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A May-type spectral sequence for
higher topological Hochschild homology
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Given a filtration of a commutative monoid A in a symmetric monoidal stable model
category C , we construct a spectral sequence analogous to the May spectral sequence
whose input is the higher order topological Hochschild homology of the associated
graded commutative monoid of A , and whose output is the higher order topological
Hochschild homology of A . We then construct examples of such filtrations and derive
some consequences: for example, given a connective commutative graded ring R ,
we get an upper bound on the size of the THH–groups of E1–ring spectra A such
that ��.A/ŠR .
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1 Introduction

Suppose AD F0A� F1A� F2A� � � � is a filtered augmented k–algebra, where k

is a field. In his 1964 PhD thesis, J P May [33] sets up a spectral sequence with input
Ext�;�

E�
0

A
.k; k/ which converges to Ext�A.k; k/. Here E�

0
ADLn�0 FnA=FnC1A is

the associated graded algebra of the filtration of A.
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2594 Gabe Angelini-Knoll and Andrew Salch

In the present paper, we construct an analogous spectral sequence for topological
Hochschild homology and its “higher order” generalizations (as in Pirashvili [37]).
Given a filtered E1–ring spectrum A, we construct a spectral sequence

(1) E1
�;� Š THH�;�.E�0 A/) THH�.A/:

Here E�
0
A is the associated graded E1–ring spectrum of A; part of our work in this

paper is to define this “associated graded E1–ring spectrum”, and prove that it has
good formal properties and useful examples (eg Whitehead towers; see (5), below).

More generally, we construct, given any connective generalized homology theory E�

(see Definition 3.4.1) and any simplicial finite set X� , a spectral sequence

(2) E1
�;� ŠE�;�.X�˝E�0 A/)E�.X�˝A/:

We recover spectral sequence (1) as a special case of (2) by letting E� D �� and
letting X� be a simplicial model for the circle S1 .

We formulate a definition (see Definition 3.1.1) of a “filtered E1–ring spectrum”
which is sufficiently well behaved that we can actually construct a spectral sequence
of the form (2), identify its E1– and E1–terms and prove its multiplicativity and
convergence properties. Actually our constructions and results work in a somewhat
wider level of generality than commutative ring spectra: we fix a symmetric monoidal
stable model category C satisfying some reasonable hypotheses (spelled out in Running
Assumptions 2.0.3 and 2.0.4), and we work with filtered commutative monoid objects
in C . In the special case where C is the category of symmetric spectra in pointed
simplicial sets, in the sense of Hovey, Shipley, and Smith [26] and Schwede [42], the
commutative monoid objects are equivalent to E1–ring spectra. Our hope is that
our framework is sufficiently general that an interested reader could also apply it to
monoidal model categories of equivariant, motivic, and/or parametrized spectra.

The main difficulty in constructing the spectral sequence (2) at this level of generality
is identifying the E1

�;�–page. We refer to the theorem identifying the E1
�;�–page as

the fundamental theorem of the May filtration, and briefly it can be described in words
using the slogan “higher order Hochschild homology commutes with passage to the
associated graded commutative ring spectrum”. This theorem does not follow easily by
categorical properties, and in fact the bulk of Section 3.3 consists of a proof of this
theorem.
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We observe in Appendix A that with the right adjustments, one can construct a version
of spectral sequence (2) with coefficients in a filtered symmetric A–bimodule M :

(3) E1
�;� ŠE�;�.X�˝ .E�0 A;E�0 M //)E�.X�˝ .A;M //;

and as a special case,

(4) E1
�;� ŠE�;� THH.E�0 A;E�0 M /)E� THH.A;M /:

Some of the most important cases of filtered commutative ring spectra, or filtered
commutative monoid objects in general, are those which arise from Whitehead towers:
given a cofibrant connective commutative monoid in symmetric spectra, we construct a
filtered commutative monoid

(5) AD ��0A ��1A ��2A � � � ;
where each map is a cofibration in C and the induced map �n.��mA/! �n.��m�1A/

is an isomorphism if n�m, and �n.��mA/Š 0 if n<m. While the homotopy type
of ��mA is very easy to construct, it takes us some work to construct a sufficiently rigid
multiplicative model for the Whitehead tower (5); this is the content of Theorem 4.2.1.

If C is the category of symmetric spectra in pointed simplicial sets, then the associated
graded ring spectrum of the Whitehead tower (5) is the generalized Eilenberg–Mac Lane
ring spectrum H��.A/ of the graded ring ��.A/. Consequently we get a spectral
sequence

(6) E1
�;� ŠE�;�.X�˝H��A/)E�.X�˝A/;

and as a special case,

(7) E1
�;� Š THH�;�.H��A/) THH�.A/:

Many explicit computations are possible using spectral sequence (7) and its generaliza-
tions with coefficients in a bimodule (see Appendix A). For example, in [1], the first
author uses these spectral sequences to compute topological Hochschild homology of
the algebraic K–theory spectra of a large class of finite fields.

In the present paper, in lieu of explicit computations using our new spectral sequences,
we point out that the mere existence of these spectral sequences implies an upper
bound on the size of the topological Hochschild homology groups of a ring spectrum:
namely, if R is a graded-commutative ring and X� is a simplicial finite set and E� is a
generalized homology theory, then for any E1–ring spectrum A such that ��.A/ŠR,
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E�.X�˝A/ is a subquotient of E�.X�˝HR/. Here we write HR for the generalized
Eilenberg–Mac Lane spectrum with ��.HR/ŠR as graded rings.

Consequently, in Theorem 5.2.1 we arrive at the slogan “the topological Hochschild
homology of A is bounded above by the topological Hochschild homology of H��.A/”.
This lets us extract information about the topological Hochschild homology of E1–ring
spectra A from information depending only on the ring ��.A/ of homotopy groups
of A. We demonstrate how to apply this idea in Theorem 5.2.6 and its corollaries, by
working out the special case where RDZ.p/Œx� for some prime p , with x in positive
grading degree 2n. We get, for example, that for any p–local finite-type E1–ring
spectrum A such that ��.A/Š Z.p/Œx�, the Poincaré series of the mod p topological
Hochschild homology .S=p/�.THH.A// satisfies the inequality

X

i�0

�
dimFp

.S=p/�.THH.A//
�
t i � .1C .2p� 1/t/.1C .2nC 1/t/

.1� 2nt/.1� 2pt/
;

where we interpret � as in Definition 5.2.2. Furthermore, if p does not divide n, then
THH2i.A/Š 0 for all i congruent to �p modulo n such that i � pn�p � n, and
THH2i.A/ Š 0 for all i congruent to �n modulo p such that i � pn� p � n. In
particular, THH2.pn�p�n/.A/ Š 0. If p divides n, then THHi.A/ Š 0, unless i is
congruent to �1, 0, or 1 modulo 2p .

As a specific example, consider the p–local Adams summand `, which satisfies the
property that p does not divide nD p� 1 for any prime p . The theorem then states
that THH2i.`/Š 0 for all i congruent to �1 modulo p� 1 and all i congruent to 1

modulo p such that i �p2�3pC1, which agrees with the computation of THH�. ỳp/
in these degrees due to Angeltveit, Hill, and Lawson [4, Theorem 2.6].

In Section 4.1, we further the development of filtered objects in a model category
satisfying Running Assumptions 2.0.3 and 2.0.4 along with Running Assumption 4.1.2.
This theory is used to construct multiplicative Whitehead towers as cofibrant decreas-
ingly filtered commutative monoids in symmetric spectra in pointed simplicial sets
(Theorem 4.2.1). In Appendix B, we discuss the Bousfield–Kan spectral sequence
(Theorem B.1.4) in order to address a technical lemma (Lemma B.2.3) needed to
construct the multiplicative Whitehead tower.

There is some precedent for spectral sequence (1): when A is a filtered commutative
ring (rather than a filtered commutative ring spectrum), M Brun constructed a spectral
sequence of the form (1) in the paper [11]. In [12], Brun also studies THH of filtered ring
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spectra, but using the technology of FSPs rather than our general approach, and stops
short of producing the THH–May spectral sequence or the multiplicative Whitehead
filtration. In Theorem 2.9 of the preprint [3], V Angeltveit remarks that a version
of spectral sequence (1) exists for commutative ring spectra by virtue of a lemma
in [11] on associated graded FSPs of filtered FSPs; filling in the details to make this
spectral sequence have the correct E1–term, E1–term, convergence properties, and
multiplicativity properties takes a lot of work, and even aside from the substantially
greater level of generality of the results in the present paper (allowing X�˝A and
not just S1˝A, working with commutative monoids in symmetric monoidal model
categories rather than any particular model for ring spectra, working with coefficient
bimodules as in Appendix A), we think it is valuable to add these very nontrivial details
to the literature.

Acknowledgements We are grateful to C Ogle and Ohio State University for their
hospitality in hosting us during a visit to talk about this project and A Blumberg for a
timely and useful observation. We are indebted to A Lindenstrauss and B Richter for
their careful reading and insightful questions which led to improvements in this paper.
We also thank J Greenlees for his editorial help, and J Rognes as well as the anonymous
referee for their careful reading and very perceptive observations and suggestions
which helped us to improve this paper. We also thank the anonymous referee for their
generosity and patience in reviewing such a long paper. Angelini-Knoll would like to
thank A Lindenstrauss, T Gerhardt, and C Malkiewich for helpful conversations on the
material in this paper.

2 Conventions and running assumptions

Conventions 2.0.1 By convention, the “cofiber of f W X ! Y ” will mean that f is a
cofibration and we are forming the pushout Y qX 0 in the given pointed model category.
Also, by convention, we will write Y=X as shorthand for the cofiber of f W X ! Y .

Conventions 2.0.2 By convention, given a coproduct
`

i2I Xi of objects Xi in a
cocomplete category A, we will refer to the map Xj ,!

`
i2I Xi for j 2 I , given by

definition of the coproduct, as the inclusion map. When A is a subcategory of B , we
will also refer to the evident functor A ,!B as an inclusion. Since one use of inclusion
refers to map between objects in a category A and the second use of inclusion refers
to a functor between categories, no confusion should arise.
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We will write Comm.C/ for the category of commutative monoid objects in a symmetric
monoidal category C , we will write sC for the category of simplicial objects in C ,
and we will write ^ for the symmetric monoidal product in a symmetric monoidal
category C , since the main example we have in mind is the category of symmetric
spectra, in which the symmetric monoidal product is the smash product. We will
write S1

�
throughout for the minimal simplicial model for the circle �Œ1�=ı�Œ1�, which

is important for defining topological Hochschild homology.

Running Assumption 2.0.3 Throughout, let C be a left proper stable model category
equipped with the structure of a symmetric monoidal model category in the sense
of [43], satisfying the following axioms: A model structure (necessarily unique)
on Comm.C/ exists in which weak equivalences and fibrations are created by the
forgetful functor Comm.C/! C . The forgetful functor Comm.C/! C commutes
with geometric realization of simplicial objects and sends cofibrant objects to cofibrant
objects. Geometric realization of simplicial cofibrant objects in C commutes with
the monoidal product; ie if X� and Y� are simplicial cofibrant objects of C , then the
canonical comparison map

jX� ^Y�j ! jX�j ^ jY�j
is a weak equivalence in C . We will say a class of morphisms M in C is called
retractile if whenever a composite A

f!B
g!C is in M then A

f!B is in M. We
additionally assume that C comes equipped with a class of morphisms, which we will
refer to as levelwise cofibrations, which are closed under composition, and such that
the cofibrations in C are contained in the class of levelwise cofibrations, and such that
the class of levelwise cofibrations is retractile. We also assume that if X is a cofibrant
object in C and f is a levelwise cofibration in C , then X ^f is a levelwise cofibration
in C .

