/ and Confn.H/

This map is injective in homology: composing the map with the map collapsing the two
pairs of leaves to sinks gives a map that is homotopic to the identity, showing that the
homology of Confsink

n .I; f0; 1g/ is a direct summand of the homology of Confn.H/.
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2.3 A Mayer–Vietoris spectral sequence for configuration spaces

To compute the homology of the configuration space of a space X we can decompose
X into smaller spaces and patch together local results. A structured way to do this is
by using the Mayer–Vietoris spectral sequence associated with a countable open cover.

Definition 12 (Mayer–Vietoris spectral sequence) Let J be a countable ordered
index set and fVj gj2J an open cover of X ; then we define the following countable
open cover U.fVj g/ of Confn.X/: for each �W n! J we define U� to be the set of
all those configurations where each particle i is in V�.i/ , ie

U� WD
\
i2n

��1i .V�.i//:

These sets are open and cover the whole space, so they define a spectral sequence

E1p;q D
M

f�0;:::;�pg

Hq.U�0 \ � � � \U�p /)H�.Confn.X//

converging to the homology of the whole space. For a proof of the convergence of this
spectral sequence, see [5, Proposition 2.1.9, page 13].

Notice that
U�0 \ � � � \U�p D

\
i2n

\
0�j�p

��1i .V�j .i//:

For brevity, we will also write

U�0����p WD U�0 \ � � � \U�p :

The boundary map d1 is given by the alternating sum of the face maps induced by

U�0 \ � � � \U�p ,! U�0 \ � � � \
�U�i \ � � � \U�p

forgetting the i th open set from the intersection. Of course, this construction generalizes
to configuration spaces with sinks.

3 Configurations of particles in trees with loops

We will more generally prove Theorem A for all graphs as in the statement of the
theorems with any (possibly empty) subset of the vertices of valence one turned into
sinks. The proof will proceed by induction over the number of essential vertices (ie
vertices of valence at least three). We first prove the base case:
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Proposition 13 Let G be a finite connected graph with precisely one essential vertex
and W a subset of the vertices of valence 1. Then H1.Confsink

n .G;W // is free and
generated by basic classes.

Notice that if we talk of H–classes in a graph with sinks .G;W / then we allow some
of the leaves of H to be collapsed to a sink under the map H!G. In the proof, we
will need the following definition:

Definition 14 For finite sets T � S, a finite graph G, a subset K � G and sinks
W � V.G/, write � D .G;K/ and define

Confsink
S;T .�;W /D ff W S !G j f .T /�Kg � Confsink

S .G;W /:

As a consequence of the definition, we get

Confsink
S;∅.�;W /D Confsink

S .G;W /

and
Confsink

S;S .�;W /D Confsink
S .K;W \K/:

Proof of Proposition 13 By Proposition 6, Confsink
n .G;W / is homotopy equivalent

to a graph, so the first homology is free. To see that it is generated by basic classes, we
inductively use a Mayer–Vietoris long exact sequence.

For a sink w 2W let �w D .G;G �fwg/. Notice that

Confsink
S;∅.�w ; W /D Confsink

S .G;W /

and

Confsink
S;S .�w ; W /D Confsink

S .G �fwg; W �fwg/' Confsink
S .G;W �fwg/;

where the last homotopy equivalence follows because w has valence 1. For two sinks
w0 ¤ w1 we therefore have

Confsink
S;S .�w0 ; W /' Confsink

S;∅.�w1 ; W �fw0g/:

Moving elements from S �T to T and using the above identifications, we will show
by induction on jS � T j and the number of sinks jW j that the first homology of all
spaces Confsink

S;T .�;W / is generated by basic classes.

In the base case, we have T D ∅ and W D ∅, so the space we are investigating is
the ordinary configuration space ConfS .G/, which is generated by basic classes by
Proposition 16 (this is not a circular argument; the proposition is only stated and proven
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later since it is the main step to compute the first homology of configuration spaces of
arbitrary finite graphs). For the induction step, choose an arbitrary s 2 S �T and take
the open covering fV1; V2g of Confsink

S;T .�w0 ; W / given by the subsets

V1 WD �
�1
s .G �fw0g/ and V2 WD �

�1
s

�
fx 2G j dG.x; w0/ < 1g

�
:

The interesting part of the Mayer–Vietoris long exact sequence is

H1.V1/˚H1.V2/!H1.Confsink
S;T .�w0 ; W //!H0.V1\V2/!H0.V1/˚H0.V2/:

