
msp
Algebraic & Geometric Topology 18 (2018) 2541–2592

The factorization theory of Thom spectra and
twisted nonabelian Poincaré duality

INBAR KLANG

We give a description of the factorization homology and En topological Hochschild
cohomology of Thom spectra arising from n–fold loop maps f W A! BO, where
A D �nX is an n–fold loop space. We describe the factorization homologyR
M

Th.f / as the Thom spectrum associated to a certain map
R
M
A! BO, whereR

M
A is the factorization homology of M with coefficients in A . When M is framed

and X is .n�1/–connected, this spectrum is equivalent to a Thom spectrum of a
virtual bundle over the mapping space Mapc.M;X/; in general, this is a Thom
spectrum of a virtual bundle over a certain section space. This can be viewed as a
twisted form of the nonabelian Poincaré duality theorem of Segal, Salvatore and Lurie,
which occurs when f W A! BO is nullhomotopic. This result also generalizes the
results of Blumberg, Cohen and Schlichtkrull on the topological Hochschild homology
of Thom spectra, and of Schlichtkrull on higher topological Hochschild homology
of Thom spectra. We use this description of the factorization homology of Thom
spectra to calculate the factorization homology of the classical cobordism spectra,
spectra arising from systems of groups and the Eilenberg–Mac Lane spectra HZ=p ,
HZ.p/ and HZ . We build upon the description of the factorization homology of
Thom spectra to study the (nD 1 and higher) topological Hochschild cohomology of
Thom spectra, which enables calculations and a description in terms of sections of a
parametrized spectrum. If X is a closed manifold, Atiyah duality for parametrized
spectra allows us to deduce a duality between En topological Hochschild homology
and En topological Hochschild cohomology, recovering string topology operations
when f is nullhomotopic. In conjunction with the higher Deligne conjecture, this
gives EnC1–structures on a certain family of Thom spectra, which were not previ-
ously known to be ring spectra.

55N20, 55P43; 55U30

1 Introduction

In this paper, we study the factorization homology and En topological Hochschild
cohomology of Thom spectra. Factorization homology has received a considerable
amount of interest recently, in large part due to its connection to topological field theories
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and to configuration space models for mapping spaces. Fixing an En–algebra A,
factorization homology

R
�
A with coefficients in A satisfies the generalized Eilenberg–

Steenrod axioms, described by Ayala and Francis [5], of a homology theory for n–
manifolds. In fact, Ayala and Francis show that all such homology theories arise asR
�
A for some En–algebra. Factorization homology then forms an important class of

topological field theories: the ones in which the global observables are determined by the
local observables. This is because the Ayala–Francis axioms for factorization homology
imply that

R
M A, the value of the field theory on the manifold M, is determined byR

Rn A and patching data for M.

Another way in which factorization homology generalizes ordinary homology is that
it can be modeled using labeled configuration spaces; in fact, it originates from con-
figuration space models for mapping spaces, as in McDuff [42]. If A is a discrete
abelian group,

R
M A is the labeled configuration space AŒM� from the Dold–Thom

theorem, whose homotopy groups are H�.M IA/. For A a more general En–algebra in
topological spaces, Segal [52] and Salvatore [46] considered configuration spaces with
amalgamation, or configuration spaces with summable labels. These are configurations
of points in M n labeled by elements of A, with labels combining when points “collide”.
When M is framed and �0.A/ is a group, this amalgamated configuration space is
equivalent to the space of compactly supported maps Mapc.M;B

nA/. This equivalence,
attributed to Segal, Salvatore and Lurie, is called nonabelian Poincaré duality, as it
reduces to ordinary Poincaré duality when A is abelian. The connection between
factorization homology and configuration spaces has recently proven to be very fruitful
in Knudsen’s work [33] on rational homology of unordered configuration spaces.

Previous work Factorization homology can be difficult to compute, particularly when
the En–algebras are valued in spectra or chain complexes. Descriptions of the factoriza-
tion homology of free En–algebras and of En–enveloping algebras of Lie algebras are
known; see Ayala and Francis [5, Section 5] and Knudsen [33, Section 3]. Suspension
spectra provide another class of algebras for which factorization homology is known.
This follows from nonabelian Poincaré duality, which provides a description of the
factorization homology of n–fold loop spaces in terms of mapping spaces or section
spaces. Factorization homology commutes with the suspension spectrum functor;
that is, if A is an En–space,

R
M †1

C
A ' †1

C

R
M A. This gives a description of

the factorization homology of suspension spectra:
R
M †1

C
�nX '†1

C
Mapc.M;X/

if M is framed. For M D S1 , factorization homology specializes to topological
Hochschild homology. Thus, this description of factorization homology of suspension
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spectra recovers Bökstedt and Waldhausen’s result relating THH to the free loop space.
When X is a closed manifold, Atiyah duality for parametrized spectra can then be
used to describe topological Hochschild cohomology of †1

C
�X (see eg Malm [39]):

THC.†1
C
�X/' LX�TX .

The goal of this paper is to describe and compute the factorization homology and the En
Hochschild cohomology of Thom spectra. The Thom spectrum of an n–fold loop map to
BO or BGL1.R/, which we denote by Th.�nf / or �nX�

nf , is an En–ring spectrum
by a theorem of Lewis [35, Theorem 9.7.1]. In [10], Blumberg, Cohen and Schlichtkrull
study topological Hochschild homology of Thom spectra, expressing THH.�X�f / as
a Thom spectrum of a virtual bundle over LX. Factorization homology of E1–ring
spectra agrees with higher topological Hochschild homology (Theorem 5 of Ginot,
Tradler and Zeinalian [25] or Proposition 5.1 of Ayala and Francis [5]), and in [50],
Schlichtkrull describes the higher topological Hochschild homology of Thom spectra
of infinite loop maps. In one sense, this is more general than factorization homology,
as higher topological Hochschild homology is defined over any CW complex rather
than just manifolds, and Schlichtkrull’s result therefore applies to any CW complex as
well. This, however, does not address Thom spectra of n–fold loop maps for n <1,
and there is little known about the topological Hochschild cohomology (higher or
otherwise) of Thom spectra.

Factorization homology is a higher-dimensional generalization of Hochschild homology,
and the corresponding generalization of Hochschild cohomology is higher Hochschild
cohomology. Higher (topological) Hochschild cohomology, .T/HCEn.A/, is an in-
variant of En–algebras which naturally extends Hochschild cohomology of algebras.
In analogy with Hochschild cohomology, it is important for studying deformations
of En–algebras, and for understanding EnC1–structures, for example, those appear-
ing in string topology. Hochschild cohomology of A is a derived mapping object
RhomA–bimod.A;A/ of A–bimodules, and higher Hochschild cohomology of an En–
algebra A is similarly RhomEn-A.A;A/, derived maps of En–A–modules; see eg
Francis [20, Section 3], Hu, Kriz and Voronov [32, Section 2] or Horel [28, Section 3] for
a definition. For nD 1, the category of En–A–modules is equivalent to the category
of A–bimodules. There is an alternative useful description of higher Hochschild
homology in terms of maps of left

R
Sn�1�RA–modules, RhomR

Sn�1�RA
.A;A/ (see

eg Proposition 3.16 of [20] or Proposition 3.19 of Horel [29]). This connection with
factorization homology was used by Francis [20] to study the tangent complex of
En–algebras, by Ginot, Tradler and Zeinalian [24] to study higher string topology, and
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by Horel [29] to prove an étale base change theorem for higher topological Hochschild
cohomology.

Summary of results Our main result about factorization homology of Thom spectra
expresses

R
Mn �

nX�
nf as a Thom spectrum of a virtual bundle over a mapping or

section space, and for framed M, we give an explicit map Mapc.M;X/! BO whose
Thom spectrum is

R
M �nX�

nf ; see Theorem 3.4 (or Theorem 4.2 for generalized
Thom spectra). This is a direct generalization of the description in Blumberg, Cohen
and Schlichtkrull [10]. This result can be seen as a twisting of nonabelian Poincaré
duality: viewing a Thom spectrum as a twisted suspension spectrum, it shows that the
factorization homology of a twisted suspension spectrum of �nX is a twisted suspen-
sion spectrum of Mapc.M;X/, or of its section space counterpart. In this paper, we
derive two main uses from this result. In Sections 3 and 5, we calculate the factorization
homology of cobordism spectra (Corollaries 3.10 and 3.11), recovering Schlichtkrull’s
calculations in [50], and of the Eilenberg–Mac Lane spectra HZ=p , HZ.p/ and HZ

over oriented surfaces (Propositions 3.14, 4.6 and 4.8 and Corollary 4.9), recovering and
generalizing calculations of higher topological Hochschild homology from Veen [53],
Bobkova, Lindenstrauss, Poirier, Richter and Zakharevich [11] and Dundas, Linden-
strauss and Richter [18], although we do not determine the multiplicative structure. In
Section 5, we turn to cohomology, building upon our description of the factorization
homology of Thom spectra to develop a description of the higher topological Hochschild
cohomology of Thom spectra. This requires additional techniques, the main ingredient
of which is an action of †1

C
�X on �nX�

nf .

The loop space �X acts on itself by conjugation, and there are equivalences

THC.†1C�X/' Rhom†1
C
�X .S; .†

1
C�X/

ad/;

THH.†1C�X/' S ^
L
†1
C
�X .†

1
C�X/

ad

(see eg Section 4 of [39]). Here .�/ad denotes the conjugation action. Our main results
about higher Hochschild cohomology of Thom spectra (Lemma 5.6 and Theorem 5.7)
generalize this to a conjugation action of �X on �nX�

nf , and give an analogous
description of the higher Hochschild homology and cohomology in terms of this action.

Theorem We have

THCEn.�
nX�

nf /' Rhom†1
C
�X .S;�

nX�
nf /;

THHEn.�nX�
nf /' S ^L†1

C
�X �

nX�
nf :
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The action of †1
C
�X on �nX�

nf is fairly tractable — in particular, it is homo-
topically trivial if f is an E1–map — so this description allows us to compute En
topological Hochschild cohomology of cobordism spectra and of certain Eilenberg–
Mac Lane spectra, and topological Hochschild cohomology of the Ravenel spectra X.n/;
see Section 5.

Importantly, this description also implies that THCEn.�
nX�

nf / is the cohomology
(that is, section spectrum) of a parametrized spectrum over X, with fiber spectrum
�nX�

nf . The homology of this parametrized spectrum is the higher topological
Hochschild homology, THHEn.�nX�

nf /, which agrees with
R
Sn�R�

nX�
nf if

�nX�
nf is EnC1 ; see Section 3.2 of [20]. If X happens to be a closed manifold, as

is the case in (higher) string topology, Atiyah duality for parametrized spectra gives:

Corollary If X is a closed manifold and THHEn.�nX�
nf / ' Map.Sn; X/l

n.f / ,
then

THCEn.�
nX�

nf /'Map.Sn; X/l
n.f /�TX :

By our description of factorization homology of Thom spectra, there is such a map
ln.f / if THHEn and

R
Sn agree. (This is not always the case; see Section 5 for details.)

For nD 1, l.f / can be taken to be the map of Blumberg, Cohen and Schlichtkrull [10],
which gives THH.�X�f /.

If A is an En–ring spectrum, then by the higher Deligne conjecture, THCEn.A/ is an
EnC1–ring spectrum. Thus:

Corollary 5.10 If X is a closed manifold and THHEn.�nX�
nf /'Map.Sn;X/l

n.f /

then Map.Sn; X/l
n.f /�TX is an EnC1–ring spectrum.

If f is nullhomotopic, this recovers the fact that Map.Sn; X/�TX is an EnC1–ring
spectrum, which gives string topology operations on the homology of the free loop
space when nD 1 (see Cohen and Jones [15]), and higher string topology operations
on H�.Map.Sn; X// for higher n (see Hu [31] and Gruher and Salvatore [26]). In
this generality, this result is new. The case nD 1 answers a question of T Kragh, and
we thank him for his interest in this project.

Methods As in [10; 50], our description of the factorization homology of Thom
spectra ultimately follows from multiplicative properties of the Thom spectrum functor.
Whereas the description directly generalizes to factorization homology, the methods
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are somewhat different, as the cyclic bar construction and Loday functor used in [10]
and [50], respectively, are not available for factorization homology in general. The
development of factorization homology, both as a homology theory for manifolds in the
Ayala–Francis axiomatic framework and as a monadic two-sided bar construction as in
Kupers and Miller [34] and Miller [43], and the theory of generalized Thom spectra
developed in Ando, Blumberg, Gepner, Hopkins and Rezk [2] and Ando, Blumberg
and Gepner [1] allow us to generalize the description in [10] to factorization homology,
while doing away with most of the technical difficulty. Although it is not a deep
theorem, this description of the factorization homology of Thom spectra allows for
calculations and for insight into the higher topological Hochschild cohomology of
Thom spectra.