Here are a few immediate consequences of these assumptions about C : Since being
cofibrantly generated is part of the definition of a monoidal model category in [43], C is
cofibrantly generated and hence can be equipped with functorial factorization systems.
We assume that a choice of functorial factorization has been made and we will use
it implicitly whenever a cofibration-acyclic-fibration or acyclic-cofibration-fibration
factorization is necessary. Smashing with any given object is a left adjoint, hence
preserves colimits. Smashing with any given cofibrant object is a left Quillen functor,
hence preserves cofibrations and acyclic cofibrations, and by Ken Brown’s lemma,
preserves weak equivalences between cofibrant objects.
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Since C is assumed left proper, a homotopy cofiber of any map f W X ! Y between
cofibrant objects in C can be computed by factoring f as f Df2ıf1 with f1W X! zY
a cofibration and f2W zY ! Y an acyclic fibration, and then taking the pushout of the
following diagram:

X
f1
//

��

zY

0

In particular, if f is already a cofibration, the pushout map Y !Y qX 0 is a homotopy
cofiber of f .

The added assumption that C comes equipped with a retractile class of morphisms
called the levelwise cofibrations was necessary to resolve a technical issue pointed
out to the authors by Birgit Richter and Ayelet Lindenstrauss. We recognize that it
complicates the running assumptions, however it is satisfied in the main example of
interest (as discussed below) and provides the THH–May spectral sequence with some
desired properties. The levelwise cofibrations are used only in two places in the paper,
in Observation 3.2.2 and in Remark 4.2.2.

Running Assumption 2.0.4 In addition to Running Assumption 2.0.3, we assume
our model category C satisfies the following condition: a map X�! Y� in the category
of simplicial objects in C is a Reedy cofibration between Reedy-cofibrant objects
whenever the following all hold:

(1) The object Xn in C is cofibrant for each n.

(2) Each of the degeneracy maps si W Xn!XnC1 and si W Yn! YnC1 is a levelwise
cofibration in C .

(3) Each induced map Xn! Yn is a cofibration in C .

A consequence of this assumption is that the geometric realization of a map of simplicial
objects in C satisfying items (1), (2), and (3) is a cofibration.

The main motivating example of a category C satisfying Running Assumption 2.0.3 is
the category of symmetric spectra in pointed simplicial sets sSet� , denoted by SpsSet� ,
equipped with the positive flat stable model structure. In this case, Comm.C/ is then
the category of commutative ring spectra and it is known to be equivalent to the
category of E1–ring spectra; see [44, Corollary 4.8]. The existence of the desired
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model structure on Comm.C/ is proven in [43, Theorem 4.1]. The fact that the
forgetful functor Comm.C/! C commutes with geometric realization in the positive
flat stable model structure on C is a consequence of [23, Theorem 1.6]. The fact that
there exists a model structure on Comm.C/ created by the forgetful functor and that
the forgetful functor preserves cofibrations with cofibrant source is a consequence
of [44, Theorem 5.7]. The category SpsSet� with the positive flat stable model structure
satisfies Running Assumption 2.0.4, as the authors prove in [2]. To see that the levelwise
cofibrations in symmetric spectra of pointed simplicial sets are retractile, note that the
levelwise cofibrations are simply the levelwise cofibrations of pointed simplicial sets,
hence levelwise monomorphisms of pointed simplicial sets, and monomorphisms are
retractile in any category. If f W A! B is a flat cofibration in symmetric spectra then
the pushout product f �� preserves levelwise cofibrations, so in particular all flat
cofibrations are levelwise cofibrations and for any flat cofibrant object X , the functor
X ^� preserves levelwise cofibrations (by [42, Proposition 2.8], for example).

3 Construction of the spectral sequence

3.1 Filtered commutative monoids and associated graded commutative
monoids

Definition 3.1.1 By a cofibrant decreasingly filtered object in C we mean a sequence
of cofibrations in C

� � � f3�! I2
f2�! I1

f1�! I0

such that each object Ii is cofibrant.

Definition 3.1.2 By a cofibrant decreasingly filtered commutative monoid in C we
mean a cofibrant decreasingly filtered object � � � f3�! I2

f2�! I1
f1�! I0 in C , and for

every pair of natural numbers i; j 2N , a map in C

�i;j W Ii ^ Ij ! IiCj ;

and a map �W 1! I0 , satisfying the axioms listed below. For the sake of listing the
axioms concisely, it will be useful to have the following notation: if i 0 � i , we will
write f i0

i W Ii! Ii0 for the composite

(8) f i0

i D fi0C1 ıfi0C2 ı � � � ıfi�1 ıfi :

Here are the axioms we require:
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Compatibility For all i; j ; i 0; j 0 2N with i 0 � i and j 0 � j , the following diagram
commutes:

Ii ^ Ij

f i0

i
^f

j 0

j
��

�i;j
// IiCj

f
i0Cj 0

iCj
��

Ii0 ^ Ij 0
�i0;j 0

// Ii0Cj 0

Commutativity For all i; j 2N , the diagram

Ii ^ Ij

�Ii ;Ij

��

�i;j

##

Ij ^ Ii �j ;i
// IiCj

commutes, where �Ii ;Ij W Ii ^ Ij
Š�! Ij ^ Ii is the symmetry isomorphism in C .

Associativity For all i; j ; k 2N , the following diagram commutes:

Ii ^ Ij ^ Ik

idIi
^�j ;k

//

�i;j^idIk

��

Ii ^ IjCk

�i;jCk

��

IiCj ^ Ik �iCj ;k

// IiCjCk

Unitality For all i 2N , the diagram

1^ Ii

Š

""

�^idIi

��

I0 ^ Ii �0;i

// Ii

commutes, where the map marked Š is the (left-)unitality isomorphism in C .

Cofibrancy in degree 0 The commutative monoid I0 is cofibrant in Comm.C/.

Cofibrancy of degree-0 quotient The composite map S!I0!I0=I1 is a levelwise
cofibration in C .

Note that in the last condition we do not require that I0=I1 be cofibrant in Comm.C/,
but only that the map S ! I0! I0=I1 be a levelwise cofibration in C . We hope that
Observation 3.2.2 and Remark 3.2.3 will be helpful to the reader who is wondering
about the role of this “cofibrancy of degree-0 quotient” condition.
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Remark 3.1.3 If I� is a cofibrant decreasingly filtered commutative monoid in C , then
I0 is a cofibrant commutative monoid in C , with multiplication map �0;0W I0^I0! I0

and unit map �W 1 ! I0 . The objects Ii for i > 0 do not receive commutative
monoid structures from the structure of I� , but instead play a role analogous to that
of the nested sequence of powers of an ideal in a commutative ring. If we neglect the
commutativity axiom from Definition 3.1.2, then the special case � � � id�!I id�!I !R

of Definition 3.1.2 recovers the definition of a Smith ideal. Leaving the commutativity
axiom in Definition 3.1.2 intact, we recover the notion of a commutative Smith ideal,
as studied in [44].

Definition 3.1.4 Suppose I� is a cofibrant decreasingly filtered commutative monoid
in C . We shall say that I� is Hausdorff if holimn In' 0. We shall say that I� is finite if
there exists some n2N such that fmW Im! Im�1 is a weak equivalence for all m> n.

Remark 3.1.5 Definition 3.1.2 has the advantage of concreteness, but if we are willing
to temporarily neglect the cofibrancy assumption in Definition 3.1.2, then there is an
equivalent, more concise definition of a decreasingly filtered commutative monoid.
Observe that the data of a decreasingly filtered commutative monoid is the same as
the data of a lax symmetric monoidal functor I�W Nop! C , where Nop is the opposite
category of N , viewed as a partially ordered set, and equipped with a symmetric
monoidal structure with addition as the symmetric monoidal product and 0 as the unit.

Recall that due to Day [14], the full subcategory of lax symmetric monoidal functors
in CNop

is equivalent to the category Comm CNop
of commutative monoid objects in

the symmetric monoidal category .CNop
;˝Day; 1Day/, where ˝Day is the (unenriched)

Day convolution symmetric monoidal product and 1Day is the unit of this symmetric
monoidal product (see Day [14] for these constructions). In sum, specifying the data
of a decreasingly filtered commutative monoid, without the cofibrancy condition, is the
same as specifying an object in Comm CNop

.

Remark 3.1.5 does not address the cofibrancy conditions needed for an object in the
category Comm CNop

to be a cofibrant decreasingly filtered commutative monoid in C
in the sense of Definition 3.1.1. We will discuss this in detail in Section 4.1.

Definition 3.1.6 (the associated graded monoid) Let I� be a cofibrant decreasingly
filtered commutative monoid in C . By E�

0
I� , the associated graded commutative

monoid of I� , we mean the graded commutative monoid object in C defined as follows:
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As an object of C ,
E�0 I� D

a

n2N

In=InC1:

The unit map 1!E�
0
I� is the composite 1 ��! I0! I0=I1 ,!E�

0
I� .

The multiplication on E�
0
I� is given as follows. Since the smash product commutes

with colimits, hence with coproducts, to specify a map E�
0
I�^E�

0
I�!E�

0
I� it suffices

to specify a component map

ri;j W Ii=IiC1 ^ Ij=IjC1!E�0 I�

for every i; j 2N . We define such a map ri;j as follows: first, we have the commutative
square

IiC1 ^ Ij

�iC1;j
//

fiC1^idIj

��

IiCjC1

fiCjC1

��

Ii ^ Ij

�i;j
// IiCj

so, since the vertical maps are cofibrations by Definition 3.1.2, we can take vertical
cofibers to get a map

zri;j W Ii=IiC1 ^ Ij ! IiCj=IiCjC1;

which is well defined by Running Assumption 2.0.3.

Now we have the commutative diagram in Figure 1 in which the columns are cofiber
sequences. So we have a factorization of the composite map zri;j ı .idIi=IiC1

^fjC1/

through the zero object, by Running Assumption 2.0.3. Thus, we have the commutative
square

Ii=IiC1 ^ IjC1

idIi=IiC1
^fjC1

��

// 0

��

Ii=IiC1 ^ Ij

zri;j
// IiCj=IiCjC1

and, taking vertical cofibers, a map

Ii=IiC1 ^ Ij=IjC1! IiCj=IiCjC1;

which we compose with the inclusion map IiCj=IiCjC1 ,! E�
0
I� to produce our

desired map ri;j W Ii=IiC1 ^ Ij=IjC1!E�
0
I� . (Note that all these maps are defined

in the model category C , not just in Ho(C ).)
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IiC1 ^ IjC1
idIiC1

^fjC1

((

fiC1^idIjC1

��

�iC1;jC1
// IiCjC2

fiCjC2

((

fiCjC2

��

IiC1 ^ Ij

fiC1^idIj

��

�iC1;j
// IiCjC1

fiCjC1

��

Ii ^ IjC1
idIi
^fjC1

((

�i;jC1
//

��

IiCjC1

fiCjC1

((

��

Ii ^ Ij

�i;j
//

��

IiCj

��

Ii=IiC1 ^ IjC1

idIi=IiC1
^fjC1 ((

zri;jC1
// IiCjC1=IiCjC2

0

((

Ii=IiC1 ^ Ij

zri;j
// IiCj=IiCjC1

Figure 1

This produces a multiplication map E�
0
I� ^E�

0
I� ! E�

0
I� that, together with the

unit map 1!E�
0
I� , satisfies the necessary commutativity, associativity, and unitality

conditions to make E�
0
I� a commutative monoid object in C , by construction.