We have V1 ' Confsink
S;Ttfsg

.�w0 ; W /, and V2 is homotopy equivalent to a disjoint
union of the space Confsink

S�fsg;T
.�w0 ; W / and several copies of Confsink

S 0 .G;W �fw0g/

for different finite sets S 0 � S. Those latter components of V2 arise if particles of T
sit between s and w0 , preventing s from moving to the sink. The set S 0 is then given
by the set of all particles on the other side of s . The first component is identified by
moving s to the sink and forgetting it.

w0

U1 U2

Figure 3: The open cover fV1; V2g of the configuration space is defined by
restricting particle s to one of the two open sets U1 and U2 , respectively.

The first homology of both of these spaces is by induction generated by basic classes.
Therefore, it remains to show that the classes coming from the kernel H0.V1\V2/!
H0.V1/˚H0.V2/ are generated by basic classes.

In V1\V2 the particle s is trapped on the edge e between w0 and the central vertex.
We can represent each connected component by a configuration where all particles sit
on e . The remaining particles are then distributed to both sides of s . Restricted to the
connected components where there is a particle of T on the w0 side of s , the map

V1\V2 ,! V2
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is a homeomorphism onto the corresponding connected components of V2 because
those particles in T prevent s from moving to the sink w0 . The image of that restricted
inclusion is disjoint from the image of the remaining components, so to find elements
in the kernel of

H0.V1\V2/!H0.V1/˚H0.V2/

we can restrict ourselves to the union X of components where no element of T is on
the w0 side of s .

The inclusions X ! V1 and X ! V2 map all these connected components to the
same component of V1 and V2 , respectively, because we can use either the sink
or the essential vertex to reorder the particles. Therefore, the kernel of the map to
H0.V1/˚H0.V2/ is generated by differences of distinct ways of putting particles
in S � T to the two sides of s , and the lifting process turns these differences into
H–classes involving w0 and the central vertex, proving the claim.

3.1 A basis for configurations in graphs with one essential vertex

The key to proving the induction step is choosing for each leaf e a particular system of
bases for all first homology groups H1.Confsink

�
.G;W // with the following property:

If a representative of a basis element has fixed particles on the leaf e then changing the
order of these particles should give another basis element, and all these basis elements
should be distinct. Furthermore, adding and forgetting fixed particles of representatives
of basis elements should again give elements in the chosen system of bases. For the
description of such a system of bases, fix the graph G, the set of sinks W and the
leaf e .

For all finite sets S we will choose a system of spanning trees TS in the combinatorial
model of Confsink

S .G;W /. As constructed in Proposition 6, this model is a graph.
For each edge � in the combinatorial model, the system T� will have the following
properties:

� The edge � determines a set F� of fixed particles on the leaf e . The symmetric
group †F� �†n acts on the combinatorial model by precomposition, and we
want that the orbit †F� � � is completely contained in either TS or G �TS .

� Given s … S we have a map Confsink
S .G;W /! Confsink

Stfsg
.G;W / by adding

the particle s to the end of the leaf e . Then � should be in TS if and only if the
image of � under that map is contained in TStfsg .
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We now inductively choose the system of spanning trees TS . For S D∅, we define
T∅ D∅. Given a nonempty set S, complete the forestG

s2S

�e;s.TS�fsg/

to a spanning tree TS in an arbitrary way. If S 0 � S then TS 0 appears as subtrees of
TS by adding the particles S�S 0 to the leaf e in all different orders. While completing
this forest we only add edges that have no fixed particles on e , otherwise, one of the
trees TS�fsg was not maximal in Confsink

S�fsg
.G;W /. This yields a spanning tree TS

of Confsink
S .G;W /, inductively describing spanning trees for all finite sets S with the

properties listed above.

This defines a system of bases B� of H1.Confsink
�
.G;W // with the following properties:

� For � 2 BS the class �� given by adding a set of particles T in some order �
to the end of the leaf e is an element of BStT .

� For � 2 BS the classes �� and ��
0

for two orderings �¤ �0 of T are distinct.

� Every � 2 BS has precisely one minimal representative �min 2 BS 0 for S 0 � S
such that .�min/

� D � for some ordering � of S �S 0 (meaning that the set S 0

is minimal with respect to this property).

� We always have .��/min D �min .

