Volume 18, issue 4 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Refinements of the holonomic approximation lemma

Daniel Álvarez-Gavela

Algebraic & Geometric Topology 18 (2018) 2265–2303
Abstract

The holonomic approximation lemma of Eliashberg and Mishachev is a powerful tool in the philosophy of the h–principle. By carefully keeping track of the quantitative geometry behind the holonomic approximation process, we establish several refinements of this lemma. Gromov’s idea from convex integration of working “one pure partial derivative at a time” is central to the discussion. We give applications of our results to flexible symplectic and contact topology.

Keywords
h-principle, holonomic approximation, flexible, flexibility, cutoff
Mathematical Subject Classification 2010
Primary: 53DXX, 57R99
Secondary: 57R45, 57R17
References
Publication
Received: 6 April 2017
Revised: 1 January 2018
Accepted: 16 January 2018
Published: 26 April 2018
Authors
Daniel Álvarez-Gavela
Department of Mathematics
Stanford University
Stanford, CA
United States