3.2 Tensoring and pretensoring over simplicial sets

We will write f Sets for the category of finite sets. First we introduce the pretensor
product, which is merely a convenient notation for the well-known “Loday construction”
of [29]:

Definition 3.2.1 We define a functor

� z̋ �W sf Sets�Comm C! s Comm C;

which we call the pretensor product, as follows. If X� is a simplicial finite set and A a
commutative monoid in C , the simplicial commutative monoid X� z̋ A is given by:

For all n 2N , the n–simplex object .X� z̋ A/n D
`

x2Xn
A is a coproduct, taken in

Comm.C/, of copies of A, with one copy for each n–simplex x 2Xn . Recall that the
categorical coproduct in Comm.C/ is the smash product ^.
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For all positive n 2N and all 0� i � n, the i th face map

di W .X� z̋ A/n! .X� z̋ A/n�1

is given on the component corresponding to an n–simplex x 2Xn by the map

A!
a

y2Xn�1

A

which is inclusion of the coproduct factor corresponding to the .n�1/–simplex ıi.x/.

For all positive n 2N and all 0� i � n, the i th degeneracy map

si W .X� z̋ A/n! .X� z̋ A/nC1

is given on the component corresponding to an n–simplex x 2Xn by the map

A!
a

y2XnC1

A

which is inclusion of the coproduct factor corresponding to the .nC1/–simplex �i.x/.

We have defined the pretensor product on objects; it is then defined on morphisms in
the evident way.

We define the tensor product

�˝�W sf Sets�Comm C! Comm C

as the geometric realization of the pretensor product:

X�˝AD jX� z̋ Aj:

It is easy to check that X� z̋ A is indeed a simplicial object in Comm.C/.

When C is the category of symmetric spectra, the tensor product X�˝A agrees with
the tensoring of commutative ring spectra over simplicial sets. (This is proven in [35],
although using (an early incarnation of) S–modules [20], rather than symmetric spectra;
the symmetric monoidal Quillen equivalence of S–modules and symmetric spectra, as
in [41], then gives us the same result in symmetric spectra.) The same is true when E

is a commutative S–algebra and C is the category of E–modules. In fact, the tensor
product defined in Definition 3.2.1 agrees with the tensoring over simplicial sets in
every case of a symmetric monoidal model category whose category of commutative
monoids is tensored over simplicial sets that is known to the authors.
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In particular, if X� is the minimal simplicial model for the circle S1
�

, then S1
�
z̋ A

is the cyclic bar construction on A, and hence (by the main result of [35]) S1
�
˝A

agrees with the topological Hochschild homology ring spectrum THH.A;A/.

For other simplicial sets, X� ˝ A is regarded as a generalization of topological
Hochschild homology, eg as “higher order Hochschild homology” in [37].

Observation 3.2.2 Suppose that I� is a cofibrant decreasingly filtered commutative
monoid, in the sense of Definition 3.1.2, and suppose X� is a simplicial finite set. The
assumptions made in Definition 3.1.2, particularly the “cofibrancy of degree-0 quotient”
assumption, together with Running Assumption 2.0.4, ensure that X� z̋ E�

0
I� is Reedy-

cofibrant as a simplicial object of C (but not as a simplicial object of Comm.C/). The
argument is as follows: Each InC1! In is a cofibration in C , so the pushout map
0 ! In=InC1 is a cofibration, so each In=InC1 is cofibrant. So Xm z̋ E�

0
I� is a

coproduct of cofibrant objects for each m, hence Xm z̋ E�
0
I� is cofibrant for each m.

So, if we know that each degeneracy map in X� z̋ E�
0
I� is a levelwise cofibration

(in the sense of Running Assumption 2.0.3), then X� z̋ E�
0
I� is Reedy-cofibrant

in C�op
by Running Assumption 2.0.4. The degeneracy maps in X� z̋ E�

0
I� are smash

products of coproducts of copies of the map 0! In=InC1 for n> 0 and copies of the
composite map S ! I0! I0=I1 , so the “cofibrancy of degree-0 quotient” condition
from Definition 3.1.2 is exactly what is necessary to ensure that the degeneracy maps
are levelwise cofibrations and hence that X� z̋ E�

0
I� is Reedy-cofibrant in C�op

.

Remark 3.2.3 Because of Observation 3.2.2, we claim that when I� is a cofibrant
decreasingly filtered commutative monoid, the spectral sequence of Definition 3.4.2 that
we will construct using the pretensor product has good homotopical properties, even
though the assumptions in Definition 3.1.2 are not enough to guarantee that E�

0
I� is

cofibrant in Comm.C/. For the sake of the spectral sequence of Definition 3.4.2 (ie the
central motivating construction in this paper), it is enough to know that X�˝E�

0
I�

has the correct homotopy type, ie that generalized homologies of X� ˝ E�
0
I� are

computable from those of ��.E�0 I�/ by the usual methods (eg the Bökstedt spectral
sequence) one uses in order to compute THH or its higher-order variants.

For that purpose, it is enough to know that X� z̋ A is Reedy-cofibrant as a simplicial
object of C , not necessarily as a simplicial object of Comm.C/. This is because Reedy-
cofibrancy of X� z̋ A as a simplicial object of C is enough to give us a Bousfield–
Kan-type spectral sequence with E2–term the homology of the alternating sign chain
complex obtained by applying a generalized homology theory E� to X� z̋ A, and
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which converges to E�jX� z̋ Aj D E�.X�˝A/ (the Bökstedt spectral sequence is
the special case E DH Fp ); and it is enough to tell us that the geometric realization
jX� z̋ Aj DX�˝A is a model for the homotopy colimit of the functor �op! C given
by X� z̋ A. See [10, Chapter XII] for a classical account of these ideas; we also provide
some details and discussion in the present paper in Theorem B.1.5.

More is true, however: Suppose that I� is a cofibrant decreasingly filtered commutative
monoid, and suppose that we are not satisfied by E�

0
I� ’s lack of cofibrancy in Comm.C/.

Let cE�
0
I� be a cofibrant commutative monoid in C and let cE�

0
I�!E�

0
I� be a weak

equivalence in Comm.C/. Then

(9) X� z̋ cE�0 I�!X� z̋ E�0 I�

is a Reedy weak equivalence (in Comm.C/�op
as well as in C�op

) whose domain and
codomain are both Reedy-cofibrant in C�op

, so (9) induces a weak equivalence (in C )
on geometric realizations, by the famous Theorem D in Reedy’s thesis [39]. So, as
long as I� is a cofibrant decreasingly filtered commutative monoid, the homotopy type
of X�˝E�

0
I� in C is not affected by the failure of E�

0
I� to be cofibrant in Comm.C/.

3.3 The fundamental theorem of the May filtration

The fundamental theorem of the May filtration relies on the following lemma.

Lemma 3.3.1 Suppose I and J are objects of C and f W I 0! I and gW J 0! J are
cofibrations. Suppose I , J , I 0 , and J 0 are cofibrant. Let P D .I^J 0/qI 0^J 0 .I

0^J /

denote the pushout (which, by Running Assumption 2.0.3, is a homotopy pushout). Let
f � gW P ! I ^ J denote the canonical map given by the universal property of the
pushout, known as the pushout product. Then f � g is a cofibration by the pushout
product axiom in the definition of a monoidal model category, as in [43], and the cofiber
of f � g is isomorphic to .I=I 0/^ .J=J 0/. So the following sequence is a cofiber
sequence:

(10) P
f�! I ^J ! .I=I 0/^ .J=J 0/:

Proof This lemma occurs as Lemma 4.7 in May [34] and its proof is easily generalized
to a general model category C satisfying Running Assumption 2.0.3.

We now define some categories and functors that will be important for Definition 3.3.2.
If S is a finite set, we will equip the set NS of functions from S to N with the
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L1–norm, that is, jxj DPs2S x.s/, and with the strict direct product order, that is,
x� y in NS if and only if x.s/� y.s/ for all s 2S . If T

f�!S is a function between
finite sets, let NT Nf�!NS be the function of partially ordered sets defined by

.Nf .x//.s/D
X

ft2T Wf .t/Dsg

x.t/:

If S is a finite set, for each n 2N we will let DS
n be the subposet of NS consisting

of all functions x 2 NS such that jxj � n. If T
f�! S is a function between finite

sets, let DT
n

Dfn�!DS
n be the function of partially ordered sets defined by restricting Nf

to DT
n .

For each x 2NS and each n 2N , let DS
nIx denote the following subposet of NS :

(11) DS
nIx D fy 2NS W y � x and jyj � nCjxjg:

So, for example, DS
nIE0 D DS

n , where E0 is the constant zero function. If T
f�!S is a

function between finite sets and x 2NT and n 2N , let DT
nIx

DfnIx���!DS
nIDfn.x/ be the

function of partially ordered sets defined by restricting Nf to DT
nIx .

Let S be a finite set and let n be a nonnegative integer. We write ES
n;k

for the set

(12) ES
n;k D fx 2 f0; 1; : : : ; ngS W jxj � kg:

When nD k , we simply write ES
n for this partially ordered set. The definition of ES

n

is natural in S in the following sense: if T
f�! S is a injective map of finite sets,

then Nf naturally restricts to a function ET
n ! ES

n .

Definition 3.3.2 Suppose I� is a cofibrant decreasingly filtered object in C and sup-
pose S is a finite set. We will let FS .I�/W .NS /op! C be the functor sending x to
the smash product

V
s2SIx.s/ , and defined on morphisms in the apparent way, and we

will let FS
n .I�/W .DS

n /
op ,! .NS /op FS .I�/����! C be the functor which is the composite

of FS .I�/ with the inclusion of .DS
n /

op into .NS /op as a subcategory.

If x 2 DS
n , we will write FS

nIx.I�/ for the restriction of the diagram FS .I�/ to DS
nIx ,

that is, FS
nIx.I�/ is the composite FS

nIx.I�/W .DS
nIx/

op ,! .NS /op FS .I�/����! C . Finally,
let MS

n .I�/ denote the colimit given by MS
n .I�/D colim.FS

n .I�// in C . By the natural
inclusion of DS

n into DS
n�1

as a subcategory, we now have a sequence in C :

(13) � � � !MS
3 .I�/!MS

2 .I�/!MS
1 .I�/!MS

0 .I�/Š
V

s2SI0:

We refer to the functor Nop! C given by sending n to MS
n .I�/ as the May filtration

on
V

s2SI0 .
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The May filtration is functorial in S in the following sense: if T
f�!S is a map of

finite sets, we have a functor Dfn W DT
n ! DS

n given by

.Dfn .x//.s/ 7!
X

ft2T Wf .t/Dsg

x.t/

and a map of diagrams from FT
n .I�/ to FS

n .I�/ given by sending the object FT
n .I�/.x/DV

t2T Ix.t/ to the object FS
n .I�/.D

f
n .x//D

V
s2SI†ft2T Wf .t/Dsgx.t/ by the map

V
t2T Ix.t/!

