
msp
Algebraic & Geometric Topology 18 (2018) 2497–2507

Link invariants derived from multiplexing of crossings

HARUKO AIDA MIYAZAWA

KODAI WADA

AKIRA YASUHARA

We introduce the multiplexing of a crossing, replacing a classical crossing of a
virtual link diagram with a mixture of classical and virtual crossings. For integers mi

.iD1; : : : ; n/ and an ordered n–component virtual link diagram D , a new virtual link
diagram D.m1; : : : ;mn/ is obtained from D by the multiplexing of all crossings.
For welded isotopic virtual link diagrams D and D0 , the virtual link diagrams
D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are welded isotopic. From the point of view
of classical link theory, it seems very interesting that new classical link invariants are
obtained from welded link invariants via the multiplexing of crossings.

57M25, 57M27

1 Introduction

An n–component virtual link diagram is an immersion of n circles in the plane whose
singularities are transverse double points, which are labeled either as a classical crossing
or as a virtual crossing as illustrated in the figure below:

classical crossing virtual crossing

Note that we do not use here the usual drawing convention for virtual crossings, which
is a small circle around the corresponding double point.

Virtual isotopy is an equivalence relation on virtual link diagrams generated by classical
Reidemeister moves R1–3 and virtual Reidemeister moves VR1–4 illustrated in Figure 1.
We remark that VR1–4 imply a detour move, which replaces an arc passing through a
number of virtual crossings with any other such arc, with the same endpoints. Welded
isotopy is the extension of virtual isotopy which also allows the move OC (meaning
overcrossings commute) illustrated in Figure 2. A welded link is an equivalence class
of virtual link diagrams under welded isotopy. M Goussarov, M Polyak and O Viro [1]
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VR1 VR2 VR3 VR4

R1 R1 R2 R3

Figure 1: Classical and virtual Reidemeister moves

OC

Figure 2: Move OC

essentially proved that welded isotopic classical link diagrams are equivalent, that is,
they can be transformed into each other by a sequence of classical Reidemeister moves.
Therefore, we can consider welded links as a natural generalization of classical links.

In this paper, we introduce the multiplexing of a crossing for a virtual link diagram
as a local change on a classical crossing, as shown in Figure 3. Let mi be integers
.i D 1; : : : ; n/ and D an ordered n–component virtual link diagram. By multiplexing
all classical crossings of D , we obtain the virtual link diagram D.m1; : : : ;mn/ of D

associated with .m1; : : : ;mn/; see Section 2 for the precise definition. We show that
if virtual link diagrams D and D0 are welded isotopic, then D.m1; : : : ;mn/ and
D0.m1; : : : ;mn/ are welded isotopic for any .m1; : : : ;mn/ 2 Zn (Theorem 2.1).

The group of a virtual link diagram is known to be a welded link invariant [3, Section 4].
Hence, by Theorem 2.1, the group G.D.m1; : : : ;mn// of D.m1; : : : ;mn/ is a link
invariant of D . We remark that G.D.m; : : : ;m// is isomorphic to the generalized link
group Gm.D/ defined independently by A J Kelly [4] and M Wada [8]. Therefore,
G.D.m1; : : : ;mn// is a generalization of Gm.D/. As an application, we show that
for a nonzero integer m and for classical knot diagrams D and D0 , D is equivalent to
D0 or its mirror image if and only if D.m/ is welded isotopic to D0.m/ or its mirror
image (Theorem 3.2).

It seems very interesting from the viewpoint of classical link theory that D.m1; : : : ;mn/

might not be welded isotopic to a classical link diagram even if D is a classical one,
and new classical link invariants are expected from known welded link invariants via
the multiplexing of crossings. For example, there is a 3–component classical link
diagram D with trivial Alexander polynomial such that for m1¤m2 and m3¤ 0, the
Alexander polynomial of D.m1;m2;m3/ is nontrivial and that D.m1;m2;m3/ is not
welded isotopic to a classical link diagram (Example 5.1).
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2 Multiplexing of crossings

Let .m1; : : : ;mn/ be an ordered set of integers and D D D1 [ � � � [Dn an ordered
n–component virtual link diagram. For a classical crossing of D whose overpass
belongs to Dj , we define the multiplexing of the crossing associated with mj as a
local change shown in Figure 3. When mj D 0, the multiplexing of the crossing is the
virtualization of it. The number of classical crossings that appear in the multiplexing of
the crossing is the absolute value of mj . Let D.m1; : : : ;mn/ denote the virtual link
diagram obtained from D by the multiplexing of all classical crossings of D associated
with .m1; : : : ;mn/. Then we have the following theorem.

 Dj

mj > 0 mj D 0 mj < 0

1

mj

1

jmj j

Figure 3: Multiplexing of a crossing

Theorem 2.1 If two ordered n–component virtual link diagrams D and D0 are
welded isotopic, then D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are welded isotopic for
any .m1; : : : ;mn/ 2 Zn .