Given � 2 BS and the corresponding minimal cycle C , define S 0 to be the set of fixed
particles of C which are on e . Then �S�S 0.�/ defines the minimal representative
�min 2 BS�S 0 . With this definition it is straightforward to check the four properties
described above.

3.2 The spectral sequence for the induction step

Let .G;W / be a tree with loops with any subset of the vertices of valence one turned
into sinks, and v an essential vertex which is connected to precisely one other essential
vertex w via an edge e . Define the following two open subspaces of G :

L WD fx 2G j dG.x; v/ < 1g

and
K WD fx 2G j dG.x;G �L/ < 1g;

where dG is the path metric giving every internal edge of G length 1 and every leaf
length 1

2
. In other words, K is the connected component of G � fvg containing w ;

see Figure 4.
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K

e

w v

L

Figure 4: The two subgraphs K and L of G

The intersection L\K is the interior of the edge e . The graph K has strictly fewer
essential vertices than G, so by induction we can assume that its configuration spaces
(with sinks) of any number of particles are torsion-free and generated by products of
basic classes.

As described in Section 2.3, construct the open cover U.fK;Lg/ of Confsink
n .G;W / and

look at the corresponding Mayer–Vietoris spectral sequence E�
�;� . The open cover has

one open set for each map �W n! fK;Lg, restricting particle i to the open set �.i/.

We have

U�0����p D U�0 \ � � � \U�p D
\
i2n

\
0�j�p

��1i .V�j .i//

'

G
j2J

Confsink
S
j
L

.L;WL/�Confsink
T
j
K

.K;WK/;

where J is a finite index set, SjLtT
j
K � n and WL and WK are the sinks of L and K ,

respectively. To see this, notice that each connected component of such an intersection
has three types of particles:

� particles which can move everywhere in L,

� particles which can move everywhere in K ,

� particles which are restricted to the intersection L\K .

A particle x of the last type either has f�0.x/; : : : ; �p.x/g D fK;Lg or is trapped
by another particle. Since each connected component of the configuration space of
particles in the interval L\K is contractible, we get an identification as described
above simply by forgetting the particles restricted to the intersection. The order of the
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particles on this intersection will be important for the face maps given by going from
.pC1/–fold intersections to p–fold intersections by forgetting one of the open sets.

The E1–page consists at position .p; q/ of the qth homology of all .pC1/–fold
intersections of the open sets U� . By the identification above and the Künneth theorem,
each E1p;q is given as

E1p;q Š
M
j2J 0

M
qLCqKDq

HqL.Confsink
S
j
L

.L;WL//˝HqK .Confsink
S
j
K

.K;WK//;

where J 0 is some finite indexing set. Here we used that we know that the configuration
spaces of L have free homology. Recall that attached to each of those summands there
is an ordering of the particles n�SjL �S

j
K , which are sitting in the interior of e . The

face maps forgetting one of the open sets from a .pC1/–fold intersection yielding a
p–fold intersection only affect the particles restricted to the intersection L\K : for
some (but possibly none) of them the restriction is removed, allowing them to move in
all of either L or K . Under the identification above, these particles are added to the
sets SjL or SjK and put to the edge e of L or K , respectively, in the order determined
by their order on L\K .

Since the configuration space of L is 1–dimensional by Proposition 6, these summands
of E1p;q are only nontrivial for qL 2 f0; 1g. The horizontal boundary map d1 pre-
serves qL , so the E1–page splits into two parts .0E1; 0d1/ and .1E1; 1d1/ consisting
of all direct summands with qLD 0 and qLD 1, respectively. The key point is now that
1E2 is concentrated in the zeroth column, we understand 0E1 , and the two spectral
sequences don’t interact.

3.3 The homology of 1E1

As described in Section 3.1, choose a system of bases B� for H1.Confsink
�
.L;WL//

for the edge of L corresponding to e . This determines a direct sum decomposition of
the direct summands of every module 1E1p;q as follows:

H1.Confsink
S
j
L

.L;WL//˝Hq�1.Confsink
S
j
K

.K;WK//

Š

M
�2B

S
j
L

Z� ˝Hq�1.Confsink
S
j
K

.K;WK//:

Here, Z� is the free abelian group on the single generator � .
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By the description of the face maps above and the properties of the system of bases,
the boundary map 1d1 does not change the minimal representative of the first tensor
factor. Grouping these summands by their corresponding minimal representative �0
yields a decomposition of each row 1E1

�;q into summands denoted by .E1Œ�0�; d
�0
1 /,

which is a decomposition as chain complexes. We now compute the homology of one
of these chain complexes E1

�;qŒ�0� for fixed �0 and q � 0.