V
s2SI†ft2T Wf .t/Dsgx.t/

given as the smash product, across all s 2 S , of the maps
V
ft2T Wf .t/DsgIx.t/! I†ft2T Wf .t/Dsgx.t/

given by multiplication via the maps � of Definition 3.1.2.

To really make Definition 3.3.2 precise, we should say in which order we multiply the
factors Ix.t/ using the maps � ; but the purpose of the associativity and commutativity
axioms in Definition 3.1.2 is that any two such choices commute, so any choice of
order of multiplication will do.

Definition 3.3.3 (the May filtration) If I� is a cofibrant decreasingly filtered com-
mutative monoid in C and X� a simplicial finite set, by the May filtration on X� z̋ I0

we mean the functor MX�.I�/W Nop! C�op
given by sending a natural number n to

the simplicial object MX�
n .I�/ of C , with MXi

n .I�/ defined as in Definition 3.3.2, and
with face and degeneracy maps defined as follows: The face map di WMXj

n .I�/!
MXj�1

n .I�/ is the colimit of the map of diagrams FXj
n .I�/! FXj�1

n .I�/ induced,
as in Definition 3.3.2, by ıi W Xj ! Xj�1 . The degeneracy map si WMXj

n .I�/ !
MXjC1

n .I�/ is the colimit of the map of diagrams FXj
n .I�/! FXjC1

n .I�/ induced, as
in Definition 3.3.2, by �i W Xj !XjC1 .

Remark 3.3.4 The associative, commutative, and unital multiplications on the objects
Ii , via the maps � of Definition 3.1.2, also yield (by taking smash products of the
maps �) associative, commutative, and unital multiplication natural transformations

(14) FS
m.I�/^FS

n .I�/! FS
mCn.I�/;

hence, on taking colimits, associative, commutative, and unital multiplication maps

MS
m.I�/^MS

n .I�/!MS
mCn.I�/;
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ie the functor Nop! C sending n to MS
n .I�/ is a cofibrant decreasingly filtered com-

mutative monoid, in the sense of Definition 3.1.2. Note furthermore that if f W T ! S

is a map of finite sets, then the induced maps FT
m.I�/! FS

m.I�/ commute with the
multiplication maps (14), and so MT

�
.I�/!MS

�
.I�/ is a map of cofibrant decreasingly

filtered commutative monoids.

Consequently, for any simplicial finite set X� , we have that MX�
�
.I�/ is a simpli-

cial object in the category of cofibrant decreasingly filtered commutative monoids
in C . Since geometric realization commutes with the monoidal product in C by
our running assumptions on C , this in turn implies that the geometric realization
jMX�
�
.I�/j of MX�

�
.I�/ is a cofibrant decreasingly filtered commutative monoid in C

by Running Assumption 2.0.4. It can easily be shown that MX�
n .I�/ satisfies item (2)

in Running Assumption 2.0.4 for each n since I0 is assumed cofibrant as an object in C .
Items (1) and (3) of Running Assumption 2.0.4 are satisfied by definition of MX�

n .I�/

and by definition of the maps MX�
n .I�/!MX�

n�1
.I�/: Therefore, the commutative

monoid jMX�
�
.I�/j in CNop

is a cofibrant decreasingly filtered commutative monoid
in C . (We remind the reader that, by the main theorem of the authors’ paper [2], an
example of a setting in which Running Assumption 2.0.4 holds is the category of
symmetric spectra equipped with the positive flat stable model structure.)

Definition 3.3.5 Suppose n2N . Let �W DS
nC1

,!DS
n be the canonical inclusion of cat-

egories. We will write zFS
nC1.I�/ for the left Kan extension of FS

nC1
.I�/W .DS

nC1
/op!C

along �op ; ie if we write KanW C.DS
nC1

/op ! C.DS
n /

op
for the left adjoint of the func-

tor C.DS
n /

op ! C.D
S
nC1

/op
induced by �, then zFS

nC1.I�/D Kan.FS
nC1

.I�//. We have a
canonical map cW zFS

nC1.I�/! FS
n .I�/, by the universal property of this Kan extension.

Remark 3.3.6 It is a elementary exercise in combinatorics to show that there are�
nC#.S/

n

�
elements in the set fx 2NS W jxj D ng, where #.S/ is the cardinality of S .

This set indexes a coproduct in the following lemma.

Lemma 3.3.7 Let I� be a cofibrant decreasingly filtered object in C and let S be a fi-
nite set. Then the cofiber of the map (see Definition 3.3.5 for the definition of the map c)

colim. zFS
nC1.I�//

colim c���! colim.FS
n .I�//;

computed in C , is isomorphic to the coproduct in C
a

fx2NS WjxjDng

��V
s2SIx.s/

�
=.colimFS

1Ix.I�//
�
:

This isomorphism is natural in the variable S .
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Proof One knows that the left Kan extension of FS
nC1

.I�/ agrees with FS
nC1

.I�/ wher-
ever both are defined: Given x 2DS

nC1
, the pointwise formula for a Kan extension gives

us that zFS
nC1.I�/.x/ is the colimit, over all y!x in DS

nC1
, of FS

nC1
.I�/.y/. Since the

identity map on x is already in DS
nC1

, we get that zFS
nC1.I�/.x/ŠFS

nC1
.I�/.x/. Hence

zFS
nC1.I�/.x/Š FS

nC1.I�/.x/D
V

s2SIx.s/

for all x 2DS
nC1
�DS

n . The elements of DS
n which are not in DS

nC1
are those x such

that jxj D n, and by the pointwise formula for a Kan extension (see eg [31]) one knows
that, for all x such that jxj D n, we have an isomorphism of zFS

nC1.I�/.x/ with the
colimit of the values of FS

nC1
.I�/ over those elements of .DS

nC1
/op which map to x ,

ie colim.FS
1;x
.I�//, the colimit of the values of FS

nC1
.I�/ over .DS

1;x
/op � .DS

nC1
/op .

For each x 2DS
n , the map c.x/ can be shown to be a cofibration by iterated use of the

pushout product axiom, so the cofiber of c.x/ is a homotopy cofiber. By the previous
paragraph the levelwise cofiber cof cW .DS

n /
op! C of the natural transformation c is

given as follows:

.cof c/.x/Š
�

0 if jxj> n;

.FS
n .I�//=.colim.FS

1;x
.I�/// if jxj D n:

Hence, on taking colimits, we have

cof colim c Š colim cof c D
a

fx2NS WjxjDng

��V
s2SIx.s/

�
=.colimFS

1Ix.I�//
�
;

as claimed.

Lemma 3.3.8 Suppose S is a finite set and suppose Zs;1 ! Zs;0 is a cofibration
for each s 2 S . Suppose the objects Zs;1 and Zs;0 are cofibrant for every s . Let
GS W .ES

1
/op! C be the functor given on objects by GS .x/D

V
s2SZs;x.s/ , and given

on morphisms in the obvious way.

Then the smash product
V

s2SZs;0 !
V

s2S .Zs;0=Zs;1/ of the cofiber projections
Zs;0!Zs;0=Zs;1 fits into a cofiber sequence:

colimGS !
V

s2SZs;0!
V

s2S .Zs;0=Zs;1/:

Proof If the cardinality of S is one, the statement of the lemma is true by the definition
of a cofiber.

The case in which the cardinality of S is two is precisely Lemma 3.3.1, already proven.
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For the case in which the cardinality of S is greater than two, we introduce a notation
we will need to use: let PO denote the category indexing pushout diagrams, ie

(15) POD

0
BBB@

Œ10�

~~   

Œ1� Œ0�

1
CCCA ;

the symbols Œ10�, Œ1�, and Œ0� each representing an object, and the arrows each repre-
senting a morphism. We observe that PO and ES

1
are not arbitrary small categories

but are in fact partially ordered sets; this simplifies some of the arguments we will give
in the rest of the proof.

Suppose that the cardinality of S is greater than two. Choose an element s0 2 S . We
will write S 0 for the complement S 0 D fs 2 S W s ¤ s0g of s0 in S . Define objects
X 0

1
, X 0

2
, Y 0

1
, and Y 0

2
in C as follows: Y 0

1
D colimGS 0 , X 0

1
DV

s2S 0Zs;0 , Y 0
2
DZs0;1 ,

and X 0
2
D Zs0;0 . Now we apply the statement of the lemma in the (already proven,

above) case S D f1; 2g, using X 0
1

, X 0
2

, Y 0
1

, and Y 0
2

in place of Z1;0 , Z2;0 , Z1;1 ,
and Z2;1 , to obtain a cofiber sequence

(16) colimB! V
s2SZs;0!

V
s2S .Zs;0=Zs;1/;

where B is the functor PO! C given by

B.Œ10�/D .colimGS 0/^Zs0;1;

B.Œ1�/D �Vs2S 0Zs0;0

�^Zs0;1;

B.Œ0�/D .colimGS 0/^Zs0;0:

By Lemma 3.3.1, we know that the map colimGS 0 !
V

s2S 0Zs;0 is a cofibration in
the case S D f1; 2g. Since colimB is constructed as a pushout, the pushout product
axiom ensures that the map colimB ! V

s2SZs;0 is also a cofibration as long as
colimGS 0 !

V
s2S 0Zs;0 is a cofibration. It suffices to show that colimB Š colimGS .

This will show that the map colimGS !
V

s2SZs;0 is a cofibration and allow us to
identify the cofiber, thus completing the induction on the cardinality of the set S . We
can reindex, to describe colimB as the colimit of a larger diagram HW .ES 0

1
/op�PO!C

given by
.x; Œ10�/ 7! �V

s2S 0Zs;x.s/

�^Zs0;1;

.x; Œ1�/ 7! �V
s2S 0Zs;0

�^Zs0;1;

.x; Œ0�/ 7! �V
s2S 0Zs;x.s/

�^Zs0;0:
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We have a functor P W .ES 0

1
/op �PO! .ES

1
/op given by

.x; Œ10�/.s/D
�

x.s/ if s ¤ s0;

1 if s D s0;

.x; Œ1�/.s/D
�

0 if s ¤ s0;

1 if s D s0;

.x; Œ0�/.s/D
�

x.s/ if s ¤ s0;

0 if s D s0:

Now we claim that the canonical map colimH! colimGS given by P is an isomor-
phism in C . We define a functor I W .ES

1
/op! .ES 0

1
/op �PO by

x 7!
�
.I 0.x/; Œ10�/ if x.s0/D 1;

.I 0.x/; Œ0�/ if x.s0/D 0;

where I 0W .ES
1
/op ! .ES 0

1
/op is the functor given by restriction, ie I 0.x/.s/ D x.s/

for s 2 S 0 . Now we observe some convenient identities:

.GS ıP /.x; j /D

8
<̂

:̂

�V
s2S 0Zs;x.s/

�^Zs0;1 if j D Œ10�;�V
s2S 0Zs;x.s/

�^Zs0;0 if j D Œ0�;�V
s2S 0Zs;0

�^Zs0;1 if j D Œ1�
DH.x; j /;

.H ı I/.x/D
(�V

s2S 0Zs;x.s/

�^Zs0;1 if xs0
D 1;�V

s2S 0Zs;x.s/

�^Zs0;0 if xs0
D 0

D GS .x/:

We conclude that P and I give mutually inverse maps between colimGS and colimH ,
ie colimGS Š colimH , and hence colimGS Š colimB , as desired. So from cofiber
sequence (16), we have a cofiber sequence

colimGS !
V

s2SZs;0!
V

s2S .Zs;0=Zs;1/;

as desired.