Our description of
R
M �nX�

nf as a Thom spectrum can be obtained either from the
point-set machinery, using the Lewis–May Thom spectrum (see Chapter 9 of [35])
and the two-sided bar construction model of factorization homology, or from the 1–
categorical machinery, using the theory of Thom spectra from [2] and the axiomatic
framework for factorization homology. For conceptual reasons, much of the work
is done using the point-set machinery. The monadic two-sided bar construction
B.D.M/;Dn; A/, which comes with an explicit scanning map to Mapc.M;B

nA/

when A is an En–space and M is framed, makes clearest the relation to nonabelian
Poincaré duality, and is conducive to describing the maps Mapc.M;B

nA/ ! BO

explicitly. In addressing generalized Thom spectra, the 1–categorical machinery is
most efficient.

In order to obtain our description of higher topological Hochschild cohomology of
Thom spectra, we construct a ring map †1

C
�X !

R
Sn�1�R�

nX�
nf and study the

resulting action of †1
C
�X on �nX�

nf . This allows for computation and for an
interpretation via parametrized spectra and Atiyah duality.

Structure of the paper In Section 2, we introduce necessary preliminaries on Lewis–
May Thom spectra and on factorization homology. This includes brief expositions on
both the two-sided bar construction model and the axiomatic approach. In Section 3,
we use operadic properties of the Lewis–May Thom spectrum functor, which en-
sure that it behaves well with respect to the two-sided bar construction, to describeR
M �nX�

nf as a Thom spectrum (Theorem 3.4). This includes, for framed M, an
explicit map Mapc.M;X/! BO whose Thom spectrum is

R
M �nX�

nf . We then
deduce calculations of factorization homology of several important E1–ring spectra
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over stably framed manifolds. We also use the Thom isomorphism theorem to give
an explicit calculation of

R
M HZ=2 for M an orientable surface. In Section 4, we

use the 1–categorical approach to generalized Thom spectra from [2], along with the
axiomatic description of factorization homology of Ayala and Francis [5], to expand
the results of Section 3 to generalized Thom spectra (Theorem 4.2). We then use a
Thom isomorphism argument to calculate

R
M HZ=p ,

R
M HZ.p/ and

R
M HZ for M

an orientable surface. In Section 5, we describe the higher topological Hochschild
cohomology of Thom spectra as a derived mapping spectrum of †1

C
�X –modules

(Theorem 5.7). Via parametrized spectra, we relate higher topological Hochschild
homology and cohomology of Thom spectra to Atiyah duality and string topology,
which results in new EnC1–ring spectra. Theorem 5.7 also gives calculations of
(higher) topological Hochschild cohomology of Thom spectra.
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2 Preliminaries

2.1 The Lewis–May Thom spectrum functor

In Section 3, we will use the Lewis–May Thom spectrum functor, which has nice
operadic properties that ensure it “commutes” with factorization homology. We briefly
describe this functor; for more details, see Chapter 9 of [35].

Let U be a real inner product space of countably infinite dimension. For V a finite-
dimensional subspace of U, denote by O.V / its group of orthogonal transformations,
with classifying space BO.V /. Write

BO D colim.BO.V //;

where the colimit runs over finite-dimensional linear subspaces of U.
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Let X be a compactly generated, weak Hausdorff space. To a map f W X ! BO, the
Lewis–May Thom spectrum functor associates a spectrum indexed on finite-dimensional
subspaces of U, that is, a set of spaces E.V / with structure maps

†WE.V /!E.W ˚V /

satisfying certain properties. Denote by SV the 1–point compactification of V .

For a map f W X ! BO, let X.V /D f �1.BO.V //. Assemble a prespectrum T .f /

from the Thom spaces of the maps X.V /!BO.V /: Let �.V / be the spherical bundle
over X.V / obtained by pulling back the canonical SV –bundle over BO.V / along
f W X.V /! BO.V /. Denote by T .f /.V / the Thom space of this spherical bundle;
that is, T .f /.V / is obtained from the total space of �.V / by collapsing the section
at 1 to a point. The structure maps of T .f / are induced by the pullback diagrams

†W
X.V /

�.V / //

��

�.W ˚V /

��

X.V / // X.W ˚V /

Here †W
X.V /

denotes fiberwise suspension.

The Thom spectrum Th.f / is defined to be the spectrification of the Lewis–May
prespectrum T .f /.

Remark 2.1 We will often rely on the fact that a weak equivalence over BO (or BF ,
if the maps to BF are “good”), induces an equivalence of Thom spectra. This also
implies that Thom spectra of homotopic maps are equivalent.

2.2 Factorization homology

This subsection describes the two-sided bar construction model of factorization homol-
ogy, as well as the Ayala–Francis axiomatic characterization of factorization homology
as a homology theory for manifolds, and discusses nonabelian Poincaré duality, which
relates factorization homology in the category of topological spaces to mapping spaces
and section spaces.

2.2.1 Operads and monads We now briefly recall some basic properties of operads
and monads, and give important examples. We refer the reader to Sections 1 and 2
of [40] for more details.

Algebraic & Geometric Topology, Volume 18 (2018)



The factorization theory of Thom spectra and twisted nonabelian Poincaré duality 2549

Let .C;˝; I / be a cocomplete symmetric monoidal category, with product ˝ and unit
element I. Let C† denote the category of symmetric sequences in C, that is, sequences
C D .C.n// where each C.n/ is equipped with an action of the symmetric group †n .
Define a composition monoidal product on C† by

.C ıD/.n/D
a

k; n1C���CnkDn

C.k/˝†k .D.n1/˝ � � �˝D.nk//˝†n1�����†nk
�`

nŠI
�
:

Definition 2.2 An operad in C is a monoid in the category C† of symmetric sequences
with the composition product defined above.

Roughly speaking, an operad O consists of a symmetric sequence .O.n// with maps

O.k/˝ .O.n1/˝ � � �˝O.nk//!O.n1C � � �Cnk/

satisfying equivariance and associativity conditions, with a unit map I !O.1/.

Example 2.3 We will mainly be interested in the following operads in the category of
topological spaces (with cartesian product and unit the one-point space �):

� Let U be an inner product space of countably infinite dimension. Define the linear
isometries operad L by L.n/D Isom.U n; U /, the space of linear isometric embeddings
U n! U, with composition product given by multicomposition of linear embeddings
and unit idW U ! U. The linear isometries operad L is an E1 operad, that is, all of
its spaces are weakly equivalent to a point.

� Little discs operads Let � W B!BO.n/ be a fibration; a � –framing of a manifold
M n is a lift of the classifying map of its tangent bundle over � . Examples of this are
orientation, Spin structure or tangential framing (a trivialization of the tangent bundle).
Note that Rn has a � –framing for all nonempty B ; for each B , we fix such a � –framing
(for example, coming from the standard tangential framing of Rn ). We will consider
the � –framed little discs operad, D�n , whose kth space D�n.k/DEmb�

�`
k Rn;Rn

�
is

roughly the space of embeddings
`
k Rn ,!Rn preserving � –framing. For a precise

definition, see Section 2 of [34]. Composition is by multicomposition of embeddings,
and the unit is the identity map of Rn . For B DEO.n/ contractible, a � –framing is
a tangential framing, and we will denote the corresponding little discs operad by Dn .
If � W BG ! BO.n/ is induced by a continuous group homomorphism G ! O.n/,
we will sometimes denote D�n by DGn . The operad DGn is also the semidirect product
of Dn with the group G ; for a definition of this semidirect product, see Section 2
of [48].
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Definition 2.4 Let O be an operad in C. An algebra over O is the arity 0 component A
of a left module over O , of the form .A;∅;∅; : : : /, in the category of symmetric
sequences. Roughly, this structure endows A with a unit map �W I !A and operations

�nW O.n/˝A˝n! A

satisfying unitality, associativity and equivariance conditions.

An algebra A over a little discs operad or an E1 operad in topological spaces is called
grouplike if �0.A/ is a group (under the multiplication induced by O.2/�A2! A).
In particular, a connected algebra is grouplike.

Example 2.5 � The space BO is an algebra over L, as are classifying spaces of
other stabilized Lie groups. The operad L is an E1 operad, so a grouplike algebra
over the linear isometries operad L is an infinite loop space by Theorem 14.4 of [40].

� For any pointed space X, �nX is a Dn–algebra by plugging the compactly sup-
ported maps Rn!X into the embeddings

`
k Rn ,!Rn (sending any point in Rn

outside the image of these embeddings to the basepoint). Conversely, May’s recognition
principle [40, Theorem 13.1] states that any grouplike Dn–algebra is weakly equivalent
as a Dn–algebra to an n–fold loop space.

� For any pointed G–space X and continuous homomorphism G!O.n/, �nX is
a DGn –algebra, as DGn is the semidirect product Dn ÌG. Embeddings of discs act as
above, and G acts on X, and on the loop coordinate by rotation and reflection of loops
(via G!O.n/). Conversely, the equivariant recognition principle of Salvatore and
Wahl states that any grouplike DGn –algebra is weakly equivalent as a DGn –algebra to
an n–fold loop space on a pointed G–space; see Theorem 3.1 of [48].

An operad in topological spaces defines a monad on topological spaces and on spectra.

Monads from operads in topological spaces Given an operad P in topological
spaces, one has an associated monad P on topological spaces given by

PX D
a
n

P.n/�†n X
n:

An operad P with a map to the linear isometries operad L also defines a monad P
on Lewis–May spectra using the twisted half-smash product; see eg Chapter 7 of [35].
Briefly, each linear isometry f W U n!U gives a way to internalize the external smash
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product from spectra indexed on U n to spectra indexed on U ; as a result, one gets
a twisted half-smash product L.n/Ë .X1 ^ � � � ^Xn/. If A is a space equipped with
a map to L.n/, the twisted half-smash product AË .X1 ^ � � � ^Xn/ is defined, and
thus if P is a topological operad with a map to L, we can use the twisted half-smash
products P.n/ËX^n to form PX D

W
n P.n/Ë†n X^n . As P is an operad, this is a

monad. We say that a spectrum E is an P –algebra if it is a P –algebra.

Definition 2.6 � A right module over an operad O is a symmetric sequence R
with a map R ıO!R satisfying associativity. That is, a collection of maps

R.k/˝ .O.n1/˝ � � �˝O.nk//!R.n1C � � �Cnk/

satisfying equivariance and associativity properties.

� A right functor over a monad O is a functor RW C! C with a natural transfor-
mation RO!R , satisfying associativity.

As before, in both spaces and spectra, a right module over an operad defines a right
functor over a monad. For details, see eg Section 2 of [43].

Example 2.7 � Any operad is a right module over itself, with action map given by
the operad structure map O ıO!O .

� Let M n be a � –framed manifold. Denote by D� .M/ the right module over D�n
whose kth space D� .M/.k/D Emb�

�`
k Rn;M

�
is roughly the space of embeddings`

k Rn ,! M preserving the � –framing. The module structure is given by multi-
composition of embeddings. For a precise definition, see Section 2 of [34]. This right
module gives a right functor D� .M/ over the monad D�n .

� On a pointed space X, the reduced monad DnX is obtained from DnX by a
basepoint relation; see Notations 2.3 and Construction 2.4 of [40]. For a Dn–algebra A,
we take its basepoint to be the unit. Dn and Dn are related by DnX D Dn.XC/.
Reduced versions of D�n and the right functor D� .M/ can also be defined using a
basepoint relation.

� The n–fold suspension †n is a right functor over Dn by “scanning”; for a pointed
space X, the map †nDnX !†nX is defined as follows:

For P D .t; f1; : : : ; fn; x1; : : : ; xn/, if t is not in the image of any of the embed-
dings fi , take P to the basepoint. Otherwise, if t 2 im.fi /, take P to .f �1i .t/; xi /.

Similarly, †n
C

is a right functor over Dn .
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2.2.2 The two-sided monadic bar construction Let O be a monad coming from a
well-behaved operad in topological spaces (that is, satisfying the cofibration hypothesis
of [19, VII.4]), R a right module over O and A an O –algebra. If O.0/ D �, we
require that the unit of A is a nondegenerate basepoint. If A is a space, we require
that A is homotopy equivalent to a cofibrant space (eg a cell complex), and if A is a
spectrum, we require that it is homotopy equivalent to a cofibrant spectrum (eg a cellular
spectrum). Then, by Proposition 5.8 of [3], B.O;O;A/ is homotopy equivalent to a
cofibrant O –algebra and thus a derived, or homotopy-invariant, version of the tensor
product

R˝O AD coeq.ROA�RA/

is given by the two-sided bar construction, B.R;O;A/, which is the geometric realiza-
tion of the simplicial object Bi .R;O;A/DRO iA. O iA denotes the i –fold iteration
of the monad O applied to A, and RO iA is obtained by applying R to O iA. The
face maps are given by compositions (RO ! R , O2! O and OA! A), and the
degeneracies by units id!O.