Remark 2.2 There exist equivalent classical link diagrams D and D0 such that
D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are not virtually isotopic for some .m1; : : : ;mn/.
For example, let D be the classical knot diagram illustrated in the left-hand side of
Figure 4. Then the virtual knot diagram D.2/ is not virtually isotopic to the trivial
one [3]. Let D0 be the trivial knot diagram without crossings, then D0.2/ D D0 .
Therefore, D and D0 are equivalent, but D.2/ and D0.2/ are not virtually isotopic.

3 Generalized link groups

Kelly [4] and Wada [8], independently, introduced a family of link invariants Gm

.m 2 Z/ which are groups generalizing the fundamental group of the complement of a
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D D.2/

Figure 4: The diagram D.2/ , obtained from D by the multiplexing of the
crossing, is not virtually isotopic to the trivial knot diagram.

classical link in the 3–sphere S3 . Let D be an oriented classical link diagram of a
classical link L. The generalized link group Gm.D/ of D is defined as follows: each
arc of D yields a generator, and each crossing of D gives a relation as shown in Figure 5.
Note that G1.D/ Š �1.S

3 nL/. In [4; 8], they proved that Gm.D/ is a classical
link invariant. As we mentioned in the introduction, G.D.m; : : : ;m// is isomorphic
to Gm.D/. Hence, D.m; : : : ;m/ gives us a geometric interpretation of Gm.D/. (We
remark that N Kamada and S Kamada [2] gave a geometric interpretation of the groups
of virtual link diagrams.) Moreover, Theorem 2.1 implies that Gm can be defined for
not only classical link diagrams but also virtual link diagrams, and it is a welded link
invariant.

a b

c

c D b�mabm

Figure 5: A relation of the generalized link group Gm.D/

It is well known that the square knot SK and the granny knot GK are a pair of distinct
knots with isomorphic fundamental groups. C Tuffley [7] proved that Gm.SK/ and
Gm.GK/ are not isomorphic for m� 2. Moreover, S Nelson and W D Neumann proved
the following theorem:

Theorem 3.1 [6, Theorem 1.1] Let m be an integer with m � 2, and let D;D0 be
classical knot diagrams. Then D is equivalent to D0 or D0� if and only if Gm.D/Š

Gm.D
0/, where D0� is the mirror image of D0 .

This theorem together with Theorem 2.1 implies the following.

Theorem 3.2 Let m be a nonzero integer, and let D;D0 be classical knot diagrams.
Then D is equivalent to D0 or D0� if and only if D.m/ is welded isotopic to D0.m/ or
.D0.m//� .
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Proof Since we have that D0�.m/D .D
0.m//� , the “only if” part immediately holds

by Theorem 2.1. Thus, let us prove the if part.

For mD 1, it is trivial [1, Theorem 1.B].

Suppose that m � 2. If D.m/ is welded isotopic to D0.m/, then G.D.m// Š

G.D0.m// [3, Section 4]. Therefore, Gm.D/ŠGm.D
0/.

If D.m/ is welded isotopic to .D0.m//�DD0�.m/, then G.D.m//ŠG.D0�.m//, and
hence Gm.D/ŠGm.D

0
�/. By Theorem 3.1, D is equivalent to D0 or D0� .

If m��1, then it is not hard to see that D.jmj/ and .D.m//.�1/ are welded isotopic.
Hence, Theorem 2.1 implies that if D.m/ and D0.m/ are welded isotopic, then D.jmj/

and D0.jmj/ are welded isotopic. Therefore, the proof follows from the case when
m� 1.

4 Proof of Theorem 2.1

In this section we will prove Theorem 2.1. Let us first prove the following lemma.

Lemma 4.1 The local moves A, B, CC and C� illustrated in Figure 6 are realized by
welded isotopy. Here, the square bounded by dashed lines in the move B may contain
virtual crossings but not classical crossings.

A B

CC C�
1 1

m m

1
1

m
m

Figure 6: Local moves A, B, CC and C� are realized by welded isotopy.

Proof Move A See Figure 7.

Move B See Figure 8, where V denotes virtual isotopy.
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Moves CC and C� Let F be the local move illustrated in Figure 9 which is realized
by a detour move. Figure 10 (resp. Figure 11) indicates the proof for move CC

(resp. C� ). While the proof is described only when mD 4 in Figures 10 and 11, it is
essentially the same in all other cases.

VR2 OC VR4 detour

Figure 7: Proof for move A

V V

V+OC

V V

V

A V

Figure 8: Proof for move B
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F

Figure 9: Move F

V ACF V V

Figure 10: Proof for move CC

A+F V V

Figure 11: Proof for move C�

Proof of Theorem 2.1 It suffices to show that if D and D0 are related by one of R1,
R2, R3, VR4 and OC, then D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are welded isotopic.