From inspection of the colimit diagrams one sees that the cofiber sequence (16) does
not depend on the choice of s0 2 S , and naturality in S follows.

Lemma 3.3.9 Let S be a finite set, let n be a positive integer, and let x 2NS . Let
ES

n and DS
nIx be the partially ordered sets defined in equations (11) and (12). Let

J S
nIx W ES

n ! DS
nIx be the functor (ie morphism of partially ordered sets) defined by

.JnIx.y//.s/D x.s/Cy.s/:
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Then JnIx has a right adjoint. Consequently JnIx is a cofinal functor; ie for any
functor F defined on DS

nIx such that the limit lim F exists, the limit lim.F ı J S
nIx/

also exists, and the canonical map lim.F ıJ S
nIx/! lim F is an isomorphism.

Proof We construct the right adjoint explicitly. Let KS
nIx W DS

nIx! ES
n be the functor

defined by
.KS

nIx.y//.s/Dminfn;y.s/�x.s/g:
(We remind the reader that every element y 2 DS

nIx has the property that y.s/� x.s/

for all s 2 S , so y.s/�x.s/ will always be nonnegative.)

Now suppose z2ES
n and y 2DS

nIx . Then z�KS
nIx.y/ if and only if z.s/�KS

nIx.y/.s/

for all s 2S ; ie z�KS
nIx.y/ if and only if z.s/�minfn;y.s/�x.s/g for all s 2S . By

the definition of ES
n , we have z.s/� n for all s 2S . Hence z �KS

nIx.y/ if and only if
z.s/ � y.s/� x.s/ for all s 2 S ; ie z � KS

nIx.y/ if and only if x.s/C z.s/ � y.s/

for all s 2 S ; ie z �KS
nIx.y/ if and only if J S

nIx.z/� y . Hence homES
n
.z;KS

nIx.y//

is nonempty if and only if homDS
nIx
.J S

nIx.z/;y/ is nonempty. Because ES
n and DS

nIx

are partially ordered sets and hence their hom-sets are either nonempty or have only a
single element, we now have a (natural) bijection

homES
n
.z;KS

nIx.y//Š homDS
nIx
.J S

nIx.z/;y/;

which is exactly what we are looking for: J S
nIx is left adjoint to KS

nIx .

For the fact that having a right adjoint implies cofinality, see Mac Lane [31, Section IX.3].
(Mac Lane handles the equivalent dual case.)

Theorem 3.3.10 (Fundamental Theorem of the May filtration) Let I� be a cofibrant
decreasingly filtered commutative monoid in C , and let X� be a simplicial finite set.
Then the associated graded commutative monoid E�

0
jMX�.I�/j of the geometric real-

ization of the May filtration is weakly equivalent, as a commutative graded monoid, to
the tensoring X�˝E�

0
I� of X� with the associated graded commutative monoid of I� :

E�0 jMX�.I�/j 'X�˝E�0 I�:

Proof We must compute the filtration quotients

(17) jMX�
n .I�/j=jMX�

nC1.I�/j Š jMX�
n .I�/=MX�

nC1.I�/j:
(We have isomorphism (17) because jMX�

nC1
.I�/j ! jMX�

n .I�/j is a cofibration, by
Remark 3.3.4.)
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We compute the filtration quotients as follows. First, we claim that there exists, for any
finite set S and for all n 2N , a cofiber sequence

(18) colim.FS
nC1.I�//! colim.FS

n .I�//!
a

fx2NS WjxjDng

�V
s2S .Ix.s/=I1Cx.s//

�

in C , natural in S . We have already defined (in Definition 3.3.2) how FS
n is natu-

ral, ie functorial in S ; by taking the obvious coproduct of quotients, this naturality
in S induces a naturality in S on the terms

`
fx2NS WjxjDng

�V
s2S .Ix.s/=I1Cx.s//

�

appearing in (18). The claim that (18) is a cofiber sequence implies that

(19) jMXk
n .I�/j=jMXk

nC1
.I�/j Š

a

fx2NXk WjxjDng

�V
s2Xk

.Ix.s/=I1Cx.s//
�
;

and naturally implies the necessary naturality with respect to the face and degeneracy
maps.

We now show that the cofiber sequence (18) exists. First, by the universal property
of the Kan extension from Lemma 3.3.7, the cofiber of the map colim.FS

nC1
.I�//!

colim.FS
n .I�// agrees with the cofiber of the map colim. zFS

nC1.I�//! colim.FS
n .I�//.

By Lemma 3.3.7, this cofiber is the coproduct
a

fx2NS WjxjDng

��V
s2SIx.s/

�
=.colimFS

1Ix.I�//
�
:

In Lemma 3.3.9, we showed that the functor J1Ix is cofinal, hence that the comparison
map of colimits

colim.F1Ix.I�/ ıJ1Ix/! colim.F1Ix.I�//

is an isomorphism. (We here have a colimit, not a limit as in the statement of
Lemma 3.3.9, since F1Ix.I�/ is a contravariant functor on DS

1Ix
. Of course Lemma 3.3.9

still holds in this dual form.)

Now Lemma 3.3.8 identifies the cofiber
�V

s2SIx.s/

�
=.colim.F1Ix.I�/ ıJ1Ix//

with
V

s2S .Ix.s/=I1Cx.s//, as desired. So we have our cofiber sequence of the
form (18).

All isomorphisms in the lemmas we have invoked in this proof are natural in S , with the
exception of the isomorphisms from Lemmas 3.3.9 and 3.3.8 which directly involve ES

1
,

only because we did not specify in Lemma 3.3.8 how GS is functorial in S . In the
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present proof, GS is F1Ix.I�/ıJ1Ix , and the cofinality of J1Ix together with the fact that
K1IxıJ1IxD idES

1
implies, on inspection of the colimit diagrams, that the isomorphism

colimGS D colim.F1Ix.I�/ ıJx/Š colim.F1Ix.I�//

is natural in S ; details are routine and left to the reader. We conclude that the cofiber
sequence (18) is indeed natural in S .

Now we have the sequence of simplicial commutative monoids in C

MX�
0 .I�/ MX�

1 .I�/ MX�
2 .I�/ � � � ;

and geometric realization commuting with cofibers together with the isomorphism (19)
implies that the comparison map

(20) X�˝E�0 I�!E�0 jMX�.I�/j

of objects in C is a weak equivalence. Hence the comparison map (20) in Comm.C/
must also be a weak equivalence, since the weak equivalences in Comm.C/ are created
by the forgetful functor Comm.C/! C , by Running Assumption 2.0.3.

3.4 Construction of the topological Hochschild–May spectral sequence

Definition 3.4.1 By a connective generalized homology theory on C we shall mean
the choice, for each integer n, of a functor EnW Ho.C/! Ab satisfying these axioms:

Exactness For each integer n and each distinguished triangle X ! Y !Z!†X

in Ho.C/, the following sequence of abelian groups is exact:

� � � !En.Y /! En.Z/! En.†X /! En.†Y /! En.†Z/! � � � :

Additivity For each integer n and each collection of objects fXigi2I in Ho.C/, the
following canonical map of abelian groups is an isomorphism:

a

i2I

En.Xi/!En

�a

i2I

Xi

�
:

Connectivity of the unit object We have En.1/Š 0 for all n< 0.

Connectivity of smash products Suppose that X and Y are objects of C , and that
A and B are nonnegative integers such that En.X /Š 0 for all n<A, and En.Y /Š 0

for all n< B . Then En.X ^Y /Š 0 for all n<ACB .
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Clearly, Definition 3.4.1 is just a formulation, in a general pointed model category, of
(the triangulated category form of) the Eilenberg–Steenrod axioms, from [19], for a
generalized homology theory with connective coefficients. The “connectivity of smash
products” axiom is easily proven anytime one has an E–homology Künneth spectral
sequence in C , which is the case in any of the usual models for the stable homotopy
category.

Definition 3.4.2 If I� is a cofibrant decreasingly filtered commutative monoid in C ,
X� is a simplicial finite set, and E� is a connective generalized homology theory on C ,
then by the topological Hochschild–May spectral sequence for X� z̋ I� we mean the
spectral sequence obtained by applying E� to the tower of cofiber sequences in C

(21)

� � � // jMX�
1
.I�/j //

��

jMX�
0
.I�/j

��

jMX �

1
.I�/j=jMX �

2
.I�/j jMX �

0
.I�/j=jMX �

1
.I�/j

That is, it is the spectral sequence of the exact couple

D1
�;�

// D1
�;�

}}

E1
�;�

aa

where E1
�;� D

L
i;j Hi jMX�

j .I�/j=jMX�
jC1

.I�/j and D1
�;� D

L
i;j Hi jMX�

j .I�/j.

Lemma 3.4.3 (connectivity conditions) Let E� be a connective generalized homol-
ogy theory on C . Suppose that there exist objects Z and E of C such that E�.�/ is
naturally isomorphic to Œ†�Z;E ^��. Let

(22) � � � ! Y2! Y1! Y0

be a sequence in C , and suppose that En.Yi/Š 0 for all n< i . Then

Œ†nZ; holimi.E ^Yi/�Š 0

for all n. If we instead suppose that A is a nonnegative integer and that X� is a
simplicial object of C such that En.Xi/Š 0 for all n<A and all i , then En.jX�j/Š 0

for all n<A.
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Proof Since C is assumed stable, the homotopy limit holimi Yi is the homotopy fiber
of the map Y

n2N

Yn
id�T���!

Y

n2N

Yn

in Ho.C/, where T is the product of the maps Yn!Yn�1 occurring in the sequence (22).
For each object Z of C , we then have the long exact sequence obtained by applying
the functor Œ†�Z;E ^�� to the fiber sequence

holimi Yi!
Y

n2N

Yn
id�T���!

Y

n2N

Yn;

hence the Milnor exact sequence

0!R1 limi Œ†
jC1Z;E ^Yi �! Œ†j Z; holimi E ^Yi �! limi Œ†

j Z;E ^Yi �! 0:

The assumption that Œ†j Z;E ^Yi �Š 0 for j < i guarantees that the sequence

� � � ! Œ†j Z;E ^Y2�! Œ†j Z;E ^Y1�! Œ†j Z;E ^Y0�

is eventually constant and zero for all j , hence both its limit and R1 lim vanish for
all j , hence Œ†j Z; holimi E ^Yi �Š 0 for all j .

The Bousfield–Kan spectral sequence, ie the E–homology spectral sequence of the
simplicial object X� , has input E1

s;t Š�s.E^Xt / and converges to EsCt .jX�j/, since
En.Xi/Š 0 for all n<A and all i . The differential in this spectral sequence is of the
form dr W Er

s;t !Er
s�r;tCr�1

, hence this spectral sequence has a nondecreasing upper
vanishing curve at E1 , hence converges strongly. Triviality of E1

s;t for s<A and t < 0

then gives us that Es.jX�j/ vanishes for s <A.

