Volume 18, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Other MSP Journals
Algebraic ending laminations and quasiconvexity

Mahan Mj and Kasra Rafi

Algebraic & Geometric Topology 18 (2018) 1883–1916
Bibliography
1 M Bestvina, –trees in topology, geometry, and group theory, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 55 MR1886668
2 M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 MR1152226
3 M Bestvina, M Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 MR3177291
4 M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 MR1445386
5 M Bestvina, P Reynolds, The boundary of the complex of free factors, Duke Math. J. 164 (2015) 2213 MR3385133
6 B H Bowditch, The Cannon–Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35 MR2262721
7 B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) 1250016, 66 MR2922380
8 J W Cannon, W P Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007) 1315 MR2326947
9 T Coulbois, A Hilion, M Lustig, Non-unique ergodicity, observers’ topology and the dual algebraic lamination for –trees, Illinois J. Math. 51 (2007) 897 MR2379729
10 T Coulbois, A Hilion, M Lustig, –trees and laminations for free groups, I : Algebraic laminations, J. Lond. Math. Soc. 78 (2008) 723 MR2456901
11 T Coulbois, A Hilion, M Lustig, –trees and laminations for free groups, II : The dual lamination of an –tree, J. Lond. Math. Soc. 78 (2008) 737 MR2456902
12 T Coulbois, A Hilion, P Reynolds, Indecomposable FN–trees and minimal laminations, Groups Geom. Dyn. 9 (2015) 567 MR3356976
13 M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 MR830040
14 S Dowdall, I Kapovich, S J Taylor, Cannon–Thurston maps for hyperbolic free group extensions, Israel J. Math. 216 (2016) 753 MR3557464
15 S Dowdall, R P Kent IV, C J Leininger, Pseudo-Anosov subgroups of fibered 3–manifold groups, Groups Geom. Dyn. 8 (2014) 1247 MR3314946
16 S Dowdall, S J Taylor, The co-surface graph and the geometry of hyperbolic free group extensions, J. Topol. 10 (2017) 447 MR3653318
17 S Dowdall, S J Taylor, Hyperbolic extensions of free groups, Geom. Topol. 22 (2018) 517 MR3720349
18 B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810 MR1650094
19 B Farb, L Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002) 91 MR1914566
20 M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 MR919829
21 M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, 2" (editors G A Niblo, M A Roller), London Math. Soc. Lect. Note Ser. 182, Cambridge Univ. Press (1993) 1 MR1253544
22 V Guirardel, Actions of finitely generated groups on –trees, Ann. Inst. Fourier (Grenoble) 58 (2008) 159 MR2401220
23 U Hamenstädt, Word hyperbolic extensions of surface groups, preprint (2005) arXiv:math/0505244
24 U Hamenstädt, S Hensel, Stability in outer space, preprint (2014) arXiv:1411.2281
25 G C Hruska, D T Wise, Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009) 1945 MR2497315
26 I Kapovich, M Lustig, Intersection form, laminations and currents on free groups, Geom. Funct. Anal. 19 (2010) 1426 MR2585579
27 I Kapovich, M Lustig, Cannon–Thurston fibers for iwip automorphisms of FN, J. Lond. Math. Soc. 91 (2015) 203 MR3335244
28 R P Kent IV, C J Leininger, Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal. 18 (2008) 1270 MR2465691
29 E Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (1999) arXiv:1803.10339
30 H Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982) 183 MR650376
31 H Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 MR1791145
32 Y N Minsky, Teichmüller geodesics and ends of hyperbolic 3–manifolds, Topology 32 (1993) 625 MR1231968
33 Y N Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3–manifolds, J. Amer. Math. Soc. 7 (1994) 539 MR1257060
34 Y N Minsky, Bounded geometry for Kleinian groups, Invent. Math. 146 (2001) 143 MR1859020
35 M Mitra, Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7 (1997) 379 MR1445392
36 M Mitra, Cannon–Thurston maps for hyperbolic group extensions, Topology 37 (1998) 527 MR1604882
37 M Mitra, On a theorem of Scott and Swarup, Proc. Amer. Math. Soc. 127 (1999) 1625 MR1610757
38 M Mj, Cannon–Thurston maps and bounded geometry, from: "Teichmüller theory and moduli problems" (editors I Biswas, R S Kulkarni, S Mitra), Ramanujan Math. Soc. Lect. Notes Ser. 10, Ramanujan Math. Soc. (2010) 489 MR2667569
39 M Mj, Ending laminations and Cannon–Thurston maps, Geom. Funct. Anal. 24 (2014) 297 MR3177384
40 M Mj, Cannon–Thurston maps for Kleinian groups, Forum Math. Pi 5 (2017) MR3652816
41 M Mj, A Pal, Relative hyperbolicity, trees of spaces and Cannon–Thurston maps, Geom. Dedicata 151 (2011) 59 MR2780738
42 M Mj, P Sardar, A combination theorem for metric bundles, Geom. Funct. Anal. 22 (2012) 1636 MR3000500
43 L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305 MR1393118
44 A Pal, Relatively hyperbolic extensions of groups and Cannon–Thurston maps, Proc. Indian Acad. Sci. Math. Sci. 120 (2010) 57 MR2654898
45 K Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025 MR3285228
46 P Reynolds, On indecomposable trees in the boundary of outer space, Geom. Dedicata 153 (2011) 59 MR2819663
47 P Reynolds, Reducing systems for very small trees, preprint (2012) arXiv:1211.3378
48 G P Scott, G A Swarup, Geometric finiteness of certain Kleinian groups, Proc. Amer. Math. Soc. 109 (1990) 765 MR1013981
49 P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978) 555 MR0494062
50 W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)