Let a minimal �0 2BS for some S � n be given (ie .�0/minD �0 ); then every � 2BS 0
appearing in one of the second tensor factors of the modules in the chain complex
E1
�;qŒ�0� is given by adding fixed particles S 0�S to �0 , putting them in some ordering

to the end of e (away from v ). Since there are no relations between the different
orderings of the particles S 0�S, we can forget the particles S and replace L by an
interval.

Let KE�
�;� be the Mayer–Vietoris spectral sequence for Confsink

n�S .K;WK/ correspond-
ing to the cover fK;Lg pulled back by the inclusion K ,! G. The chain complex
E1
�;qŒ�0� is isomorphic to the chain complex KE1

�;q by forgetting the particles S
involved in �0 and looking at cycles of the remaining particles.

The open cover of K is very special: one of the open sets is the whole space itself. We
will now show that because of that, the E2–page is concentrated in the zeroth column.
The open cover of Confsink

n�S .K;WK/ is indexed by maps  W n� S ! fK;L\Kg.
For the map  all sending everything to K , we have U all DConfsink

n�S .K;WK/. Hence,
for each tuple . 0; : : : ;  p/ with  i ¤  all for all i , the inclusion

U 0 \ � � � \U p \U all ! U 0 \ � � � \U p

and therefore the face maps

Hq.U 0 \ � � � \U p \U all/!Hq.U 0 \ � � � \U p /

are the identity. Notice that precisely one of the pC2 face maps with that source lands
in an intersection without U all . By adding Kd1 boundaries we can thus assume that
every homology class of the chain complex .KE1p;q;

Kd1/ has a representative which
is trivial in all direct summands Hq.U 0��� p / where none of the  i is  all .

The composition of mapsM
 0<���< p
9i W iD all

Hq.U 0��� p /
Kd1
��!

M
 0<���< p�1

Hq.U 0��� p�1/�
M

 0<���< p�1
69i W iD all

Hq.U 0��� p�1/;
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where the second map collapses all direct summands with one of the  i equal to  all ,
is injective by the observation above (actually the images of the direct summands
intersect trivially, and restricted to one such summand the map onto its image is given
by either the identity or multiplication by �1). In particular, the map Kd1 restricted to
the intersections including U all is injective (unless we are in the zeroth degree), and
the homology is trivial.

Therefore, the homology of E1
�;qŒ�0� is zero in degrees i ¤ 0 and given by

Z�0 ˝Hq�1.Confsink
n�S .K;WK//

for i D 0, which by induction is free and generated by products of basic classes.

In conclusion, the homology of 1E1 is free, concentrated in the zeroth column and
generated by products of basic classes. Denote this bigraded module by E1ŒK�.

3.4 The homology of 0E1 and the E1–page

The other part, 0E1 , is actually the first page of the Mayer–Vietoris spectral sequence
E�
�;�ŒG=L� of G with L� e collapsed to a sink with respect to the image of the open

cover U.fK;Lg/. By induction, this spectral sequence E�
�;�ŒG=L� converges to a free

infinity page, and the corresponding homology is generated by products of basic classes.

The E2–page of our original spectral sequence is hence given by the direct sum of the
two bigraded modules E2ŒG=L� and E1ŒK�, which differs from E2ŒG=L� only in
the zeroth column. We will now show that for each 2 � ` �1 the E`–page is the
direct sum of E`ŒG=L� and E1ŒK�.

For p > 0 and q � 0, look at the map d2 starting in E2p;q . This map is constructed
by representing each class in E2p;q on the chain level (ie on the E0–page), mapping it
via the horizontal boundary map to E0p�1;q , lifting it to E0p�1;qC1 and applying the
horizontal map again, landing in E0p�2;qC1 . The element of E2p�2;qC1 represented by
this cycle is the image of the class we started with under d2 . The lifting of the particles
in L always connects pairs of distinct orderings of particles on e via a path through
the central vertex of L. The end result does not depend on the choice of such a lift, so
we always take the following one: choose (once and for all) two leaves e1 and e2 of L
that are different from e ; then connecting two orderings � ¤ �0 of a S D fs1; : : : ; smg
is given by starting with the configuration � on e , sliding all particles between s1 and
the central vertex to e2 , moving s1 to e1 , moving the other particles back to e and
repeating this for all particles s2; : : : ; sm . Repeating the same for �0 we get two paths
which glued together give a path Œ�; �0� between the two configurations.
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By construction it is clear that Œ�; �0�C Œ�0; �00�D Œ�; �00�, so the only closed loop
arising in such a way is the trivial path. The construction of the image of a class
under d2 as described above produces segments Œ�; �0� adding up to a cycle, which
hence must be trivial. This shows that d2 maps to zero in E1ŒK� and hence that
E3 ŠE3ŒG=L�˚E1ŒK�. By the same reasoning, this is true for all pages, proving
that