Definition 3.4.4 If S is a finite set, recall that DS
i is the partially ordered set of

functions f W S!N such that jf j � i . The category .DS
i /

op has a cofinal subcategory
.ES

i /
op defined in (12). We give this cofinal subcategory a Reedy category structure

by letting the degree function be �jsj, letting ..ES
i /

op/C contain all morphisms and
..ES

i /
op/� contain only identity morphisms.

Remark 3.4.5 Since the category .ES
i /

op is a direct category by Definition 3.4.4, the
Reedy model structure on the category of functors of the form .ES

i /
op! C , where C

is a model category, agrees with the projective model structure.

Since jxj< i � .#S/, the target of the degree map on .ES
i /

op is a (finite) ordinal, and
this satisfies the requirement for a Reedy category.
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Lemma 3.4.6 Let S be a finite set, and for each integer i , let DS
i and .ES

i /
op be

the categories defined immediately preceding Definition 3.3.2. For each s 2 S and
each n 2N , let JnC1.s/! Jn.s/ be a cofibration between cofibrant objects in C , and
let J W .DS

i /
op ! C be the functor given by J .f / D V

s2SJf .s/.s/. Equip .ES
i /

op

with the Reedy structure of Definition 3.4.4. Then the restriction of J to .ES
i /

op is
Reedy-cofibrant.

Furthermore, if N is an integer and we additionally assume that E� is a connective
generalized homology theory (as defined in Definition 3.4.1) such that Em.J .f //Š 0

for all m<N and f 2 .DS
i /

op , then Em.colimJ /Š0 for all m<N and all integers i .

Proof Choose an object f 2 .ES
i /

op . Then let .ES
1If
/op be the punctured overcategory

of f ; ie .ES
1If
/op is the full subcategory of the overcategory .ES

i /
op#f generated by all

objects other than idf . The latching object Lf . zJ / is simply the colimit of zJ restricted
to ..ES

1If
/op/CD .ES

1If
/op , and in .ES

1If
/op we have the cofinal subcategory consisting

of all functions gW S!N such that g¤ f and such that f .s/� g.s/� f .s/C1 for
all s 2 S .

The composite map

colim. zJ /op Š�!Lf . zJ /! zJ .f /
is precisely the pushout product of the maps fJf .s/C1.s/! Jf .s/.s/gs2S and therefore
it is a cofibration by the pushout product axiom. Hence, zJ is Reedy-cofibrant.

Since zJ is also projectively cofibrant by Remark 3.4.5, colim zJ is weakly equivalent
to jsr. zJ /j by Theorem B.1.2. Since the category .ES

i /
op is cofinal in .DS

i /
op ,

E�.colimJ /ŠE�.colim zJ /:
Together, these two facts imply that E�.colim.J // is concentrated in degrees �N by
Theorem B.1.5.

Lemma 3.4.7 Suppose E� is a connective generalized homology theory as defined in
Definition 3.4.1, and MS

i .I�/ is the i th degree of the May filtration for a finite set S and
a cofibrant decreasingly filtered commutative monoid I� as defined in Definition 3.1.2.
Then, if Em.Ii/ Š 0 for all m; i 2 N such that m < i , then Em.MS

i .I�// Š 0 for
all m; i 2N such that m< i .

Proof This is immediate from Lemma 3.4.6 and the connectivity hypotheses in
Definition 3.4.1.
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Theorem 3.4.8 Suppose I� is a Hausdorff cofibrant decreasingly filtered commutative
monoid in C , X� is a simplicial finite set, and E� is a connective generalized homology
theory on C . Suppose E�.�/Š Œ†�Z;�^E� for some objects Z and E in C . Suppose
the following connectivity axiom: Em.In/Š 0 for all m< n.

Then the topological Hochschild–May spectral sequence is strongly convergent, its
differential satisfies the graded Leibniz rule, and its input and output and differential
are as follows:

E1
s;t ŠEs;t .X�˝E�0 I�/)Es.X�˝ I0/; dr W Er

s;t !Er
s�1;tCr :

Proof It is standard (see eg the section on Adams spectral sequences in [8]) that
the E–homology spectral sequence of a tower of cofiber sequences of the form (21)
converges to E�.jMX�

0
.I�/j/ as long as Œ†�Z; holimi.E ^ jMX�

i .I�/j/� is trivial. By
Lemma 3.4.7 Em.jMX�

i .I�/j/Š 0 for all m< i , so by Lemma 3.4.3,

Œ†nZ; holimi.E ^ jMX�
i .I�/j/�Š 0

for all n, as desired. Hence the spectral sequence converges to E�.jMX�
0
.I�/j/ and by

Theorem 3.3.10 this is isomorphic to E�.X�˝ I0/.

That the differential has the stated bidegree is a routine and easy computation in the
spectral sequence of a tower of cofiber sequences. The sequence

� � � ! jMX�
2 .I�/j ! jMX�

1 .I�/j ! jMX�
0 .I�/j

is a cofibrant decreasingly filtered commutative monoid in C as observed in Remark 3.3.4
and therefore, in particular, it produces a “pairing of towers” in the sense of [16] and
therefore by [16, Proposition 5.1] the differentials in the spectral sequence satisfy a
graded Leibniz rule.

Strong convergence is also standard: the connectivity axiom, the “connectivity of
smash products” axiom from Definition 3.4.1, and Lemma 3.4.7 together imply that our
spectral sequence has a nondecreasing upper vanishing curve already at the E1–term,
so the spectral sequence converges strongly.

Remark 3.4.9 Another construction of our THH–May spectral sequence

(23) E1
�;� ŠE�;�.X�˝E�0 I�/)E�.X�˝ I0/

is possible using the Day convolution product. This construction is conceptually cleaner,
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but it does not, to our knowledge, simplify the process of proving that the resulting
spectral sequence has the correct input term, output term and convergence properties.

Recall from Remark 3.1.5 that a cofibrant decreasingly filtered commutative monoid
in C (without the cofibrancy assumption) is the same data as an object in Comm CNop

. A
cofibrant object in Comm CNop

with the projective model structure is, by Lemma 4.1.9,
a cofibrant decreasingly filtered commutative monoid in C (including that cofibrancy
assumption).

Now fix a simplicial finite set X� and a cofibrant commutative monoid object I in CNop
.

Hence, we can form the pretensor product X� z̋ I� , which is a simplicial object in
Comm CNop

. For example, if X� is the usual minimal simplicial model for the circle S1
�

,
then X� z̋ I� is the cyclic bar construction using the Day convolution as the tensor
product:

S1
�
z̋ I D

 
I // I ˝Day Ioo

oo //

// I ˝Day I ˝Day I
oo

oo

oo

//

//

// � � �
oo

oo

oo

oo

!
:

Since I is a functor Nop! C , we will write I.n/ for the evaluation of this functor at a
nonnegative integer n. (If we instead think of I as a decreasingly filtered commutative
monoid, as in most of the rest of this paper, we would write In instead of I.n/.) We
write .S1

�
z̋ I/.i/ for the simplicial object in C

.S1
�
z̋ I/.i/D

 
I.i/ // .I ˝Day I/.i/oo

oo //

// .I ˝Day I ˝Day I/.i/
oo

oo

oo

//

//

// � � �
oo

oo

oo

oo

!
:

Applying geometric realization to .S1
�
z̋ I/.i/, we get a cofibrant decreasingly filtered

object in C (given Running Assumption 2.0.4)

j.S1
�
z̋ I/.0/j  j.S1

�
z̋ I/.1/j  j.S1

�
z̋ I/.2/j  � � � ;

and the spectral sequence obtained by applying a generalized homology theory E� to
this cofibrant decreasingly filtered object in C is precisely the spectral sequence (23),
the spectral sequence constructed and considered throughout this paper. (It is an easy
exercise in unwinding definitions to check that this spectral sequence agrees with the
one constructed in Definition 3.4.2, but to verify that the resulting spectral sequence has
the expected input term, output term, and convergence properties amounts to exactly
the same proofs already found in this paper which aren’t expressed in terms of Day
convolution.)
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4 Decreasingly filtered commutative ring spectra

4.1 Convenient model structures on functor categories

For this section we will need some additional assumptions on our model category C
satisfying Running Assumption 2.0.3. These are not used to construct the spectral
sequence, but they are used to construct a large class of examples of decreasingly filtered
commutative ring spectra in Section 4.2. Recall the symbol � defined in Lemma 3.3.1.

Definition 4.1.1 [44, Definition 3.4] We say a model category A satisfies the strong
commutative monoid axiom if, for any cofibration h (respectively, any acyclic cofi-
bration h), the map h�n=†n is a cofibration (respectively, an acyclic cofibration) for
each integer n� 1.

Running Assumption 4.1.2 We assume that C satisfies the strong commutative
monoid axiom. We also assume that C is locally presentable as a category. Additionally,
we assume C is a right proper model category.

For example, symmetric spectra in the positive flat stable model structure satisfy
Running Assumption 4.1.2; see Section 4.2.

Remark 4.1.3 If C is a model category satisfying Running Assumption 2.0.3 and
Running Assumption 2.0.4, then C is cofibrantly generated and locally presentable and
therefore it is combinatorial in the sense of Jeff Smith (see Dugger [15, Definition 2.1]).

We will also make use of categories enriched in a model category C satisfying
Running Assumption 2.0.3. See Kelly [28], for a good treatment of enriched category
theory at the level of generality needed for this paper.

Given a category B enriched over C , we will also discuss the category of C–functors
on B , written CB . It can be shown (see Kelly [28] for example) that CB can again
be equipped with a C–enriched category structure, but we do not use that property
here and we will write CB for the underlying category of enriched functors and natural
transformations.

Definition 4.1.4 Suppose C satisfies Running Assumption 2.0.3. Let N op be the
C–enriched category with objects obN op DN and morphism objects

N op.n;m/D
�

1 if n�m;

0 if n<m;

where 1 is the unit in C and 0 is the zero object of C . We equip N op with a symmetric
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monoidal product using the usual addition C, so that 0 is the unit of the symmetric
monoidal structure on N op . This makes N op a symmetric monoidal C–category.

Remark 4.1.5 In Remark 3.1.5 we discussed the theorem, due to Day [14], that the
category of lax symmetric monoidal functors in CNop

is equivalent to the category
Comm CNop

. In the setting of categories enriched in Top� , based, compactly generated,
weak-Hausdorff spaces, this is proven in [32, Proposition 22.1]. In the setting of
categories enriched in a model category C satisfying Running Assumption 2.0.3 the
same proof yields the desired result that the category of lax symmetric monoidal
functors in CN op

is equivalent to the category of commutative monoids in CN op
with

the enriched Day convolution symmetric monoidal product.

The following truncated versions of the category N op will also be useful for constructing
decreasingly filtered commutative ring spectra.

Definition 4.1.6 We will define a category enriched in a category C satisfying Running
Assumptions 2.0.3 and 4.1.2 called J

op
n . The objects in Jn are the subset Jn �N of

all natural numbers consisting of all i 2 N such that i � n. We then define J
op
n as

a C–subcategory of N op so that J
op
n .i; j / D N op.i; j / whenever i; j � n. We give

this category the structure of a symmetric monoidal C–category .Jn; PC; 0/ by letting
i PCj Dminfi C j ; ng:

We now discuss the cofibrancy conditions needed on an object in Comm CNop
in order

to produce a cofibrant decreasingly filtered commutative monoid in C in the sense of
Definition 3.1.2. This will be used to construct a certain class of filtered commutative
ring spectra in Theorem 4.2.1. In Proposition 4.1.7, we use a definition from [27]: an
object X in a pointed monoidal model category is virtually cofibrant if .0!X /��
preserves cofibrations and preserves acyclic cofibrations.