Example 2.8 If A is a grouplike Dn–algebra, we define its n–fold delooping BnA
by B.†n

C
;Dn; A/. This is equivalent to the May model B.†n;Dn; A/; see Section 5

of [34] for more details about this model.

Definition 2.9 Let D� .M/�L denote the functor on spaces or spectra associated
to the right D�n�L–module D� .M/�L. For pointed spaces, we denote its reduced
version by D� .M/�L.

Definition 2.10 Let A be a D�n�L–algebra (in spaces or spectra) whose underlying
space or spectrum is cofibrant, and let M n be a � –framed n–manifold. Define the
factorization homology of A over M byZ

M

AD B.D� .M/�L;D�n �L;A/:

If A is not underlying cofibrant, one can first cofibrantly replace A.

Remark 2.11 In [34], factorization homology of a D�n–algebra A in topological
spaces is defined as

B.D� .M/;D�n ; A/:

This is naturally equivalent to the definition above: the maps

D� .M/�L! D� .M/; D�n �L! D�n
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are †–equivariant homotopy equivalences; hence, by eg Section 9 of [41], the nat-
ural transformations D� .M/�L! D� .M/ and D�n �L! D�n are natural weak
equivalences. As in Section 2.4 of [43], these functors are proper, hence the associated
simplicial spaces are “good”, and therefore, for a D�n–algebra A, the induced map

B.D� .M/�L;D�n �L;A/! B.D� .M/;D�n ; A/

is a weak equivalence.

The theorem below, due to Segal, Salvatore, Lurie, Ayala and Francis, and others,
identifies (for an algebra in topological spaces) factorization homology over a framed
manifold as a certain mapping space. For a proof, see, for example, Theorem 2.26
of [43].

For a space X and a based space Y , write Mapc.X; Y /DMap�.X
C; Y /, where XC

is the one-point compactification. If X is already compact, XC DXC is obtained by
adding a disjoint basepoint.

Theorem 2.12 (nonabelian Poincaré duality for framed manifolds) Let A be a Dn–
algebra in topological spaces. Let M n be a tangentially framed manifold. Then there
is a natural scanning map

sW

Z
M

A!Mapc.M;B
nA/;

which is a weak equivalence if A is grouplike.

For future reference, we describe this scanning map. Our model for BnA is the space
B.†n

C
;Dn; A/, and the map is given on each simplicial level as

si W D.M/DinA!Mapc.M;†
n
CD

i
nA/;

which comes from the natural transformation S W D.M/X!Mapc.M;†
n
C
X/, defined

as follows: take S.f1; : : : ; fn; x1; : : : ; xn/.m/ to be the basepoint if m is not in the
image of any fi , and .f �1i .m/; xi / if m 2 im.fi /. For more details, see Section 5
of [34]. Using the natural weak equivalences in Remark 2.11, we obtain a scanning
map

B.D.M/�L;Dn �L;A/!Mapc.M;B
nA/:

2.2.3 Axiomatic characterization In [5], Ayala and Francis characterize factoriza-
tion homology with coefficients in a D�n–algebra A,

R
�
A, as a homology theory for

� –framed n–manifolds. Objects in the1–category Mfld�n are � –framed n–manifolds,
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and morphism spaces are Emb� .M;N / (see Example 2.3, and [5, Definition 2.7]
or Section 2 of [34] for a definition of these embedding spaces). Disjoint union
gives a symmetric monoidal product. They define a homology theory for � –framed
n–manifolds with coefficients in a symmetric monoidal 1–category .C;˝/ as a
symmetric monoidal functor

H W Mfld�n! C

satisfying excision: if
M DM 0[M0�RM

00

is a decomposition as � –framed manifolds, then

H.M 0/˝H.M0�R/H.M
00/!H.M/

is an equivalence. As we are working in an 1–category, the relative tensor product
corresponds to the derived tensor product.

The model for 1–categories used in this characterization is the framework of quasi-
categories; in this framework, 1–categories and symmetric monoidal 1–categories
are treated in [36; 37].

Ayala and Francis prove that
R
�
A is the unique (up to weak equivalence) homology

theory for � –framed n–manifolds satisfyingZ
Rn
A' A:

In Section 4 of [5], a nonabelian Poincaré duality theorem for � –framed manifolds is
proven using this axiomatic description. We interpret this theorem for a DGn –algebra
of the form AD�nX for X a pointed G–space; see Example 2.5.

Define a fiber bundle pX over BG with fiber X by pX W EG �G X ! BG, induced
by the usual map EG!BG. Given a continuous homomorphism G!O.n/, let M n

be a G–framed manifold and let � W M ! BG denote a lift (given by the G–framing)
of its tangent bundle from BO to BG. Then we can pull pX back along � to obtain
an X –bundle, ��pX , on M. Denote this bundle (as well as its total space) by BTMA,
and its space of compactly supported sections by �c.BTMA/. This gives BTMA as a
bundle over M with fiber X. One can think of it as being twisted by TM, hence it
makes sense to think of �c.BTMA/ as a twisted mapping space.

The theorem below can be thought of as a generalization of Theorem 2.12, where the
mapping space is twisted by the tangent bundle of M. For a proof, see [5] or [46].

Algebraic & Geometric Topology, Volume 18 (2018)



The factorization theory of Thom spectra and twisted nonabelian Poincaré duality 2555

Theorem 2.13 (nonabelian Poincaré duality) There is a natural equivalenceZ
M

A' �c.B
TMA/:

Interaction with the point-set model This axiomatic characterization agrees with
Definition 2.10 (up to weak equivalence). In the axiomatic description, a D�n–algebra
is a symmetric monoidal functor Disk�n! C, where Disk�n is the full subcategory of
Mfld�n on disjoint unions of Rn . Factorization homology is the (homotopy) left Kan
extension of this functor along the inclusion Disk�n ,!Mfld�n . This is the derived tensor
product of the right module of discs in M with the algebra A, over the little discs
operad. As in Section 7 of [30], we can model this as .D� .M/�L/˝.D�n�L/

Ac ,
where Ac is a cofibrant replacement of A in the category of D�n�L–algebras. If A
is cofibrant in the underlying category, we can take this cofibrant replacement to be
B.D�n �L;D

�
n �L;A/, and the derived tensor product is thus the two-sided monadic

bar construction B.D� .M/�L;D�n �L;A/.

3 Operadic behavior of Thom spectra and factorization
homology

In this section, we use the two-sided bar construction model of factorization homology,
and results from Chapter 9 of [35] on behavior of Thom spectra under monads, to
describe the factorization homology of Thom spectra of n–fold loop maps. Chapter 9
of [35] requires operads to be augmented over L, so we will verify that this description
still applies to Thom spectra of n–fold loop maps �nX ! �nBnC1O. For M
framed,

R
M Th.f / is a Thom spectrum of a virtual bundle over a mapping space; we

will explicitly describe the map Mapc.M;X/! BO giving this Thom spectrum. In
Section 3.1, we will use this to calculate factorization homology of some Thom spectra,
such as cobordism spectra and HZ=2.

In order to show that Lewis–May Thom spectra of En–maps behave well with respect
to the two-sided bar construction model of factorization homology, we will rely on a
theorem of Lewis (Proposition 9.6.1, Proposition 9.6.2 and Theorem 9.7.1 of [35]),
specifying the behavior of Thom spectra under monads defined by operads that map to
the linear isometries operad:

Theorem 3.1 (Lewis) Let C be an operad augmented over L and let C be the
monad associated to C . Let f W X ! BO be a map. Then there is a natural, coherent
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(ie respecting the transformations id! C and C 2 ! C ) isomorphism CTh.f / Š
Th.Cf /, where Cf is defined by

CX ! CBO! BO

using the action of C on BO via L.

Furthermore, if P is a right C–module, there is a natural isomorphism PTh.f / Š
Th.Pf /, compatible with the right C –module structure on P.

It follows that if X is a C–algebra in the category of spaces and f is a C–map,
then Th.f / is a C–algebra in the category of spectra, with action induced from the
isomorphism above.

We use this theorem to show that the Lewis–May Thom spectrum functor “commutes”
with factorization homology, that is, to show that for f W A!BO an En–map and M
an n–manifold, Z

M

Th.f /' Th
�Z
M

f

�
:

The map
R
M f can be described, independently of the model used for factorization

homology, as the compositeZ
M

A

R
M .A!BO/
��������!

Z
M

BO

R
M!ptBO

�������! BO:

The latter map in this composite uses the fact that for an E1–algebra, factorization
homology is given by the tensor product of the manifold with the algebra.

Remark 3.2
R
M BO is naturally equivalent to �1.MC ^ bo/. This is because

�1.MC ^ bo/ satisfies the Ayala–Francis axioms for factorization homology: it is
symmetric monoidal in M, its value on Rn is BO and it satisfies excision, because
bo–homology does. Under this equivalence, the map

R
M BO ! BO is obtained by

collapsing M to a point, resulting in

�1.MC ^ bo/!�1.S0 ^ bo/:

For M a framed closed manifold, the scanning map
R
M BO!Map.M;BnC1O/ is

obtained by taking infinite loop spaces of the map of spectra

MC ^ bo! F.MC; S
n/^ bo

Algebraic & Geometric Topology, Volume 18 (2018)



The factorization theory of Thom spectra and twisted nonabelian Poincaré duality 2557

induced by the equivalence S W MC! F.MC; S
n/, which is the adjoint of

.M �M/C
c
�!MTM fr

�!MC ^S
n
! Sn:

Here c is the collapse map onto a tubular neighborhood of the diagonal and fr is
induced by the framing of M. The last map collapses M to a point. To see that this
is equivalent to the scanning map described in Section 2, one can factor the scanning
map B.D.M/;Dn; BO/!Map.M;B.†n;Dn; BO// up to homotopy via the map

F W B.D.M/;Dn; BO/!Map
�
M;B

�
D..Rn/C/;Dn; BO

��
:

Here D..Rn/C/ denotes disks in .Rn/C (ie Sn ) that disappear if they touch the
basepoint. The monadic bar construction B

�
D..Rn/C/;Dn;�

�
is a model for the

n–fold bar construction, and gives the factorization homology of the zero-pointed
manifold .Rn/C . For details on this more general form of factorization homology,
see [4]. The map F is adjoint to a map

M !Map
�
B.D.M/;Dn; BO/; B

�
D..Rn/C/;Dn; BO

��
:

For m 2M, this map collapses a configuration of disks in M to a small neighborhood
of m (disks that touch the boundary of this neighborhood vanish), and uses the framing
on M to canonically identify this small neighborhood of m with Rn . This then
corresponds to the scanning map described above under the natural equivalences
B.D.M/;Dn; BO/'�

1.MC^bo/ and B
�
D..Rn/C/;Dn; BO

�
'�1..Rn/C^bo/

because the map described above also collapses to a small neighborhood of m, then
uses the framing to identify this neighborhood with Rn .

In Proposition 3.7, we use this description of the scanning map to provide an explicit
description of the map Z

Sn
f W Map.Sn; X/! BO

for f W �nX ! BO an n–fold loop map, where n 2 f1; 3; 7g, so that Sn is framed.
(For nD 1, this map is described in [10]).

The theorem below describes the map
R
M f W

R
M A! BO in the monadic bar con-

struction model of factorization homology, and gives a useful description in terms of
mapping spaces if M is framed. We assume that all En–spaces A we consider have
nondegenerate unit, and are cell complexes, so that the Thom spectrum is cofibrant in
the model structure on Lewis–May spectra and the two-sided bar construction models
factorization homology (see Remark 3.3 below), and so that the scanning map of
Section 2 is a weak equivalence if A is grouplike.
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Remark 3.3 If A is a D�n �L algebra whose underlying space is a cell complex,
and f W A ! BO is a D�n�L–map, then B.D� .M/�L;D�n �L;Th.f // modelsR
M Th.f /. This is because, as in Corollary 5.5 of [9], the Lewis–May Thom spectrum

functor for spaces over BO takes cells to cells, and hence the spectrum Th.f / is
cellular. Cellular spectra are cofibrant in the model structure on Lewis–May spectra, so
the bar construction indeed models factorization homology.