By using move CC or C� , it is not hard to see that if D and D0 are related by either
R1 or R2, then D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are welded isotopic.

If D and D0 are related by a single VR4, then D.m1; : : : ;mn/ and D0.m1; : : : ;mn/

are related by a detour move.

If D and D0 are related by a single R3, then D.m1; : : : ;mn/ and D0.m1; : : : ;mn/

are related by virtual isotopy and moves A, B, C˙ and F. Figure 12 indicates the proof
when mi D 3 and mj D 2. In the general case, the proof is essentially same, where
move C� is used instead of CC when mi is negative.

If D and D0 are related by a single OC, then by deformations similar to those in
Figure 12, D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are related by virtual isotopy and
moves A and C˙ .

Algebraic & Geometric Topology, Volume 18 (2018)
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D

Di !

Dj !

D.m1; : : : ;mn/

CC V

V

B A+F V

V

CC

D0.m1; : : : ;mn/ D0

Figure 12: D.m1; : : : ;mn/ and D0.m1; : : : ;mn/ are related by virtual iso-
topy and moves A, B, CC and F when mi > 0 .

Remark 4.2 By using arrow calculus, introduced by J-B Meilhan and the third author
in [5], we could prove Theorem 2.1 more simply. It might also be possible to show
Theorem 2.1 by using Gauss diagrams. While our proof looks complicated, it is done
by combining elementary deformations, and is, in particular, self-contained.

5 Examples

We are curious to have new classical link invariants from welded link invariants via
the multiplexing of crossings. In fact, we have the following example.

Example 5.1 Let DDD1[D2[D3 be the ordered oriented 3–component classical
link diagram illustrated in Figure 13. Then the Alexander polynomial �D.t/ of D

is 0. On the other hand,

�D.m1;m2;m3/.t/D g.t/.tm1 � tm2/2.1� tm3/;

where
g.t/D gcd f1� tm1 ; 1� tm2 ; 1� tm3g:

Algebraic & Geometric Topology, Volume 18 (2018)
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Therefore, �D.m1;m2;m3/.t/ is nontrivial for some .m1;m2;m3/, while �D.t/ van-
ishes. We remark that D.m1;m2;m3/ is not welded isotopic to a classical link diagram
when m1 ¤m2 since the intersection number of the first and second components of
D.m1;m2;m3/ is equal to m1�m2 .¤ 0/.

D1

D2

D3

D DD1[D2[D3

Figure 13: An ordered oriented 3–component classical link diagram with
vanishing Alexander polynomial

In the example above, the 3–variable Alexander polynomial of D does not vanish. So
far, we do not know if there is a classical link with vanishing multivariable Alexander
polynomial such that our invariants via the multiplexing of crossings survive. But we
have the following example.

Example 5.2 Let D D D1 [D2 [D3 and D0 D D0
1
[D0

2
[D0

3
be the ordered

oriented 3–component virtual link diagrams illustrated on the left- and right-hand sides
of Figure 14, respectively. Then, the 3–variable Alexander polynomials of D and D0

are both equal to .1� t1/.1� t2/.1� t3/. However,

�D.m1;m2;m3/.t/D .1� tm1/2.1� tm2/.1� tm3/

and
�D0.m1;m2;m3/.t/D .1� tm1/.1� tm2/2.1� tm3/:

Therefore, D and D0 can be distinguished by the 1–variable Alexander polynomials
of D.m1;m2;m3/ and D0.m1;m2;m3/, while the 3–variable Alexander polynomials
of D and D0 coincide.

Suppose that each mi is equal to either 0 or 1. Then, by the definition of the mul-
tiplexing of crossings, an invariant of D.m1; : : : ;mn/ might be weaker than that of
D . (Note that D.1; : : : ; 1/ D D and D.0; : : : ; 0/ is a diagram of the n–component
trivial link.) But even if some of the mi are 0, it seems still interesting to consider
D.m1; : : : ;mn/, because it would give us useful invariants that are handled easily. For
example, we have the following.

Algebraic & Geometric Topology, Volume 18 (2018)
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D2

D1

D3

D DD1[D2[D3

D0
1

D0
2

D0
3

D0 DD0
1[D02[D03

Figure 14: Two ordered oriented 3–component virtual link diagrams with the
same 3–variable Alexander polynomial

Example 5.3 Let DDD1[D2[D3 be the ordered oriented 3–component classical
link diagram illustrated in the left-hand side of Figure 15. Then the second Alexander
polynomial of D.1; 1; 0/ is equal to .1� t/2 . Hence, D.1; 1; 0/ provides a concise
way to determine that D is nontrivial.

D1

D2 D3

D DD1[D2[D3 D.1; 1; 0/

Figure 15
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