Proposition 4.1.7 Suppose C is a model category satisfying Running Assumptions
2.0.3 and 2.0.4 and B is a small symmetric monoidal category enriched in C with
virtually cofibrant function spaces [27, Definition 2.2.12]. Then there exists a model
structure on the category of C–functors CB , called the projective model structure,
where a fibration (respectively, weak equivalence) is a natural transformation �W F!G

between functors F;G 2 CB such that �X W F.X /!G.X / is a fibration (respectively,
weak equivalence) for each object X in B . In addition, because C satisfies Running As-
sumption 2.0.3, CB is a symmetric monoidal model category under Day convolution
and it satisfies the Schwede–Shipley monoid axiom [43].
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Proof Since C is assumed to be combinatorial, the projective model structure exists
on CB and it is also cofibrantly generated, by [27, Proposition 2.2.13]. Since C satisfies
Running Assumptions 2.0.3 and 4.1.2, [27, Propositions 2.2.15 and 2.2.16] imply the
second part of the proposition.

Remark 4.1.8 We will only apply Proposition 4.1.7 in the case where B is either the
category N op of Definition 4.1.4 or J

op
n of Definition 4.1.6. It is easy to check that

the categories N op and J
op
n have virtually cofibrant function spaces because the unit

object 1 is always virtually cofibrant in a symmetric monoidal model category by the
unit axiom.

Lemma 4.1.9 Let C satisfy Running Assumptions 2.0.3 and 4.1.2 and let N op be the
category defined in Definition 4.1.4. Let CN op

be the category of C–functors N op! C ,
equipped with the projective model structure. Let P be a cofibrant object in CN op

. Then,
for all n 2N , the object P .n/ of C is cofibrant, and the morphism P .nC 1/! P .n/

is a cofibration in C .

Proof This is a consequence of [22, Lemma 3.1].

The following definition is from [27, Proposition 2.2.13], and it will be useful for
describing the generating cofibrations in the projective model structure on CN op

.

Definition 4.1.10 Suppose C is a symmetric monoidal model category satisfying
Running Assumptions 2.0.3 and 4.1.2. Each integer i corepresents a functor N op! C ,
and we write N op.i;�/ for this functor. Given a set of morphisms M in C , we write
M˝N op for the collection of morphisms in CN op

which are of the form xf ^N op.i;�/
for some integer i and some map xf in M.

Theorem 4.1.11 Suppose C satisfies Running Assumptions 2.0.3 and 4.1.2 and N op

is the category defined in Definition 4.1.4. Then the projective model structure on CN op

satisfies the strong commutative monoid axiom.

Proof By White [44, Lemma A.1], it suffices to check the strong commutative monoid
axiom on the generating cofibrations. Due to [7, Proposition 4.5], a set of generating
cofibrations in the projective model structure on CN op

is the class of maps J ˝N op ,
where J is a set of generating cofibrations of C , and a set of generating acyclic
cofibrations in the projective model structure is the set of maps J ˝N op , where J is a
set of generating acyclic cofibrations of C (see Definition 4.1.10 for the definition of
the notation).

Algebraic & Geometric Topology, Volume 18 (2018)



A May-type spectral sequence for higher topological Hochschild homology 2625

Since
N op.i;�/'

�
1 if j � i;

0 if j > i;

a set of generating cofibrations for CN op
consists of the set of the natural transformations

f W I ! J such that there is a map xf W A!B in J such that fj D xf ^ id1W A^1!
B ^ 1 for j � i and fj D xf ^ id0W A ^ 0! B ^ 0 for j > i . Similarly, a set of
generating acyclic cofibrations consists of the natural transformations f W I ! J such
that there is some map xf W A! B in J such that fj D xf ^ id1W A ^ 1! B ^ 1
for j � i and fj D xf ^ id0W A^ 0! B ^ 0 for j > i .

Let hW I! J be an map in J ˝N op (respectively, a map in J˝N op ) with hW A!B

the corresponding map in J (respectively, J ). Then we need to prove that h�n=†n is
a cofibration (respectively, an acyclic cofibration) in CNop

with the projective model
structure. The case nD 1 is vacuous and therefore we omit it.

In the case nD 2, we need to show that the map

h�2=†2W
�
.I ˝Day J /qI˝DayI .J ˝Day I/

�
=†2! .J ˝Day J /=†2

is an (acyclic) cofibration in the projective model structure. To see this, note that
I ˝Day I Š .A^A/^N op.2i;�/, J ˝Day I Š .B ^A/^N op.2i;�/, I ˝Day J Š
.A^B/^N op.2i;�/, and J ˝Day J Š .B ^B/^N op.2i;�/. Therefore, the map
.h�2/=†2 is the map .h�2 ˝ N op.2i;�//=†2 up to isomorphism. By definition
of N op , this is equivalent, up to isomorphism, to ..h�2/=†2/^N op.2i;�/, that is,
.h�2/=†2 is a composite of isomorphisms and the map ..h�2/=†2/^N op.2i;�/.
Since C satisfies the strong commutative monoid axiom, .h�2/=†2 is a cofibration
(respectively, acyclic cofibration). We claim that the map ..h�2/=†2/^N op.2i;�/
is also a cofibration (respectively, acyclic cofibration). We will give the argument that
..h�2/=†2/^N op.2i;�/ is a cofibration in the projective model structure when h is
a cofibration; the argument that ..h�2/=†2/^N op.2i;�/ is an acyclic cofibration
when h is an acyclic cofibration will be omitted because it is essentially the same. We
need to show that for any acyclic fibration X ! Y in CN op

fitting into the diagram

W //

��

X

��

Z //

z

>>

Y
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there exists a lift zW Z ! X , where W D �
.I ˝Day J /qI˝DayI .J ˝Day I/

�
=†2

and Z D .J ˝Day J /=†2 . Since ..h�2/=†2/ ^N op.2i;m/W Wm ! Zm is, up to
isomorphism, the cofibration

�
.A^B/qB^B .B ^A/

�
=†2! .B ^B/=†2

when m � 2i , and it is, up to isomorphism, the map 0! 0 when m > 2i , we can
define the map zW Z!X to be the map 0!Xm when m> 2i , and we can define
z2i W Z2i!X2i to be the lift in the diagram

W2i
//

��

X2i

��

Z2i
//

z2i

<<

Y2i

which we know exists because W2i!Z2i is a cofibration and Xj ! Yj is an acyclic
fibration for all j (because X ! Y is an acyclic fibration in the projective model
structure). For all j < 2i , we can then define zj as the composite

Zj DZ2i
z2i�!X2i!X2i�1! � � � !Xj :

There is no difficulty with the need for our lift maps to be compatible for various choices
of j , since in the range j � 2i , the sequences W� and Z� are constant, and above
this range, these sequences are zero! We have therefore defined a map zmW Zm!Xm

for each m� 0 and the diagrams

Zm
//

��

Xm

��

Zm�1
// Xm�1

clearly commute for all m� 0 by the definition of zm .

The same type of argument works for n> 2 giving

.h�n/=†n Š ..h�n/=†n/^N op.ni;�/;

which is a cofibration by a proof essentially the same as the one above. Here the
isomorphism is in the arrow category, but this is the same as saying .h�n/=†n is
a composite of isomorphisms and the map ..h�n/=†n/ ^ N op.ni;�/, which is a
cofibration, and therefore .h�n/=†n is also a cofibration.
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Lemma 4.1.12 Let C be a model category satisfying Running Assumption 2.0.3 and
Running Assumption 4.1.2 and let J

op
n be the category defined in Definition 4.1.6. Then

the projective model structure on CJ
op
n satisfies the strong commutative monoid axiom.

The cofibrant objects in the projective model structure are exactly the objects P 2 CJ
op
n

such that P .i/ is cofibrant in C for all 0� i � n and P .i/! P .i � 1/ is a cofibration
in C .

Proof The proof that CJ
op
n satisfies the strong commutative monoid axiom is the same

as the proof of Theorem 4.1.11 and therefore we omit it. The second part of this
lemma is again a consequence of [22, Lemma 3.1], as the authors remark just after that
lemma.

Remark 4.1.13 There are four different model structures that we use here, which are
all commonly referred to as the projective model structure. The model category structure
on SpN op

discussed in Proposition 4.1.7, the model structure created by the forgetful
functor U W Comm SpN op! SpN op

, the model structure on algebras over a commutative
monoid I in Comm SpN op

created by the forgetful functor to Comm SpN op
, and the

model structure on modules over a commutative monoid I in Comm SpN op
created

by the forgetful functor from I–modules (or equivalently symmetric I–bimodules)
to SpN op

. Each of these will be referred to as the projective model structure, and it should
be clear from the context which of the four is meant. Each of these model structures
also make sense when N op is replaced by J

op
n . Since the model structure on Sp is

cofibrantly generated, each these projective model structures is cofibrantly generated,
by Proposition 4.1.7, [44, Theorem 3.2], and [43, Theorem 4.1]. Consequently, as re-
marked in Hovey [24], we have functorial factorization in each of these model categories.

4.2 Whitehead towers

For this section, we will abbreviate and write Sp for the category of symmetric spectra
of pointed simplicial sets with the positive flat stable model structure. This cate-
gory satisfies Running Assumptions 2.0.3 and 2.0.4, as discussed in Section 2. This
model category also satisfies Running Assumption 4.1.2: since it is combinatorial by
Hovey, Shipley, and Smith [26], it satisfies the strong commutative monoid axiom by
[44, Theorem 5.7], and it is also right proper by [26, Theorem 5.4.2]. The goal of this
section is to produce a cofibrant decreasingly filtered commutative monoid in Sp as a
specific multiplicative model for the Whitehead tower of a connective commutative
monoid in Sp.
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As a consequence of Lemma 4.1.9, a cofibrant object in the category Comm SpN op

equipped with the projective model structure is, in particular, a cofibrant decreasingly
filtered commutative monoid in Sp (also see Remark 3.1.5).

Theorem 4.2.1 Let R be a cofibrant connective commutative monoid in Sp. Then
there exists a cofibrant decreasingly filtered commutative monoid in Sp,

� � � ! ��2R! ��1R! ��0R;

with structure maps
�i;j W ��iR^ ��j R! ��iCj R;

such that R ' ��0R and the map ��nR! ��0R induces an isomorphism on �k

for k � n and �k.��nR/Š 0 for k < n. This cofibrant decreasingly filtered commuta-
tive monoid in Sp is denoted by ���R.

Proof We will prove the theorem by induction. First, we will consider R as a cofibrant
object Comm SpJ

op
0 DComm Sp and we will produce a cofibrant object in Comm SpJ

op
1

in projective model structure. To construct z��1R, we consider the map of commutative
R–algebras R!H�0R, constructed as in [6, Theorem 8.1]. This map is not usually
a fibration (in fact it is a cofibration as discussed in Remark 4.2.2), so we factor it
as a composite R! z��0R!H�0R of an acyclic cofibration and a fibration in the
category of commutative R–algebras in Sp. The resulting object z��0R is a cofibrant
commutative monoid in Sp equipped with a fibration z��0R!H�0R which is a map
of z��0R–algebras.