Theorem 3.4 Let A be a D�n�L–algebra and let f W A! BO be a D�n�L–map. Let
M be a � –framed n–manifold. Then

R
M Th.f / is equivalent to the Thom spectrum

of the mapZ
M

f W B.D� .M/�L;D�n �L;A/
f�
�! B.D� .M/�L;D�n �L;BO/

! B.L;L;BO/ ��! BO:

This description can also be applied if f W A!�nBnC1O is a DGn –map, as we can
replace it with a DGn �L–map zA! BO.

If M n is a tangentially framed manifold with a framed embedding i W M�RN�n ,!RN

and A is grouplike, then
R
M Th.f / is the Thom spectrum of the map

Mapc.M;B
nA/

Bnf
��!Mapc.M;B

nC1O/ ��!Mapc.M �RN�n; BNC1O/
i�
�!Mapc.R

N ; BNC1O/:

Note that we can use this theorem to describe the factorization homology of Thom
spectra of n–fold loop maps �nX!�nBnC1O, which comprise most of the naturally
occurring examples. For a continuous homomorphism G ! O.n/, �nX is a DGn –
algebra if X is a pointed G–space. A natural DGn –structure on �nBnC1O comes from
the Salvatore–Wahl equivariant delooping. For a grouplike DGn –algebra T , Salvatore
and Wahl construct in Theorem 3.1 of [48] a G–space BnT such that �nBnT is
connected to A by a zigzag of weak equivalences of DGn –algebras. As a space, BnT is
given by B.†n;Dn; T / (or B.†n

C
;Dn; T /), and the G–action is obtained by realizing

the simplicial G–space †nD�nT . The G–action on T is the given one, the action
on Dn is by rotation and reflection of discs via O.n/, and the action on †n is as the
1–point compactification of Rn , via the action of O.n/. In the case T D BO, we use
the trivial G–action on BO.

Proof By Lewis’s theorem above, there are a natural, coherent isomorphisms

.D�n �L/Th.f /Š Th..D�n �L/f /; .D� .M/�L/Th.f /Š Th
�
.D� .M/�L/f

�
;
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as both symmetric sequences are augmented over the linear isometries operad. (The
maps .D�n �L/f , .D� .M/�L/f are defined as in Theorem 3.1 by the augmentation
over L and the L–action on BO ). Therefore, we get an isomorphism of simplicial
objects

.D� .M/�L/.D�n �L/
pTh.f /Š Th

�
.D� .M/�L/.D�n �L/

pf
�
:

The Thom spectrum functor commutes with colimits and tensors over unbased spaces,
and therefore with geometric realization. This gives the bar construction description of
the map whose Thom spectrum is

R
M Th.f /.

We now address the case of f W A!�nBnC1O a DGn –map (for example a suitable
n–fold loop map.) Note that there is a zigzag of weak equivalences of DGn �L–algebras
between �nBnC1O and BO, given by the scanning map

�nB.†nC;Dn �L;BO/
� � B.Dn �L;Dn �L;BO/

��! BO:

By Lemma 2.3 of [51], the category of algebras over DGn � L carries a cofibrantly
generated model structure induced from that on spaces by the free–forgetful adjunction,
hence every object is fibrant and weak equivalences are determined in the underlying
category of topological spaces. Thus, we can functorially cofibrantly replace DGn �L–
algebras, resulting in cofibrant, fibrant algebras, between which we can invert weak
equivalences. This results in a DGn �L–map Ac ! BO, where Ac is the functorial
cofibrant replacement of A in the category of DGn �L–algebras.

Now suppose M is tangentially framed, with a framed embedding as above, and A
is grouplike. Then nonabelian Poincaré duality (Theorem 2.12) holds. It is natural in
the algebra and manifold variables, which yields the required description of the map.
More explicitly, consider the commutative diagram in Figure 1.

The horizontal maps are scanning maps; we use B.†n
C
;Dn � L;A/ as an n–fold

delooping of A. The Lewis–May Thom spectrum functor takes weak equivalences
over BO to weak equivalences; thus,

R
M Th.f / is equivalent to the Thom spectrum

of the composition of the right-hand column, and we can conclude.

Remark 3.5 Remembering that Mapc.M �Rk;�/ D Map�.†
k.MC/;�/, where

MC denotes the one-point compactification of M, we can alternatively describe the
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map in Theorem 3.4 as the composite

Map�.M
C; BnA/

Bnf
��

Map�.M
C; BnC1O/

†N�n

��

Map�.†
N�n.MC/; †N�nBnC1O/

o

��

Map�.†
N�n.MC/; BNC1O/

c�

��

Map�.S
N ; BNC1O/' BO

The bottom-most vertical map above is induced by the Pontryagin–Thom collapse map
SN !†N�n.MC/.

This description can also be obtained from the model independent description of
R
M f ,

using the fact that there is an essentially unique embedding of M into R1 .

B.D.M/�L;Dn�L;A/
� //

��

Mapc.M;B.†
n
C
;Dn�L;A//

��

B.D.M/�L;Dn�L;BO/
� //

��

Mapc.M;B.†
n
C
;Dn�L;BO//

��

B.D.M�RN�n/�L;DN �L;BO/
� //

��

Mapc.M�RN�n; B.†N
C
;DN �L;BO//

��

B.D.RN /�L;DN �L;BO/
� //

o

��

Mapc.R
N ; B.†N

C
;DN �L;BO//' BO

B.L;L;BO/

o
��

BO
Figure 1
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Remark 3.6 Theorem 3.4 is stated, for simplicity, for Thom spectra of maps to BO.
The same is true for Thom spectra of maps f W A! BF , where BF is the classifying
space for stable spherical fibrations. In this case, instead of the Lewis–May Thom spec-
trum as stated, one first replaces f by a fibration �f and uses Th.�f /; see Chapter 9.3
of [35]. � behaves well with respect to operadic structures, and one can show that
Th.�f / takes a cell complex A to a spectrum which is homotopy equivalent to a cellular
spectrum. More generally, notice that BF is BGL1.S/, where S is the sphere spectrum;
a similar description holds for generalized Thom spectra of maps to BGL1.R/, where
R is a commutative ring spectrum. This is most easily obtained using the1–categorical
approach to Thom spectra of [2]. See Section 4 for results on generalized Thom spectra.

We end this subsection by explicitly describing
R
Sn f for n 2 f1; 3; 7g. This is a direct

generalization of the description of topological Hochschild homology of a Thom spec-
trum in Theorem 1 of [10], which deals with the case nD 1. Recall that an element ˛ 2
�sn gives a map BnC1O!BO by considering ˛ as a stable map Sn!S0 , and forming

�1˛W �1.Sn ^ bo/!�1.S0 ^ bo/:

Proposition 3.7 If n 2 f1; 3; 7g (so that Sn is framed), X is .n�1/–connected and
f W �nX ! BO is an n–fold loop map, then

R
Sn Th.f / is equivalent to the Thom

spectrum of ln.f /W Map.Sn; X/! BO, defined by

Map.Sn; X/ f��!Map.Sn; BnC1O/
�

��1
�!BO �BnC1O

id���n
����!BO �BO

mult
��!BO:

Here �n denotes the Hopf map in �sn ; that is, �1 D �, �3 D � and �7 D � . We use
��1 to denote a homotopy inverse to the equivalence �W BnC1O ��nBnC1O !
Map.Sn; BnC1O/, which is induced by the inclusion of constant loops BnC1O !
Map.Sn; BnC1O/ and the inclusion of �nBnC1O into the mapping space.

Proof We proceed as in the proof of Proposition 7.3 of [49], using the description
of the scanning map in Remark 3.2 in place of the standard equivalence between the
cyclic bar construction and the free loop space. We have the following commutative
diagram of spectra, induced by the (co)fiber sequence S0! Sn

C
! Sn , which has a

stable splitting induced by r W Sn
C
! S0 :

S0 //

o

��

Sn
C

//

S
��

Sn

D

��

F.Sn; Sn/ // F.Sn
C
; Sn/ // F.S0; Sn/
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The second row is obtained by mapping the first row into Sn . S is the scanning map
from Remark 3.2, adjoint to

.Sn �Sn/C! STS
n

Š .SnC/^S
n
! Sn;

in which the last map is induced by r W Sn
C
! S0 . To be more explicit, we use the struc-

ture of an H–space with inverses on Sn for n2f1; 3; 7g and define C W .Sn�Sn/C!Sn,
the adjoint of S, to send .x; y/2Sn�Sn to x�1y if x and y are not antipodal, and the
basepoint otherwise; this is adjoint to the scanning map because it takes .x; y/ to x�1y
(which is in a disk neighborhood of the identity) if x and y are close (that is, not
antipodal to each other), and to the basepoint otherwise. We take the basepoint of the
source Sn in the second row to be the H–space identity element 1, and the basepoint
of the target Sn in the second row to be its antipode �1, so that S is continuous. We
take the basepoint of the first row Sn to be �1, so that the horizontal map Sn

C
! Sn

sends the disjoint basepoint to �1. The left-hand vertical map sends the nonbasepoint
of S0 to �idW Sn! Sn (which is a pointed map due to our choice of basepoints). The
right-hand vertical map is adjoint to the map which sends the nonbasepoint of S0 to
the map x 7! x�1 . With these choices, one can check that the diagram commutes.

The map
R
Sn idW

R
Sn BO! BO is, under the natural equivalenceZ

Sn
BO '�1.SnC ^ bo/;

given by

�1.r ^ bo/W �1.SnC ^ bo/!�1.bo/:

We would therefore like to determine the homotopy class of the map

BnC1O
const
��!Map.Sn; BnC1O/ S

�1

��!�1.SnC ^ bo/
r^bo
��! BO:

This is obtained by smashing bo with the composition

F.S0; Sn/ r
�

�! F.SnC; S
n/ S

�1

��! SnC
r
�! S0:

Thus, we aim to show that this composition is homotopic to ��n . As in the proof of
Proposition 7.3 of [49], we represent S as a 2� 2 matrix with respect to the splittings

SnC ' S
0
_Sn and F.SnC; S

n/' F.Sn; Sn/�F.S0; Sn/

induced by r and r� , respectively. The map we would like to determine, r ıS�1 ı r� ,
is the off-diagonal term in the matrix representing S�1 , thus is the negative of the
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off-diagonal term in the matrix representing S. We will denote this off-diagonal term
by S12 . Denote the stable section Sn! Sn

C
by s ; then S12 is homotopic to

Sn
s
�! SnC

S
�! F.SnC; S

n/
s�
�! F.Sn; Sn/:

This is adjoint to

Sn ^Sn
s^s
��! .Sn �Sn/C

C
�! SnC! Sn:

Here C.x; y/D x�1y is the adjoint of S. The last map collapses the disjoint basepoint
to the basepoint of Sn , which we have taken to be �1. This stable map Sn^Sn! Sn

represents the Hopf map, and therefore �S12 D ��n , and this gives the required
map BnC1O! BO in the description. Thus,

R
Sn f is homotopic to the map ln.f /

described in the proposition, as required.

3.1 Calculations

We now use Theorem 3.4 to compute some examples of factorization homology. The
proposition below addresses cases in which the map f W A ! BO is more highly
commutative.

Recall that for a stably framed manifold M n properly embedded along with a tubular
neighborhood in RN, M �RN�n ,!RN, we have the Pontryagin–Thom collapse map

cW SN D .RN /C! .M �RN�n/C Š†N�n.MC/:

Notice that the composition

SN
c
�!†N�n.MC/

deg
��! SN ;

where deg collapses all but a small disk in M to a point, is homotopic to the identity.
The map deg is part of a cofiber sequence

†N�n.MC�Dn/
inc
��!†N�n.MC/

deg
��! SN :

That is, the Pontryagin–Thom collapse map stably splits this cofiber sequence. We
would like to use the stable splitting of this cofiber sequence to provide a relatively
simple description of

R
M�RN�n Th.f /. In order to use Theorem 3.4, we require f to

be an EN –map.

Proposition 3.8 Let M be a connected, stably framed n–manifold along with an
embedding M �RN�n ,! RN and let f W A ! BO be an EN –map, where A is
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grouplike. ThenZ
M�RN�n

Th.f /' Th.f /^Map�.M
C
�Dn; BnA/C:

If M is not stably framed, the situation is more complicated: M �RN�n does not
embed into RN, and nonabelian Poincaré duality gives a section space rather than a
mapping space.