E1 ŠE1ŒG=L�˚E1ŒK�:

In conclusion, the E1–page is torsion-free and the corresponding homology is gener-
ated by products of basic classes.

Proof of Theorem A For graphs with precisely one vertex of valence at least three
and any subset of the vertices of valence 1 turned into sinks, the theorems follow
from Proposition 13. By induction on the number of essential vertices, we then use
the calculation of the spectral sequence above to prove this for any graph as in the
statement of the two theorems with any subset of the vertices of valence 1 turned into
sinks. In particular, this proves the statement for the case where none of the vertices
are sinks.

4 Configurations of particles in general finite graphs

In this section we prove that the first homology of configuration spaces of graphs with
rank at least one is generated by basic classes. In contrast to the case of trees with loops,
we prove that in general the higher homology groups are not generated by products of
1–classes.

4.1 The first homology of configurations in general graphs

For a graph G, we choose distinct edges e1; : : : ; e` such that cutting those edges in
the middle yields a tree. Fix identifications of Œ0; 1� with each of the ei and denote for
x 2 Œ0; 1� by xei the corresponding point on the edge ei . Then, define the tree K as

K DG �
[
1�i�`

�
1
3
; 2
3

�
ei
;

where
�
1
3
; 2
3

�
ei
D fxei j x 2

�
1
3
; 2
3

�
g. The idea is now to start with the configuration

space of K embedded into the configuration space of G and to release the particles
into the bigger graph G one at a time.
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For � D .G;K/ recall the definition of Confsink
S;T .�;W / (Definition 14). We will prove

that H1.Confsink
S;T .�;W // is always generated by basic classes. The second part of

Theorem B will be proven in the next section. We will again proceed by constructing
an open cover and investigating the Mayer–Vietoris spectral sequence.

Let Confsink
S;T .�;W / with S �T nonempty be given, then choose an arbitrary element

s 2 S �T and construct the following open cover: for each i , define two open subsets
UCei and U�ei of Confsink

S;T .�;W / by

UCei D
˚
f W S !G j f .s/ …

�
1
3
; 2
3

�
ej

for j ¤ i and f .s/¤ 2
3ei

	
;

U�ei D
˚
f W S !G j f .s/ …

�
1
3
; 2
3

�
ej

for j ¤ i and f .s/¤ 1
3ei

	
:

Let T 0 D T t fsg and � 0 D
�
G �

�
1
3
; 2
3

�
ei
; K
�
.

e1

e2

e3

Figure 5: The part of G where the particle s is allowed in the open set UCe1 ,
where e1 is oriented from left to right.

Proposition 15 The intersections of those open sets can be identified as follows:

U˙ei ' Confsink
S;T 0.�;W /;

U�ei \UCei ' Confsink
S;T 0.�;W /tConfsink

S�fsg;T .�
0; W /;

U˙ei \U˙ej ' Confsink
S;T 0.�;W /:

Any intersection of at least three of those open sets is again homotopy equivalent to
Confsink

S;T 0.�;W /.

The inclusions induced by going from p–fold intersections to .p�1/–fold intersections
are homotopic to the identity on the components Confsink

S;T 0.�;W / and given by adding
the particle s to 1

2ei
for the configurations in each component Confsink

S�fsg;T
.� 0; W /.

These latter components are not hit by any such inclusion.

Proof If the intersection of any number of these open sets contains open sets U˙ei
and U˙ej for i ¤ j , then the particle s is restricted from entering all

�
1
3
; 2
3

�
ei

, so this
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intersection is actually precisely the same as Confsink
S;T 0.�;W /. Since every intersection

of � 3 of those sets contains two such open sets, there are only two cases remaining,
namely 1–fold intersections and the intersection U�ei \UCei .

