Volume 18, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
On the virtually cyclic dimension of mapping class groups of punctured spheres

Javier Aramayona, Daniel Juan-Pineda and Alejandra Trujillo-Negrete

Algebraic & Geometric Topology 18 (2018) 2471–2495
Bibliography
1 J Aramayona, C Martínez-Pérez, The proper geometric dimension of the mapping class group, Algebr. Geom. Topol. 14 (2014) 217 MR3158758
2 J S Birman, Braids, links, and mapping class groups, 82, Princeton Univ. Press (1974) MR0375281
3 C Bonatti, L Paris, Roots in the mapping class groups, Proc. Lond. Math. Soc. 98 (2009) 471 MR2481956
4 P J Cameron, R Solomon, A Turull, Chains of subgroups in symmetric groups, J. Algebra 127 (1989) 340 MR1028457
5 D Degrijse, N Petrosyan, Geometric dimension of groups for the family of virtually cyclic subgroups, J. Topol. 7 (2014) 697 MR3252961
6 D Degrijse, N Petrosyan, Bredon cohomological dimensions for groups acting on CAT(0)–spaces, Groups Geom. Dyn. 9 (2015) 1231 MR3428413
7 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
8 R Flores, J González-Meneses, Classifying spaces for the family of virtually cyclic subgroups of braid groups, preprint (2016) arXiv:1611.02187
9 M G Fluch, B E A Nucinkis, On the classifying space for the family of virtually cyclic subgroups for elementary amenable groups, Proc. Amer. Math. Soc. 141 (2013) 3755 MR3091766
10 J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157 MR830043
11 S Hensel, D Osajda, P Przytycki, Realisation and dismantlability, Geom. Topol. 18 (2014) 2079 MR3268774
12 D Juan-Pineda, I J Leary, On classifying spaces for the family of virtually cyclic subgroups, from: "Recent developments in algebraic topology" (editors A Ádem, J González, G Pastor), Contemp. Math. 407, Amer. Math. Soc. (2006) 135 MR2248975
13 D Juan-Pineda, A Trujillo-Negrete, On classifying spaces for the family of virtually cyclic subgroups in mapping class groups, (2016) arXiv:1606.00306
14 A Karrass, A Pietrowski, D Solitar, Finite and infinite cyclic extensions of free groups, J. Austral. Math. Soc. 16 (1973) 458 MR0349850
15 W Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000) 177 MR1757730
16 W Lück, Survey on classifying spaces for families of subgroups, from: "Infinite groups: geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 269 MR2195456
17 W Lück, On the classifying space of the family of virtually cyclic subgroups for CAT(0)–groups, Münster J. Math. 2 (2009) 201 MR2545612
18 W Lück, M Weiermann, On the classifying space of the family of virtually cyclic subgroups, Pure Appl. Math. Q. 8 (2012) 497 MR2900176
19 C Martínez-Pérez, A bound for the Bredon cohomological dimension, J. Group Theory 10 (2007) 731 MR2364823
20 J D McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes, PhD thesis, Columbia University (1982)
21 S A Wolpert, Geometry of the Weil–Petersson completion of Teichmüller space, from: "Surveys in differential geometry, VIII" (editor S T Yau), International (2003) 357 MR2039996