Proof By Theorem 3.4,
R
M�RN�n Th.f / is equivalent to the Thom spectrum of the

map

Map�.M
C; BnA/ ��!Map�.†

N�n.MC/; BNA/
BNf
��!Map�.†

N�n.MC/; BNC1O/

c�
�!Map�.S

N ; BNC1O/' BO:

This composite is the top row of the diagram

Map�.†
N�n.MC/; BNA/ //

c�

**

Map�.S
N ; BNC1O/' BO

Map�.S
N ; BNA/' A

f�

OO

which commutes because Map�.�;�/ is a bifunctor. Hence, the Thom spectrum of

Map�.†
N�n.MC/; BNA/!Map�.S

N ; BNA/!Map�.S
N ; BNC1O/' BO

is also equivalent to
R
M�RN�n Th.f /.

The map

Map�.†
N�n.MC/; BNA/!Map�.S

N ; BNA/�Map�.†
N�n.MC�Dn/; BNA/

induced by the Pontryagin–Thom collapse map and by the inclusion in the cofiber
sequence is an equivalence; this follows from the stable splitting of the degree cofiber
sequence. Thus, we have the commutative diagram

Map�.†
N�n.MC/; BNA/ //

c�

++

o

��

Map�.S
N ; BNC1O/' BO

Map�.S
N ; BNA/�Map�.†

N�n.MC�Dn/; BNA/ // Map�.S
N ; BNA/' A

f�

OO

Algebraic & Geometric Topology, Volume 18 (2018)



The factorization theory of Thom spectra and twisted nonabelian Poincaré duality 2565

The bottom horizontal arrow is given by projection onto the first factor. Thus, the
spectrum

R
M�RN�n Th.f / is equivalent to the Thom spectrum of

Map�.S
N ; BNA/�Map�.†

N�n.MC�Dn/; BNA/!Map�.S
N ; BNA/

!Map�.S
N ; BNC1O/' BO;

which is equivalent to Th.f /^Map�.†
N�n.MC�Dn/; BNA/C . Notice that

Map�.†
N�n.MC�Dn/; BNA/'Map�.M

C
�Dn; BnA/

and the conclusion follows.

When f W A!BO is an infinite loop map, this recovers Theorem 1 of [50]; factorization
homology is known to agree with higher (topological) Hochschild homology for E1–
algebras. See Theorem 5 of [25] for the CDGA case, or Proposition 5.1 of [5] in
general.

Remark 3.9 If A is an ESO.N/
N –algebra, then

R
M A'

R
M�RN�n A. In this case, the

description in Proposition 3.8 also applies to
R
M Th.f /. In particular, this is true for

any E1–map.

This result allows us to explicitly describe
R
M E for E any cobordism ring spectrum.

Corollary 3.10 If M is a connected, stably framed n–manifold and G is a stabilized
Lie group (eg O, SO, Spin, U, Sp), then

��

�Z
M

MG

�
Š�G� .Map�.M

C
�Dn; BnC1G//:

This result recovers the computations of [10; 50] in the case M D Sn .

Proof In this case, MG is the Thom spectrum of the L–map BG! BO, that is, a
D�N�L–map for all N. Thus, the result follows from Proposition 3.8.

Next, we consider Thom spectra that arise from systems of groups Gn with a block
sum pairing and compatible homomorphisms Gn ! O.n/. We will consider the
examples †n!O.n/ and GLn.Z/!O.n/, with Thom spectra M† and MGL.Z/,
respectively. These are cobordism spectra for manifolds whose stable normal bundle
has a specific flat connection; that is, the structure group of the stable normal bundle
reduces to the symmetric group or the general linear group of the integers, respectively.
For these Thom spectra, Proposition 3.8 gives the following corollary:
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Corollary 3.11 Let M be a connected, stably framed n–manifold. ThenZ
M

M†'M†^Map�.M
C
�Dn; .QSn/hni/C;Z

M

MGL.Z/'MGL.Z/^Map�.M
C
�Dn; Bn.BGL.Z//C/C:

(Here the .�/C in .BG/C denotes plus construction, and .�/hni denotes n–connected
cover.)

Proof The maps B†! .B†/C , BGL.Z/!BGL.Z/C are homology equivalences,
thus induce equivalences on mod 2 homology. By the universal property of the plus
construction, B†! BO and BGL.Z/! BO factor through maps

f†W .B†/
C
! BO; fGL W BGL.Z/C! BO:

The classifying space of the stabilized braid group BBr maps to B† and BGL.Z/
over BO, and according to Lemma 2.2 of [12], MBr ' HZ=2. Hence, M† and
MGL.Z/ are HZ=2–module spectra. They are equivalent to Th.f†/ and Th.fGL/,
which are also HZ=2–modules after smashing with HZ=2, therefore

M†' Th.f†/; MGL.Z/' Th.fGL/:

The maps f† and fGL are E1–maps; one way to see this is to observe that they are
the 0–components of the maps

�B

�a
n

B†n!
a
n

BO.n/

�
; �B

�a
n

BGLn.Z/!
a
n

BO.n/

�
;

which are obtained by group-completing maps of E1–spaces (where the E1–structure
comes from the block sum pairing). Thus, M† and MGL.Z/ are E1–ring spectra.
Proposition 3.8 gives the required description of factorization homology of Thom
spectra obtained from infinite loop maps to BO, and the corollary follows. In the
description of

R
M M†, the space .QSn/hni D .�1†1Sn/hni appears because, due

to the Barratt–Priddy–Quillen theorem [6], .B†/C 'Q0S0 .

3.1.1 Factorization homology of H Z=2 By a theorem of Mahowald, HZ=2 is
equivalent to the Thom spectrum of a 2–fold loop map 
 W �2S3! BO. (For a proof,
see [44].) Furthermore, this is an equivalence of E2–ring spectra. We will use this to
calculate

R
M HZ=2 for oriented surfaces M.
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Let ˛W S1! BO represent the generator of �1.BO/. It is known (see eg [14]) that
HZ=2 ' D2.Th.˛// as an E2–ring spectrum. In fact, HZ=2 is equivalent as an
E2–ring spectrum to the Thom spectrum of the map 
 , given by

.D2 �L/S
1 .D2�L/˛
�����! .D2 �L/BO

act
�! BO:

In order to use this to calculate factorization homology over orientable (not just framed)
surfaces, we will show below that this is furthermore an equivalence of ESO.2/

2 –algebras.
Recall that, via equivalences .D2 �L/S1 '�2S3 and BO '�2B3O, Mahowald’s
map is homotopic to the twice looping of a generator of �3.B3O/.

Mahowald’s map 
 above is a DG2 �L–map for any G!O.2/ if we take the Salvatore–
Wahl rotation action on D2 . (The group action on BO is trivial, because the operad
action is via the projection to L.) This makes Th.
/ a DG2 �L–algebra. The equivalence

.D2 �L/S
1
!D2S

1
!�2S3

is then an equivalence of DG2 –algebras provided the group action on S3 is as S3 D
.R2/C^S1 , with G acting via the homomorphism G!O.2/ on R2 and trivially on
the S1 smash factor.

Lemma 3.12 For any continuous homomorphism G!O.2/, HZ=2 is equivalent as
a DG2 �L–algebra to the Thom spectrum of the map


 W .D2 �L/S
1
! .D2 �L/BO! BO:

The DG2 �L–algebra structure on HZ=2 is obtained via the augmentation to L.

Proof By Mahowald’s theorem, HZ=2'Th.
/. This equivalence is obtained via the
following sequence of maps, the first being the natural isomorphism in Lewis’s theorem:

Th.
/Š .D2 �L/Th.S1! BO/! .D2 �L/MO! .D2 �L/HZ=2!HZ=2:

The last map is given by the action of D2 � L on HZ=2, which comes from the
L–algebra structure on this Eilenberg–Mac Lane spectrum. The second-to-last map
is given by the Thom class.

For any X, .D2 � L/X has a DG2 �L–algebra structure via the “rotation of discs”
O.2/–action on D2 . This DG2 �L action on .D2 �L/Th.S1! BO/ is compatible
with the one on Th.
/, due to the fact that 
 is a DG2 �L–map. The equivalence
Th.
/!HZ=2 above is a DG2 �L–map; this is clear for all but the last map, which
is a DG2 �L–map because the action of D2 �L on HZ=2 comes from the projection
to L, so the relevant diagram commutes. Hence we can conclude.
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For example, for G D SO.2/, this will help us compute factorization homology of
HZ=2 over orientable surfaces. We will use the following proposition:

Lemma 3.13 For �2S3 with ESO.2/
2 –structure as above and M a closed or punctured

genus g surface, Z
M

�2S3 'Mapc.M; S
3/:

Proof This is automatically true for parallelizable M (hence for punctured genus g
surfaces) by nonabelian Poincaré duality. For closed orientable surfaces, we need to
show that the section space given by nonabelian Poincaré duality is in fact equivalent
to a mapping space.

According to nonabelian Poincaré duality as in Section 4 of [5],
R
M �2S3 is equivalent

to the space of compactly supported sections of the bundle BTM�2S3 , obtained as
follows (see also Section 2):

Consider the bundle �3 over BSO.2/ with total space ESO.2/�SO.2/S
3 , with SO.2/–

action on S3 as described above; that is, SO.2/ acts as a matrix group on S2D .R2/C ,
and acts trivially on the S1 factor in S3DS2^S1 . Denote by BTM�2S3 the pullback
���3 of this bundle to M, along the classifying map � W M !BSO.2/ of TM. Notice
that

�3 Š†BSO.2/.ESO.2/�SO.2/ S
2/;

where †BSO.2/ denotes fiberwise suspension and ESO.2/�SO.2/ S
2 is the fiberwise

1–point compactification of the tautological plane bundle over BSO.2/. Thus, ���3Š
†MT

CM. (Here TCM denotes the fiberwise 1–point compactification of TM .)
Therefore,

���3 Š†MT
CM Š TC.M ˚R/:

For M an oriented surface, this bundle is trivial, and the section space is a mapping
space.

Proposition 3.14 Let M be a genus g surface or a punctured genus g surface. ThenZ
M

HZ=2'HZ=2^Map�.M
C
�D2; S3/C:

In particular, Z
†g

HZ=2'HZ=2^ .S3 � .�S3/2g/C:
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The homology of S3 and �S3 can easily be described, so we obtain the higher and
iterated THH of HZ=2:

Corollary 3.15 We have

THHS
2

.HZ=2/ŠƒZ=2Œx�;

THHT2.HZ=2/ŠƒZ=2Œx�˝Z=2Z=2Œy1; y2�;

where jxj D 3 and jyi j D 2.

Proof By Lemma 3.12, HZ=2 is equivalent as an E
SO.2/
2 –algebra to the Thom

spectrum of an E
SO.2/
2 –map �2S3 ! BO. Thus, by Theorem 3.4,

R
M HZ=2 is

equivalent to the Thom spectrum of a map
R
M �2S3 ! BO. By Lemma 3.13,R

M �2S3 'Mapc.M; S
3/, and thus by a spectrum-level version of the Thom isomor-

phism (see eg Theorem 9.5.6 of [35]),

HZ=2^

Z
M

HZ=2'HZ=2^Mapc.M; S
3/C:

S3 is a group, so we can deloop it to get

Mapc.M; S
3/DMap�.M

C; S3/'Map�.†.M
C/; BS3/:

The space †.†g/ splits as †S2_
W
2g †S

1 , because the attaching map of the 2–cell
of †g is nullhomotopic. Thus, the cofiber sequence

†..†g/C�D
2/!†..†g/C/! S3

splits, and therefore

Map�.†.M
C/; BS3/'Map�.S

3; BS3/�Map�.†.M
C
�D2/; BS3/:

Thus, we have Mapc.M; S
3/'�2S3 �Map�.M

C�D2; S3/, and hence

HZ=2^Mapc.M; S
3/C 'HZ=2^ .�2S3/C ^Map�.M

C
�D2; S3/C:

By Mahowald’s theorem, HZ=2 is the Thom spectrum of a map �2S3! BO, thus
by the Thom isomorphism,

HZ=2^ .�2S3/C 'HZ=2^HZ=2:

Following this chain of equivalences, we get

HZ=2^

Z
M

HZ=2'HZ=2^HZ=2^Map�.M
C
�D2; S3/C:
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The spectra
R
M HZ=2 and HZ=2 ^ Map�.M

C � D2; S3/C are HZ=2–module
spectra, the latter in the obvious way, and the former is in fact an HZ=2–algebra via
the map Z

R2
HZ=2!

Z
M

HZ=2

obtained from an embedding of a small disc into M. In order to obtain this HZ=2–
algebra structure, one uses the fact that factorization homology of an E1–algebra is
naturally an E1–algebra. Because these are HZ=2–modules, they are generalized
Eilenberg–Mac Lane spectra, of the form

W
i †

kiHZ=2. Their homotopy type is thus
completely determined by the degrees in which there are copies of HZ=2, and the
number of copies in each degree. Thus, it suffices to check that these spectra are
equivalent after smashing with HZ=2, andZ

M

HZ=2'HZ=2^Map�.M
C
�D2; S3/C;

as required.