The space UCei is almost the same as Confsink
S;T 0.�;W /, the only difference being

that the particle s is also allowed in the segment
�
1
3
; 2
3

�
ei

. By sliding s back into
the interval

�
0; 1
3

�
ei

whenever necessary and moving all particles between 0ei and s
accordingly, we see that this space is homotopy equivalent to Confsink

S;T 0.�;W /. The
analogous reasoning identifies U�ei .

The intersection U�ei \UCei has two connected components: the component where s
is in

�
1
3
; 2
3

�
ei

and the one where it is in K . The second component is again on the nose
equal to Confsink

S;T 0.�;W /. Modify the first component by a homotopy moving s to 1
2ei

and sliding all other particles on ei away from s into the intervals
�
0; 1
3

�
ei

and
�
2
3
; 1
�
ei

,
then forgetting the particle s gives an identification with Confsink

S�fsg;T
.� 0; W /, proving

the first claim.

By our identification above the description of the inclusion maps given by forgetting
one of the intersecting open sets is easily deduced. If one of these inclusions would hit
a component Confsink

S�fsg;T
.� 0; W /, then the particle s would need to be on the interval�

1
3
; 2
3

�
ei

, which it never is for any triple intersection.

This allows us to describe generators for the first homology of the configuration space
of any finite graph. We formulate this as a separate proposition in order to use it for the
case where K is a graph with precisely one essential vertex, since this case is needed
to prove Theorem A.

Proposition 16 Let G be a connected finite graph, K � G a tree defined as above
and W a subset of the vertices. If H1.Confsink

S .K;W // is generated by basic classes
for all finite sets S then also H1.Confsink

S;T .�;W // is generated by basic classes for all
pairs of finite sets T � S, where � D .G;K/.

Proof We prove this by looking at the spectral sequence constructed from the open
cover described above. To prove the statement we only need to show that moving
one element out of T preserves the property that the homology is generated by basic
classes. We can assume that the configuration space of K is connected since the only
case where this is not true is if G is S1 without sinks, and this case is true by definition.
We will now argue by induction on the number of elements in S �T . The base case
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S D T is precisely that H1.Confsink
S .K;W // is generated by basic classes, so we only

need to check the induction step.

In the induction step, we only get 1–classes at E10;1 and E11;0 . The module E10;1 is a
quotient of E10;1 , which is generated by 1–classes of U˙ei ' Confsink

S;T 0.�;W /, so by
induction by classes of the required form.

The chain complex E1
�;0 is given by the chain complex of the nerve of the cover

(which is a simplex) and one additional copy of Z for each intersection UCei \U�ei .
Restricted to H0.U�ei \UCei /Š Z˚Z, the face maps

Z˚ZŠH0.U�ei \UCei /!H0.U˙ei /Š Z

are given by .x; y/ 7! ˙.xC y/. Therefore, all elements .x;�x/ are in the kernel
of d1 . These elements correspond to S1 movements of s along the edge ei : by
mapping U�ei \ UCei ,! U�ei the particle s is allowed to leave

�
1
3
; 2
3

�
ei

via one
of the sides, connecting it to a configuration where s is on the tree K . The other
inclusion allows s to leave via the other side, connecting it to that same configuration
with s on K . Mapping this to Confsink

S;T .�;W / yields a cycle where s moves along K
and ei . We can choose a representative such that all other particles are fixed and that
this movement follows an embedded circle in G.

Subtracting such kernel elements, we can modify every cycle of .E1
�;0; d1/ such that it

is zero in all copies of H0.Confsink
S�fsg;T

.� 0; W //. Since the remaining part of the chain
complex is the chain complex of a simplex, there are no other 1–classes, concluding
the argument.

Proof of Theorem B: first homology group By Theorem A, the homology group
H1.ConfS .K// is generated by basic classes for any finite tree K , so the theorem
follows from Proposition 16.

4.2 Nonproduct generators

In this section, we describe an example of a homology class of the configuration space
of a graph that cannot be written as a sum of product classes.

The easiest example we were able to find so far is a 2–class of Conf3.B3/, where B3
is the banana graph of rank three, ie two vertices v and w connected via four edges;
see Figure 6.