For a slightly different way of using Thom isomorphism to obtain an equivalenceR
M HZ=2'HZ=2^Map�.M

C�D2; S3/C , see the proof of Proposition 4.8.

In the next section, we will use a p–local Thom spectrum functor to prove a similar
result for HZ=p , HZ.p/ and HZ.

4 Generalized Thom spectra

In this section, we will use the 1–categorical approach to generalized Thom spectra
of [2] to describe the factorization homology of Thom spectra Th.f /, for f W A!
BGL1.R/ an En–map, where R is a commutative ring spectrum. We restrict to
commutative R so that BGL1.R/ is an E1–space, and the generalized Thom spectrum
functor is a symmetric monoidal functor.

Ordinary Thom spectra fit into this framework by taking R to be the sphere spectrum S.
Symmetric monoidal properties of the generalized Thom spectrum functor, as in [1],
will allow us to describe the factorization homology of these Thom spectra as we
described it for ordinary Thom spectra in Section 3. We will then rely on a description
of some Eilenberg–Mac Lane spectra as generalized Thom spectra to calculate the
factorization homology of HZ=p , HZ.p/ and HZ over oriented surfaces.
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By an observation due to Hopkins (see [38]), HZ=p for an odd prime p is the
generalized Thom spectrum of a 2–fold loop map 
pW �2S3! BGL1.S.p//, where
S.p/ denotes the p–local sphere spectrum. As in the p D 2 case, this map can be
obtained by extending the map S1!BGL1.S.p// given by the unit 1�p to a 2–fold
loop map:

.D2 �L/S
1
! .D2 �L/BGL1.S.p//! BGL1.S.p//:

We will express
R
M HZ=p as a Thom spectrum of a map

R
M �2S3! BGL1.S.p//,

which will allow us to use the arguments of the previous section to calculate
R
M HZ=p

for orientable surfaces. To this end, we will utilize results about the 1–categorical
approach to generalized Thom spectra of [2; 1]. First, we recall the definition of the
generalized Thom spectrum of a map X ! BGL1.R/, where R is a ring spectrum.
We use GL1.R/ to denote the (grouplike) monoid of units of the ring spectrum R . It
can be obtained, for example, as the union of �0–invertible path components of �1R ,
equivalently the pullback in the diagram

GL1.R/ //

��

�1R

��

�0.R/
� // �0.R/

The papers [2; 1; 5] use quasicategories to model 1–categories. A quasicategory
is a weak Kan complex, that is, a simplicial set with inner horn fillers. A functor of
quasicategories is simply a map of simplicial sets. An 1–groupoid is a Kan complex.
See Chapter 1 of [36] for an introduction to quasicategories.

In this section and the next, we use this 1–categorical framework, so will not usually
specify which En or E�n operad we are working with, unless convenient for a particular
application. We use En to refer to any operad equivalent to Dn , and E�n for any operad
equivalent to D�n .

Definition 4.1 Let X be a Kan complex. Let ModR be the 1–category of (right) R–
modules, and LineR its subcategory of free rank 1 cofibrant and fibrant modules, with
morphisms equivalences of R–modules. The 1–category LineR is an 1–groupoid,
therefore a space, and as such it was shown in [1] to be equivalent to BGL1.R/. The
Thom spectrum Th.f / of a map X ! LineR is defined to be the 1–categorical
colimit colim.X ! LineR!ModR/.
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Theorem 4.2 Let R be a commutative ring spectrum. Let f W A! BGL1.R/ be an
E�n –map and M n a � –framed manifold. Then Th.f / is an E�n –algebra and

R
M Th.f /

is equivalent to the generalized Thom spectrum of the mapZ
M

f W

Z
M

A!

Z
M

BGL1.R/! BGL1.R/;

where
R
M BGL1.R/!BGL1.R/ is given by

R
M!pt.�/, using the fact that BGL1.R/

is E1 .

Furthermore, if M n is a tangentially framed manifold along with a framed embedding
i W M �RN�n ,!RN and A is grouplike, thenZ

M

Th.f /'Mapc.M;B
nA/�.f /;

where �.f / is obtained as follows:

Mapc.M;B
nA/

Bnf
��

Mapc.M;B
nC1GL1.R//

o
��

Mapc.M �RN�n; BNC1GL1.R//

i�
��

Mapc.R
N ; BNC1GL1.R//' BGL1.R/

Proof The generalized Thom spectrum functor is a colimit in the category of R–
modules; the forgetful functor from R–modules to spectra preserves colimits, hence the
Thom spectrum functor commutes with colimits in the category of spectra. It also has
good multiplicative properties, generalizing those Lewis proved for the ordinary Thom
spectrum functor: for R a commutative ring spectrum, the generalized Thom spectrum
functor is symmetric monoidal (in the 1–categorical sense); see Corollary 8.1 of [1].
By Lemma 3.25 of [5], these properties guarantee that the generalized Thom spectrum
functor commutes with factorization homology. The mapping space description follows
from this, along with the fact that the nonabelian Poincaré duality equivalence, as in
Section 4 of [5], is natural in both the manifold and algebra variables.

As in Section 3, we can describe �.f / using the Pontryagin–Thom collapse map
associated to the embedding i . Again as in Section 3, one can generalize this to stably
framed manifolds, and make the same calculations.
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4.1 Calculations

We calculate factorization homology of Eilenberg–Mac Lane spectra over oriented
surfaces using the following Thom isomorphism theorem, which is [2, Corollary 2.26]:

Proposition 4.3 (Thom isomorphism theorem [2]) Let f W X ! BGL1.R/ be a
map, and suppose Th.f / admits an orientation, that is, a map of right R–modules
uW Th.f /!R such that for each x 2X, the restriction Th.f jx/! Th.f /!R is a
weak equivalence. Then

Th.f / diag
��! Th.f /^XC

u^id
��!R^XC

is a weak equivalence.

4.1.1 Factorization homology of H Z=p Exactly as in Lemma 3.12, the generalized
Thom spectrum Th.
pW �2S3!BGL1.S.p/// is equivalent to HZ=p as an ESO.2/

2 –
algebra. The ESO.2/

2 structure on the Thom spectrum arises from the fact that 
p is an
E

SO.2/
2 –map (with ESO.2/

2 –algebra structure on �2S3 as in the previous section); the
structure on HZ=p comes from its commutative ring spectrum structure.

The Thom spectrum HZ=p and its factorization homology do not come equipped with
a nontrivial map to S.p/ , so we will use the Thom isomorphism theorem on the Thom
spectrum of the composite

�2S3! BGL1.S.p//! BGL1.HZ=p/:

To describe the Thom spectrum of the composite, we use the following (see eg the
introduction to [2]):

Lemma 4.4 Let T be an R–algebra. Then

Th.X ! BGL1.R/! BGL1.T //' Th.X ! BGL1.R//^R T:

Corollary 4.5 We have

Th.�2S3! BGL1.S.p//! BGL1.HZ=p//'HZ=p^S.p/ HZ=p;

Th
�Z
M

�2S3! BGL1.S.p//! BGL1.HZ=p/

�
'

�Z
M

HZ=p

�
^S.p/ HZ=p:

Note that .�/^S.p/ HZ=p D .�/^HZ=p .
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In order to use a Thom isomorphism argument, we need orientations for the Thom
spectra in the corollary.

For Th.�2S3! BGL1.HZ=p//, take the multiplication map

multW HZ=p^HZ=p!HZ=pI

this is clearly an equivalence when restricted to each Th.x0 ,!�2S3!BGL1.HZ=p//.

For Th
�R
M �2S3! BGL1.HZ=p/

�
, take the equivalenceZ

M

HZ=p '

Z
M�R

HZ=p

and compose with the map induced by an embedding M �R ,!R3 (for M a closed
or punctured genus g surface) to get a map

vW

Z
M

HZ=p!

Z
R3
HZ=p 'HZ=p:

Take as orientation the map�Z
M

HZ=p

�
^HZ=p

v^id
��!HZ=p^HZ=p

mult
��!HZ=p:

This is also an equivalence when restricted to any Th.x0 ,!
R
M �2S3!BGL1.HZ=p//

because composing with an inclusion of any small disc R2 ,!M gives an equivalenceR
R2 HZ=p '

R
R3 HZ=p .

Proposition 4.6 For M a genus g surface or a punctured genus g surface, Theorem
4.2 gives an equivalenceZ

M

HZ=p 'HZ=p^Map�.M
C
�D2; S3/C:

Proof Both sides are HZ=p–modules, so as in the p D 2 case, it suffices to show
equivalence after smashing with HZ=p . We obtain this equivalence below:

HZ=p^

Z
M

HZ=p ' Th
�Z
M

�2S3! BGL1.HZ=p/

�
'HZ=p^

�Z
M

�2S3
�
C

'HZ=p^Map�.M
C; S3/C

'HZ=p^ .�2S3/C ^Map�.M
C
�D2; S3/C

'HZ=p^HZ=p^Map�.M
C
�D2; S3/C:
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The first equivalence holds by Corollary 4.5. The second holds by the Thom isomor-
phism theorem (Proposition 4.3), using the fact that Th

�R
M �2S3! BGL1.HZ=p/

�
admits an orientation. The third holds by Lemma 3.13. The fourth holds due to the
splitting of the mapping space, as in the proof of Proposition 3.14. Finally, the fifth
holds by the Thom isomorphism for Th.�2S3! BGL1.S.p//! BGL1.HZ=p/),
and we can conclude.

4.1.2 Factorization homology of H Z.p/ We will calculate
R
M HZ.p/ for M a

closed or punctured genus g surface, where Z.p/ denotes the p–local integers, using
the fact that HZ.p/ is the Thom spectrum of a map

ˇW �2.S3h3i/! BSL1.S.p//;

where S3h3i denotes the 3–connected cover of S3 ; the map S3h3i ! S3 induces an
isomorphism on all �i for i > 3, and �i .S3h3i/D 0 for i � 3. The space SL1.S.p//
is the identity component of GL1.S.p//.

As in [13] or Section 9 of [9], this equivalence is given by the composite

Th.ˇ/ ˇ��!MSL1.S.p//
Thom
��!HZ.p/:

The Thom spectrum MSL1.S.p// has a Thom class to HZ.p/ because BSL1.S.p//
is simply connected; it is the 1–connected cover of BGL1.S.p//. The map

ˇW �2.S3h3i/! BSL1.S.p//

is given by lifting the composite

�2.S3h3i/!�2S3

p
�! BGL1.S.p//

to BSL1.S.p//D BGL1.S.p//h1i.

Lemma 4.7 The map ˇ is an ESO.2/
2 –map, where the ESO.2/

2 –action on �2S3 is as
in Section 3. With respect to this structure and the trivial ESO.2/

2 –action on HZ.p/ ,

Th.ˇ/'HZ.p/

as ESO.2/
2 –algebras.

Proof The Thom class is a map of ESO.2/
2 –algebras with trivial SO.2/–action on

both spectra. Thus, it is enough to realize ˇ as an ESO.2/
2 –map, where BSL1.S.p// is
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given the trivial action. Consider the commutative diagram

.D2 �L/S
1


p
//

act
��

BGL1.S.p//

��

S1 // BZ�
.p/

All of the maps in this diagram are D2�L–maps, as well as SO.2/–maps (with respect
to the Salvatore–Wahl action on .D2�L/S1 and the trivial action on the other spaces).
Thus, the induced map between the homotopy fibers of the vertical maps is also such.
This realizes ˇ as an ESO.2/

2 –map.

By Theorem 4.2,
R
M HZ.p/ is a generalized Thom spectrum of a virtual bundle overR

M �2.S3h3i/, where the ESO.2/
2 –action on �2.S3h3i/ is such that the map to �2S3

is an ESO.2/
2 –algebra map. That is, the map S3h3i ! S3 is SO.2/–equivariant. The

following gives an easy description of
R
M HZ.p/ :

Proposition 4.8 Let M be a closed genus g surface or a punctured genus g surface.
Then Z

M

HZ.p/ 'HZ.p/ ^Map�.M
C
�D2; S3; h3i/C:

In particular, Z
†g

HZ.p/ 'HZ.p/ ^S
3
h3iC ^ .�.S

3
h3i//

2g
C
:

Proof We first prove that
R
M �2.S3h3i/ ' Mapc.M; S

3h3i/. Punctured genus g
surfaces have trivial tangent bundles, so it remains to show this for M a closed genus g
surface. For such M, we have

R
M �2.S3h3i/ ' �.BTM�2.S3h3i//. Recall that,

from Lemma 3.13, �.BTM�2S3/'Map.M; S3/, and that

Map.M; S3/' S3 � .�S3/2g ��2S3:

Hence, Map.M; S3h3i/ ! Map.M; S3/ has the effect of killing �1.Map.M; S3//
and the Z–summands in �2 and �3 (2g summands in �2 and one in �3 ). It is an
isomorphism on the rest of �� . Thus, in order to show

�.BTM�2.S3h3i//'Map.M; S3h3i/;
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it suffices to show that the map

�.BTM�2.S3h3i//! �.BTM�2S3/

has this effect on homotopy groups as well. In order to prove this, consider the
commutative diagram of fiber sequences

�.BTM�2.S3h3i// //

��

�.BTM�2S3/

��

Map.M;BTM�2.S3h3i// //

��

Map.M;BTM�2S3/

��

Map.M;M/ // Map.M;M/

where the fiber is taken over the identity map of M. As the map on base spaces is the
identity, it suffices to show that the map

Map.M;BTM�2.S3h3i//!Map.M;BTM�2S3/

annihilates �1.Map.M;BTM�2S3// and the Z–summands in �2 and �3 , and induces
isomorphism on the rest of �� . This follows by considering the commutative diagram
of fiber sequences

Map.M; S3h3i/ //

��

Map.M; S3/

��

Map.M;BTM�2.S3h3i// //

��

Map.M;BTM�2S3/

��

Map.M;M/ // Map.M;M/

This time, the fiber is taken over a constant map M!M. Again, the map of base spaces
is the identity. The map on fibers annihilates �1.Map.M; S3// and the Z–summands
in �2 and �3 , and induces isomorphism on the rest of �� , thus the map on total spaces
does the same. This concludes the proof thatZ

M

�2.S3h3i/'Mapc.M; S
3
h3i/:

To prove that
R
M HZ.p/'HZ.p/^Map�.M

C�D2; S3h3i/, consider the composite
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R
M HZ.p/

1^id
��

HZ.p/ ^
R
M HZ.p/

Thomo
��

HZ.p/ ^Map�.M
C; S3h3i/C

o
��

HZ.p/ ^�
2.S3h3i/C ^Map�.M

C�D2; S3h3i/C

Thomo
��

HZ.p/ ^HZ.p/ ^Map�.M
C�D2; S3h3i/C

mult^id
��

HZ.p/ ^Map�.M
C�D2; S3h3i/C

The splitting of the mapping space occurs because S3h3i is an H–space. The Thom iso-
morphism holds because the Thom spectrum

R
M HZ.p/ admits an HZ.p/–orientation,

exactly as in the HZ=p case (or because Map�.M
C; S3h3i/ is simply connected).

To see that this is an equivalence, it suffices to show that it induces isomorphism on
homology with coefficients in Z.p/ , because both spectra in question are HZ.p/–
modules (as in the HZ=2 case,

R
M HZ.p/ is even an HZ.p/–algebra). By the Thom

isomorphism, the spectra
R
M HZ.p/ and HZ.p/ ^Map�.M

C �D2; S3h3i/C both
have Z.p/–homology

H�.Map�.M
C; S3h3i/IZ.p//

ŠH�.HZ.p/IZ.p//˝H�.Map�.M
C
�D2; S3h3i/IZ.p//:

The middle four spectra in the sequence of maps above have Z.p/–homology

H�.HZ.p/IZ.p//˝H�.HZ.p/IZ.p//˝H�.Map�.M
C
�D2; S3h3i/IZ.p//:

The first map in the sequence sends

†iai ˝ bi 2H�.HZ.p/IZ.p//˝H�.Map�.M
C
�D2; S3h3i/IZ.p//

to 1˝ .†iai ˝ bi /. The next three maps are isomorphisms that preserve the tensor
factors. The last map, mult^ id, then takes 1˝ .†iai ˝ bi / to †iai ˝ bi . Thus, the
composite induces isomorphism on Z.p/–homology. This concludes the proof.

Algebraic & Geometric Topology, Volume 18 (2018)



The factorization theory of Thom spectra and twisted nonabelian Poincaré duality 2579

This allows us to calculate the factorization homology of HZ over closed and punctured
genus g surfaces.

Corollary 4.9 For M a closed or punctured genus g surface,Z
M

HZ'HZ^Map�.M
C
�D2; S3h3i/C:

Proof We first show that the localizations at each prime p of these two spectra are
equivalent. Localization at p is given by smashing with the p–local sphere spectrum,
thus it commutes with colimits and is symmetric monoidal (in the 1–categorical
sense); see Lemma 3.4 of [23] or Proposition 2.2.1.9 of [37]. Hence, by Lemma 3.25
of [5], localization at p commutes with factorization homology and�Z

M

HZ

�
.p/

'

Z
M

HZ.p/ 'HZ.p/ ^Map�.M
C
�D2; S3h3i/C:

The spectrum HZ^Map�.M
C�D2; S3h3i/C is rationally trivial because the space

Map�.M
C�D2; S3h3i/ is a product of copies of �.S3h3i/, or a product of S3h3i

with copies of �.S3h3i/, which are rationally trivial. The spectrum
R
M HZ is also

rationally trivial: the rationalization of
R
M HZ is equivalent to the rationalization of�R

M HZ
�
.p/
'
R
M HZ.p/ , which is trivial, again because Map�.M

C�D2; S3h3i/

is rationally trivial. Every rationally trivial spectrum decomposes into its p–primary
parts, and we have shown that the p–localizations ofZ

M

HZ and HZ^Map�.M
C
�D2; S3h3i/C

agree; thus, they are equivalent.

Corollary 4.10 We have

THHS
2

� .HZ/ŠH�.S
3
h3i/;

THHT2
� .HZ/ŠH�.S

3
h3i/˝H�.�.S

3
h3i//˝2:

H�.S
3h3i/ is 0 in odd dimensions and Z=nZ in dimension 2n.

H�.�.S
3h3i// is 0 in positive even dimensions and Z=nZ in dimension 2n� 1.

5 Hochschild cohomology of Thom spectra

In this section, we use Theorems 3.4 and 4.2, and the relation between factorization
homology and En Hochschild cohomology, to describe the En Hochschild cohomology
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A

A

Figure 2: The action of U.A/ on A

of Thom spectra. As in the previous section, we are working in the 1–categorical
context, and use En to refer to any operad equivalent to Dn .

Definition 5.1 Let A be an En–algebra. Denote by U.A/ the E1–algebra
R
Sn�1�RA;

the E1–algebra structure is induced by the action of embeddings on the R–coordinate,
Sn�1 �

�`
k R

�
,! Sn�1 �R. In some of the literature, U.A/ is referred to as the

enveloping algebra of A (see eg Proposition 3.16 of [20]).

As in Section 3 of [20], left U.A/–modules are En–A–modules. For example, ADR
Rn A is a left module over U.A/. This action can be roughly described as induced by

an embedding .Sn�1 �R/qRn ,!Rn . In this embedding, Sn�1 �R is an annulus
around the open disk Rn , as in Figure 2. In this figure, the annulus and the disk are
labeled by A, in keeping with the intuition of factorization homology as a labeled
configuration space. For more details about this action, see Sections 2 and 3 of [20],
Section 5 of [24] or Section 2 of [29].

Definition 5.2 For an En–algebra A in spectra, define its En Hochschild cohomology
THCEn.A;A/D RhomU.A/.A;A/.

Equivalently, this is RhomEn–A–mod.A;A/, the mapping spectrum in the category of
En–A–modules (see eg Proposition 3.19 of [29]).

Remark 5.3 For nD1, this recovers Hochschild cohomology. For nD1, Sn�1�RD

S0 �R and Z
S0�R

A' A^Aop
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as an algebra. Under this identification, the action of
R
S0�RA on A as its enveloping

algebra agrees with the action of A^Aop on A. Thus, for nD1, the definition of higher
Hochschild cohomology above reduces to RhomA^Aop.A;A/, which is Hochschild
cohomology.

Note the following terminology issue: higher Hochschild cohomology is not what
Ayala and Francis call factorization cohomology in [4]. Factorization cohomology is
an invariant of En–coalgebras, and in that sense is a generalization of co-Hochschild
homology of coalgebras (see eg [27]), rather than of Hochschild cohomology of algebras.
Factorization cohomology can be thought of as cohomology for manifolds, whereas
Hochschild cohomology can be thought of as cohomology for algebras.

Definition 5.4 Let A be an En–algebra in spectra. The En Hochschild homology
THHEn.A/ of A is defined as the derived smash product A^L

U.A/
A, where U.A/ acts

on A on the right using an equivalence U.A/' U.A/op ; see Lemma 3.20 of [20].

For nD 1, this recovers Hochschild homology. If A is EnC1 , THHEn.A/'
R
Sn�RA.

Remark 5.5 In general, higher topological Hochschild homology need not coincide
with factorization homology. For n¤ 1; 3; 7, Sn is not framed and thus

R
Sn A is only

defined for A an ESO.n/
n algebra. Higher Hochschild homology is defined for any

En–algebra, and in particular does not depend on the data of an SO.n/–action.

An example in which the two differ is given, for nD 2, by AD†1
C
�2†2.S0 _S0/.

This can be given an ESO.2/
2 –algebra structure by specifying that SO.2/ acts on the

†2–coordinate as it acts on .R2/C . Then, by Theorem 9.4 of [30],

THHE2.A/'†1C Map.S2; S2 _S2/:

On the other hand, Z
S2
A'†1C �.�

C
2 .S

0
_S0//;

where �C2 denotes the fiberwise one-point compactification of TS2 and �C2 .S
0 _S0/

is the fiberwise smash product of this bundle with S0 _S0 . In Example 15 of [47],
Salvatore shows that Map.S2; S2 _S2/ and �.�C2 .S

0 _S0// do not have the same
rational homology.

One can think of factorization homology as keeping track of the tangent bundle of S2 ,
whereas higher Hochschild homology only sees a trivial bundle on S2 .
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�1˛

Figure 3: The conjugation action of �X on itself

Now let X be a pointed, .n�1/–connected space, and let f W X!BnC1G be a pointed
map, where G is one of the stabilized Lie groups (O, U, SO, . . . ) or G DGL1.R/ for
R a commutative ring spectrum. Let AD�nX�

nf be the Thom spectrum of �nf ,
hence an En–ring spectrum.

Recall that �X acts on �nX, giving an action of �1.X/ on �n.X/. For n D 1,
�1.X/ acts on itself by conjugation, as in Figure 3.

For n > 1, �1.X/ acts on �n.X/ via a generalized conjugation action, as in Figure 4.

























˛

Figure 4: The generalized conjugation action of �X on �nX

This action can also be thought of as follows: Include �X into �Map.Sn�1; X/D
Mapc.S

n�1 �R; X/ via the inclusion X !Map.Sn�1; X/ of constant maps. This is
a loop map. The mapping space Mapc.S

n�1 �R; X/D
R
Sn�1�R�

nX acts on �nX
as in Figure 2.

We generalize this action to Thom spectra. That is, we construct an action of †1
C
�X

on �nX�
nf , which specializes to the generalized conjugation action above if f is a

trivial map. This action arises from a map of ring spectra †1
C
�X!

R
Sn�1�R�

nX�
nf

as follows:
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Construction Let cW �X ! �Map.Sn�1; X/ be the homotopy fiber of the map
i W �Map.Sn�1; X/ ! �nX, obtained by considering �Map.Sn�1; X/ as maps
.Dn; @Dn/! .X;�/ that send 0 2Dn to the basepoint. Note that i is not a fibration;
even when �nX is path connected, i is not surjective, as every ˛W Dn! X in its
image evaluates to the basepoint on 0 2Dn .

Lemma 5.6 On Thom spectra, c induces a map of ring spectra

cW †1C�X !

Z
Sn�1�R

�nX�
nf
D U.�nX�

nf /:

Proof Note that c is an E1–map; it can obtained by looping the map obtained by
inclusion of constant maps, X !Map.Sn�1; X/. This can be seen by observing that
i W �Map.Sn�1; X/!�nX is the fiber of the map ev0W �nX!X, which evaluates a
map from Dn at 0, and that ev0 is the homotopy fiber of the map X!Map.Sn�1; X/
above. (When nD 1, c is the map �X !�X ��X which sends g to .g; g�1/.)