Algebraic & Geometric Topology, Volume 18 (2018)



2466 Safia Chettih and Daniel Lütgehetmann

To construct the class, we first construct classes in Conf2.Star4/. Let S � 3 be a set of
two particles; then the first homology group of ConfS .Star3/ is one-dimensional, and
a generator can be represented by a sum of twelve edges, each with coefficient C1:
start with both particles on different edges, then in turns move the particles to the free
edge until the initial configuration is restored.

v w

Figure 6: Including Star3 into the banana graph B3 at v in one of four ways

Now choose a bijection of 3 with the leaves of Star3 and 4 with the leaves of Star4 .
This defines four 1–cycles in ConfS .Star4/ by including Star3 into Star4 in all order-
preserving ways (with respect to these identifications). Now we add those four cycles
together with the following signs: each inclusion of Star3 is determined by the edge
i 2 4 that is missed. The 1–cycle corresponding to this i gets the sign .�1/i . This
sum is actually equal to zero:

The 1–cells of these cycles are given by one particle moving from one edge to the
central vertex and the other particle sitting on another edge. Each such cell appears
precisely twice, once for each way of choosing a third edge from the remaining two
leaves. If these two remaining leaves are cyclically consecutive in 4, the corresponding
cycles have different signs; otherwise, these two cells inside the 1–cycles appear with
different signs; so in both cases, they add up to zero.

Including Star4 into B3 (mapping the central vertex to v ) gives a sum of four 1–cycles
coming from embedding Star3 into B3 in different ways (see Figure 6), which evaluates
to zero.

Now let t be the third particle, ie S tftgD 3, then take for each of those four 1–cycles
in ConfS .B3/ the product of the cycle with the 1–cell moving particle t from the
remaining one of the four edges to the vertex v .

Doing this construction for all three choices of S gives a sum of 144 2–cells, and the
claim is that this is, in fact, a 2–cycle in the combinatorial model of the configuration
space. We can think of this cycle as 12 cylinders of a 1–cycle in the star of v
multiplied with another particle moving to the other vertex w , whose boundary 1–cells
get identified in a certain way; see Figure 7.
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Let t 2 3; then one part of the boundary of four of those cylinders is given by the
1–cycles of the particles 3 � ftg with t sitting on w . By construction, those four
1–cycles add up to zero.

It remains to investigate the parts where the third particle is in the middle of the edge.
These 1–cells are precisely given by two particles sitting in the middle of two edges
and a third particle moving from another edge to v . Each such cell appears precisely
twice, once for every choice of which one of the fixed particles moves to w and which
one belongs to the star movement. By analogous reasoning, these two occurrences
have opposite signs, so the total contribution is zero.

v w
1

3

2

Figure 7: Each of the twelve cylinders making up the cycle is given by twelve
two cells of this form, where all particles are on different edges.

Thus, the boundary cells of the twelve cylinders add up to zero, yielding a nontrivial
cycle. By the dimension of our combinatorial model, there are no three-cells, so this
does not represent the zero class. Notice that there are no product classes since every
S1 generator uses both vertices and there are too few particles for two H–classes or star
classes. By looking at the identifications and calculating the Euler characteristic, one
sees that the resulting cycle is, in fact, a closed surface of genus 13 embedded into the
combinatorial model of the configuration space. In fact, by pushing in 2–cells where
strictly fewer than three edges are involved (starting with those involving only one
edge, followed by those involving precisely two edges) and afterward pushing in the
1–dimensional intervals where particles move to an occupied edge, it is straightforward
to show the following:

Proposition 17 Conf3.B3/ is homotopy equivalent (equivariantly with respect to the
action of the symmetric group †3 ) to a closed surface of genus 13.

Remark 18 In between versions of this paper, Wiltshire-Gordon [14, Example 2.1,
page 4] independently showed this homotopy equivalence using explicit computer
calculations of the groups H�.Conf3.B3//.

We now prove the rest of Theorem B, whose first part was proven in Section 4.1.
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Proof of Theorem B: nonproduct classes A counterexample for the second homol-
ogy group was described above; all that remains is to describe how to use this to
construct counterexamples for higher homology groups.

By adding k disjoint S1 graphs, connecting each of them to v via a single edge and
adding k particles, we can take the product of this nonproduct cycle with the k–cycle
given by the product of the k particles moving inside the S1 ’s. This gives a class
in the .kC2/nd homology group of the configuration space of kC 3 particles in this
graph, which by analogous reasoning cannot be written as a sum of product classes.
This shows that this phenomenon appears in every homology degree except for the
zeroth and first.
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