Because c is an E1–map, it induces, for each E1–map hW �Map.Sn�1; X/!BG, a
map of ring spectra Th.hıc/!Th.h/. We take hD�nf ıi . Note that by Theorem 3.4
(or Theorem 4.2), Th.h/'

R
Sn�1�R�

nX�
nf , because Sn�1 �R ,!Rn is a framed

embedding and the diagram

�Map.Sn�1; X/ i
//

�nf

��

�nX

�nf

��

�Map.Sn�1; BnC1G/ i
// �nBnC1G

commutes. Thus, we obtain a map of ring spectra Th.�nf ıi ıc/!
R
Sn�1�R�

nX�
nf .

By construction, i ı c is nullhomotopic, and furthermore �nf ı i ı c is nullhomotopic
via E1–maps; this composite can be written as

�X
�f
�!�BnC1G!�nBnC1G;

where the last map is induced by a nullhomotopic map S1!Sn . BnC1G is an infinite
loop space, thus this map is via E1–maps. Therefore, Th.�nf ı i ı c/'†1

C
�X as

ring spectra, and c induces a map of ring spectra †1
C
�X !

R
Sn�1�R�

nX�
nf .

The following proof was inspired by Beardsley’s approach [7] to relative Thom spectra:

Theorem 5.7 Under the generalized conjugation action of †1
C
�X on AD�nX�

nf ,
coming from the ring map cW †1

C
�X ! U.A/, there are equivalences

THHEn.A;A/' S ^L†1
C
�X A; THCEn.A;A/' Rhom†1

C
�X .S; A/:
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Proof It suffices to show that

A' B.S;†1C�X;U.A//

as U.A/–modules; this implies that

THCEn.A/D RhomU.A/.A;A/' Rhom†1
C
�X .S; A/

and similarly for higher topological Hochschild homology.

By Lemma 5.6, we have a principal fibration

�X
c
�!�Map.Sn�1; X/ i

�!�nX

in which c is a loop map, and �nX ' �Map.Sn�1; X/==�X. We show that this
statement about homotopy orbits descends to Thom spectra. We replace the map
i W �Map.Sn�1; X/!�nX with a fibration, which we will denote by

Q{W z�Map.Sn�1; X/!�nX:

This results in a fiber sequence

z�X ! z�Map.Sn�1; X/!�nX

in which the composite z�X !�nX is trivial, and �nX D z�Map.Sn�1; X/=z�X.

We give explicit models for z�Map.Sn�1; X/ and z�X, in which it is easy to see that
z�X is still an algebra, and z�Map.Sn�1; X/ is still a module over it. Set z�X to be
�Map.In; X/, thought of as the space of maps �W InC1! X such that �.0; s/ D
�.1; s/D� for all s 2 In . Let z�Map.Sn�1; X/ be the space of maps �W InC1!X

such that �.1; s/ D � for all s 2 In , and �.0;�/ 2 �nX. Then z�X includes into
z�Map.Sn�1; X/, and acts on it by concatenation in the first I direction (on the 1 2 I
end.) The map Q{W z�Map.Sn�1; X/!�nX is given by evaluation on 0 2 I.

Then our new model for
R
Sn�1�RA is Th.�nf ı Q{/. The composite z�X !�nX is

trivial, thus the Thom spectrum of z�X!�nX!BG is †1
C
z�X. The action of z�X

on z�Map.Sn�1; X/ is compatible with the maps to BG, thus descends to an action
of †1

C
z�X on

R
Sn�1�RA.

By Corollary 8.1 of [1], the Thom spectrum functor is symmetric monoidal and preserves
colimits. Thus, B

�
Th..�nf / ı Q{/; †1

C
z�X;S

�
' B.U.A/;†1

C
�X;S/ is the Thom

Algebraic & Geometric Topology, Volume 18 (2018)



The factorization theory of Thom spectra and twisted nonabelian Poincaré duality 2585

spectrum of the map

B. z�Map.Sn�1; X/; z�X;�/

��

B. z�Map.Sn�1; BnC1G/; z�BnC1G;�/

.Q{;�;�/
��

B.�nBnC1G;�;�/

o
��

�nBnC1G D B.�nBnC1G;�nBnC1G;�nBnC1G/

This fits into a commutative diagram

B. z�Map.Sn�1; X/; z�X;�/ � //

��

�nX

�nf

��

�nBnC1G D // �nBnC1G

Thus,
B.Th..�nf / ı Q{/; †1C z�X;S/' A

and we obtain an equivalence B.U.A/;†1
C
�X;S/! A, as required. As the map

U.A/! A induced by i W �Map.Sn�1; X/!�nX is a map of U.A/–modules, so
is this equivalence.

This theorem is analogous to the description of Hochschild cohomology of Hopf k–
algebras with antipode, which is given by RhomA.k; A/, with A acting on itself by
conjugation; see eg Section 3.2 and Proposition A.1.8 of [39].

We now interpret this theorem through the lens of parametrized spectra and Atiyah
duality.

Given spaces X and F , an F –bundle over X is obtained from an action of �X on F ;
the total space is then given by E�X ��X F. Similarly, a parametrized spectrum
over X, with fiber spectrum F , is obtained from an action of �X on F . For an
overview of parametrized spectra and their homology and cohomology, see eg Section 1
of [16].

The action of †1
C
�X on AD�nX�

nf thus gives a parametrized spectrum over X
with fiber spectrum A. Its cohomology spectrum, equivalently spectrum of sections,
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is Rhom†1
C
�X .S; A/, which by Theorem 5.7 is equivalent to THCEn.A;A/. Its

homology spectrum is equivalent to the derived smash product B.A;†1
C
�X;S/, and

this is equivalent to THHEn.A/ by Theorem 5.7.

We restrict to the case in which X DM is a closed, connected manifold. By Atiyah
duality for parametrized spectra (eg Theorem 10 of [16]), the cohomology spectrum, that
is, the section spectrum THCEn.A;A/, can be obtained from the homology spectrum
via twisting by �TM, the stable normal bundle to M. More explicitly, if THHEn.A/
can be obtained as a Thom spectrum Map.Sn;M/l

n.f / (this is the case when THHEn

agrees with factorization homology), we take the Whitney sum of ln.f / with the
virtual bundle �TM. Recall from Proposition 3.7 that for nD 1; 3; 7, the description
of ln.f / involves the Hopf map and its higher-dimensional analogues.

Even if THHEn.A/ is not necessarily a Thom spectrum of a virtual bundle over the
mapping space, it is still a Thom spectrum over M ; that is, the homology spectrum of
a parametrized spectrum over M. As such, we can still twist it by �TM, which can
also be seen as coming from a parametrized spectrum over M. In summary:

Corollary 5.8 For A D �nM�nf , the En Hochschild cohomology THCEn.A/ is
a twisting by �TM of the En Hochschild homology THHEn.A/. Therefore, if
ln.f /W Map.Sn;M/! BG is such that THHEn.A/'Map.Sn;M/l

n.f / , then

THCEn.A/'Map.Sn;M/l
n.f /�TM :

Remark 5.9 For AD†1
C
�nM, this gives

THCEn.†
1
C�

nM/'Map.Sn;M/�TM

and the string topology operations on H�.Map.Sn;M//; see eg Theorem 1 of [15]
for nD 1 and Theorem 1.2 of [31] or Theorem 7.1 of [24] for higher n.

The spectrum THCEn.A/ is an EnC1–algebra by the higher Deligne conjecture (see
eg Theorem 6.28 of [24]).

Corollary 5.10 The spectrum Map.Sn;M/l
n.f /�TM is an EnC1–ring spectrum.

5.1 Calculations

Proposition 5.11 If f W X ! BnC1G is an E1–map, then the action of †1
C
�X on

AD�nX�
nf is homotopically trivial. That is, the map GL1.†1C�X/! hAut.A/ is

nullhomotopic via E1–maps.
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Proof Recall, from the proof of Theorem 5.7, that †1
C
�X is the Thom spectrum of

the map

�X !�Map.Sn�1; X/ i
�!�nX

�nf
��! BG:

If X is E1 , then the composite �X ! �nX is an E1–map, which is furthermore
nullhomotopic via E1–maps, as its nullhomotopy is induced by a nullhomotopy of
a map Sn ! S1 . If f is an E1–map, then the resulting map on Thom spectra,
†1
C
�X !A, is nullhomotopic via E1–maps. Note that the action †1

C
�X ^A!A

does not, in general, factor as †1
C
�X^A!A^A!A. For example, if AD†1

C
�X,

the conjugation action does not factor in this way. In this case, however, A is EnC1 ,
so the action of

R
Sn�1�RA on A factors as�Z

Sn�1�R
A

�
^A! A^A! A

via the map
R
Sn�1�RA!

R
Rn A induced by the usual embedding Sn�1 �R ,!Rn .

For let eW .Sn�1 �R/qRn ,!Rn be the embedding defining the module structure�R
Sn�1�RA

�
^A!A. Then e�RW .Sn�1�R2/qRnC1 ,!RnC1 is homotopic to

.Sn�1 �R2/qRnC1 ,!RnC1qRnC1 ,!RnC1:

Thus, the action †1
C
�X ^A! A factors through the usual left action A^A! A.

As †1
C
�X ! A is nullhomotopic through E1–maps, the action is homotopically

trivial.

Corollary 5.12 If f W X ! BnC1G is an E1–map and X is .n�1/–connected, then

THHEn.A;A/' A^XC; THCEn.A;A/'Map.XC; A/:

Remark 5.13 If X is additionally a closed manifold, the Poincaré duality of Corollary
5.8 between higher Hochschild homology and higher Hochschild cohomology becomes
especially clear. The statement becomes usual Poincaré duality of homology with
coefficients in A and cohomology with coefficients in A.

Remark 5.14 If A is an EnC1–ring spectrum, Map.XC; A/ is an EnC1–ring spec-
trum in a natural way. It would be interesting to know whether this agrees with
the EnC1–structure on higher Hochschild cohomology given by the higher Deligne
conjecture.
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This recovers computations of topological Hochschild cohomology of Z=p [21, 7.3]
and Z.p/ [22]:

THC.HZ=p/'Map.�S3C;HZ=p/; THC.HZ.p//'Map.�.S3h3i/C;HZ.p//:

We can also calculate THCE2 of HZ=p and HZ.p/ :

Proposition 5.15 We have

THCE2.HZ=p/'Map.S3C;HZ=p/; THCE2.HZ.p//'Map.S3h3iC;HZ.p//:

Proof For ease of notation, we will focus on HZ=p ; the proof for HZ.p/ is identical.

As in the proof of Proposition 5.11, by the commutativity of HZ=p , the action ofR
S1�RHZ=p on HZ=p factors through the left action of HZ=p on itself:�Z

S1�R
HZ=p

�
^HZ=p!HZ=p^HZ=p!HZ=p:

Again the commutativity of HZ=p implies that
R
S1�RHZ=p ! HZ=p is a ring

map. Composing this with the ring map †1
C
�S3!

R
S1�RHZ=p , we have a ring

map †1
C
�S3!HZ=p and the higher conjugation action factors as

†1C�S
3
^HZ=p!HZ=p^HZ=p!HZ=p:

The action of †1
C
�S3 determines a map �S3 ! hAut.HZ=p/. As the action

factors through the left action of HZ=p on itself, this map factors through �S3!
GL1.HZ=p/. But GL1.HZ=p/ is homotopy equivalent to .Z=p/� , therefore discrete,
and �S3 is connected, so this map is nullhomotopic, and the action of †1

C
�S3 on

HZ=p is homotopically trivial.

Proposition 5.11 also allows us to calculate the En topological Hochschild cohomology
of cobordism spectra:

Corollary 5.16 Let G be one of the stabilized Lie groups (O, U, SO, . . . ) or one of
the stabilized discrete groups † or GL.Z/. Then

THCEn.MG/'Map.BnC1GC;MG/:

Thus, (higher) topological Hochschild cohomology of MG is given by G–cobordism
cohomology of spaces in the spectrum associated to BG. For example,

THC�.MU /ŠMU �.SU/:
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In general, higher topological Hochschild cohomology of MU will alternate between
MU –cohomology of connected covers of U and BU.

We can also calculate the topological Hochschild cohomology of the spectra X.n/.
These spectra, introduced by Ravenel (see eg Section 6.5 of [45]), provide a filtration
of MU and played an important role in the proof of the nilpotence theorem [17]. The
spectrum X.n/ is defined as the Thom spectrum of the map

�SU.n/!�SU' BU:

Note that X.n/ is an E2–ring spectrum, as it is the Thom spectrum of an E2–map.

Corollary 5.17 THC.X.n//'Map.SU.n/C; X.n//:

The Lie group SU.n/ has trivial tangent bundle, so this is equivalent to

†�dSU.n/C ^X.n/;

where d D dim SU.n/. Notice that this is indeed a shift, or twist by a trivial tangent
bundle, of THH.X.n//; as in [8], THH.X.n//'X.n/^SU.n/C .
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