We then define z��1R to be the fiber of the map z��0R!H�0R in the category of
z��0R–modules (equivalently symmetric z��0R–bimodules). The symmetric z��0R–
bimodule structure produces an object f1W z��1R!z��0R in Comm SpJ

op
1 with action

maps �i;j for i; j 2 ob J
op
1

defined as follows: the map �0;0W z��0R^ z��0R! z��0R

is the multiplication map, the maps �1;0 and �0;1 are the right and left z��0R–module
structure maps, and the map �1;1 is the composite

�1;1W z��1R^ z��1R
idz��1R ^f1

// z��1R^ z��0R
�1;0
// z��1R

or equivalently, because z��1R is a symmetric z��0R–bimodule,

�1;1W z��1R^ z��1R
f1^idz��1R

// z��0R^ z��1R
�0;1
// z��1R:

These maps are easily seen to satisfy the necessary associativity, commutativity, and
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compatibility axioms. We then cofibrantly replace z��1R! z��0R in the projective
model structure on Comm SpJ

op
1 to produce an object ��1

��R such that R ' ��1
�0

R,
the map ��1

�1
R! ��1

�0
R induces an isomorphism on �k for k � 1 and �k.�

�1
�1

R/Š 0

for k < 1. Recall that the effect of cofibrantly replacing in this model structure is
that the map is replaced by a cofibration and the objects are replaced by cofibrant
objects without changing their homotopy type. This completes the base step in the
induction. Note that since we have functorial factorization in Sp and Comm SpJ

op
1 ,

this construction is entirely functorial.

Now, for the inductive step: Suppose we can functorially construct, for an arbitrary
n � 1, a cofibrant object ��n�1

�� .R/ 2 ob Comm SpJ
op
n�1 such that R ' ��n�1

�0
R,

the map ��n�1
�j R! ��n�1

�0
R induces an isomorphism on �k for n� 1� k � j and

�k.�
�n�1
�j R/Š 0 for k < j , and there is an acyclic cofibration R! ��n�1

�0
R. First,

note that, due to Basterra [6, Theorem 8.1], we can construct a map of commutative
R–algebras R ! �n�1R, where �n�1R is a commutative R–algebra with the
property that the map R! �n�1R induces an isomorphism on �k for k � n� 1

and �k.�n�1R/Š 0 for k � n. By the assumed functoriality of the construction of
��n�1
�� .R/, we get a map ��n�1

�� .R/! ��n�1
�� .�n�1R/ of commutative ��n�1

�� .R/–
algebras in Comm SpJn�1

op
. We first fibrantly replace ��n�1

�� .�n�1R/ in the category
of commutative ��n�1

�� .R/–algebras to produce a fibrant object x��n�1
�� .�n�1R/ which

still receives a map from ��n�1
�� .R/. We then functorially factor the map ��n�1

�� .R/!
x��n�1
�� .�n�1R/ as an acyclic cofibration followed by a fibration

��n�1
�� .R/! z��n�1

�� .R/!x��n�1
�� .�n�1R/

in the category of commutative ��n�1
�� .R/–algebras.

The following argument combines two ideas. As in the base step, we work in the
category of symmetric z��n�1

�� .R/–bimodules throughout. This builds in the com-
mutativity, associativity, unitality and compatibility of most of the structure maps
�i;j W z��n

�i .R/^ z��n
�j .R/! z��n

�i PCj
.R/, where z��n

�i .R/ WD z��n�1
�i .R/ for i < n, as we

discuss below. Unfortunately, this alone does not build in the associativity of the
maps �i;j W z��n

�i .R/ ^ z��n
�j .R/ ! z��n

�n .R/ when i; j < n and i C j � n. We thus
build this into our definition of z��n

�n
R as well. To combine these two ideas we must

describe how to construct the associativity diagrams that we use in the category of
z��n�1
�� .R/–bimodules.

Recall that a symmetric z��n�1
�� R–bimodule is a functor X W J op

n�1
! Sp along with
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natural transformations

X ˝Day z��n�1
�� R! z��n�1

�� R and z��n�1
�� R˝Day X ! z��n�1

�� R

satisfying the usual associativity and commutativity axioms. Let F and G be constant
symmetric z��n�1

�� R–bimodules such that F.`/ is

colimi PCj�n z��n�1
�i R^ z��n�1

�j R

for each 0� `� n� 1 and G.`/ is

colimi PCj PCk�n z��n�1
�i R^ z��n�1

�j R^ z��n�1
�k

R

for each 0� `� n� 1. To make this precise we need to define the action maps, which
are natural transformations

F ˝Day z��n�1
�� R! F; z��n�1

�� R˝Day F ! F;

z��n�1
�� R˝Day G!G; G˝Day z��n�1

�� R!G:

By the definition of Day convolution,

.F ˝Day z��n�1
�� R/.`/D colima PCb�`.F.a/^ z��n�1

�b
R/;

and since F is constant,

colima PCb�`.F.a/^ z��n�1
�b

R/Š colimi PCj�n.z��n�1
�i R^ z��n�1

�j R/^ z��n�1
�0

R:

Since smashing with a cofibrant object commutes with colimits, there is a weak
equivalence

colimi PCj�n.z��n�1
�i R^ z��n�1

�j R/^ z��n�1
�0

R

' colimi PCj�n.z��n�1
�i R^ z��n�1

�j R^ z��n�1
�0

R/;

and we can use the maps �j ;0W z��n�1
�j R^ z��n�1

�0
R! z��n�1

�j R to define a map

colimi PCj�n.z��n�1
�i R^ z��n�1

�j R^ z��n�1
�0

R/! colimi PCj�n.z��n�1
�i R^ z��n�1

�j R/

which provides a natural transformation F ˝Day z��n�1
�� R! F in the evident way. The

remaining action natural transformation for F is defined in an analogous way and the
these two maps satisfy the commutativity and associativity axioms by the inductive
hypothesis. We then define the two action natural transformations of G in the same
way and they also satisfy the commutativity and associativity axioms by the inductive
hypothesis.
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Here is a sketch of our next steps in this proof: We will now define z��n
�n R in such a way

that it is automatically equipped with associative, commutative, and compatible maps

�i;j W z��n
�i R^ z��n

�j R! z��n
�n R

for iCj � n, where z��n
�j R is defined to be z��n�1

�j R for 0� j � n�1. To build in the
associativity of the structure maps �i;j W z��n

�i R^ z��n
�j R! z��n

�n R for 0< i; j < n and
i C j � n, we will encode all of the necessary associativity diagrams into one pushout,
where each object in the pushout is a colimit of a truncated directed cube diagram. We
will then show that the map from this pushout to a certain given object is nullhomotopic
and therefore factors through a single contractible object. We then define z��n

�n R as the
pullback of a diagram involving this contractible object. This is arranged so that we
only need to make one choice of contractible object at each stage of the induction. We
also work in the category of symmetric z��n�1

�� R–bimodules throughout this process in
order to encode the remaining associativity, commutativity, compatibility, and unitality
diagrams.

Note that each map

z��n�1
�i R^ z��n�1

�j R! ��n�1
�m R! ��n�1

�n�1
.�n�1R/

is nullhomotopic for i C j � n because �`.z��n�1
�i R^ z��n�1

�j R/Š 0 for ` < n and
�`.��m.�n�1R// Š 0 for ` > n� 1. We claim that the composite map from the
Bousfield–Kan homotopy colimit (in the sense of our Appendix B) of the diagram

(24)

colimi PCj PCk�nz��n�1
�i R^ z��n�1

�j R^ z��n�1
�k

R //

��

colimi PCj PCk�nz��n�1

�i PCj
R^ z��n�1

�k
R

colimi PCj PCk�nz��n�1
�i R^ z��n�1

�j PCk
R

to z��n�1
�m R, followed by the map z��n�1

�m R! z��n�1
�m .�n�1R/, is nullhomotopic as

well. (Note that this will follow if the map from the diagram (24) to z��n�1
�n�1

R followed
by the map z��n�1

�n�1
R! z��n�1

�n�1
.�n�1R/ is nullhomotopic since the composite of a

nullhomotopic map with any other map is always nullhomotopic.)

To prove the claim above, we use the Bousfield–Kan spectral sequence of Theorem B.1.4,
which is discussed further in our self-contained Appendix B:

.Rs
E lim

d2D
/.ZtA.d//)ZsCt hocolim A:
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We will apply this spectral sequence when D is one of the small categories

P3
n D f.i; j ; k/ 2N3 W i PCj PCk � n and 0< i; j ; k < ngop � .N3/op;

P2
n D f.`;m/ 2N2 W ` PCm� n and 0< `;m< ngop � .N2/op;

or the pushout category PO , defined in (15). We will take Z to be ��n�1.�n�1R/.

Let H W P2
n ! C be the functor given by H.i; j /D z��n�1

�i R^ z��n�1
�j R. A colimit of

a functor on P2
n can be written as an iterated pushout, so we can prove a vanishing

result for .Rs
E

limd2.P2
n/op /.Z

tH.d// for s � t D 0 by proving an appropriate van-
ishing result for .Rs

E
limd2POop /.Zt .��H /.d//, where PO is the category indexing

pushouts, as in (15), and ��H is the restriction of H along one of the inclusions
�W PO ,! P2

n . By [17, Example 17.10] and our Theorem B.1.7, given a functor
F W PO ! C and an object Y of C , the map ŒhocolimF ;Y �! limŒF ;Y � is an iso-
morphism if .R1

E
limd2POop /Œ†F.d/;Y �Š Œ†F.10/;Y �=.Œ†F.0/;Y �C Œ†F.10/;Y �/

vanishes.

So we carry out an induction: Let I0W PO! C be the functor given by

I0.1
0/D z��n�1

�2
R^ z��n�1

�n�1
R;

I0.0/D z��n�1
�1

R^ z��n�1
�n�1

R;

I0.1/D z��n�1
�2

R^ z��n�1
�n�2

R:

Vanishing of Œ†I0.1
0/; z��n�1.�n�1R/� and of ŒI0.d/; z��n�1.�n�1R/� for d D 0; 1

is standard (by properties of maps from sufficiently connective spectra to sufficiently
coconnective spectra), so Œhocolim I0;Z� vanishes.

That was the initial step. For the inductive step, let Ij W PO! C be the functor given by

Ij .1
0/D z��n�1

�jC2
R^ z��n�1

�n�j�1
R;

Ij .0/D hocolim Ij�1;

Ij .1/D z��n�1
�jC2

R^ z��n�1
�n�j�2

R:

and suppose we have already shown that Œhocolim Ij�1;Z� vanishes. Again,

Œ†Ij .1
0/; z��n�1.�n�1R/�Š ŒIj .1/; z��n�1.�n�1R/�Š 0

due to standard properties of maps from sufficiently connective spectra to sufficiently
coconnective spectra, so Œhocolim Ij ;Z� vanishes. Since the natural map

hocolim In�2! hocolim H

is an equivalence, the case j D n� 2 completes the induction.
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Therefore, hocolim H ! z��n�1
�n�1

.�n�1R/ is nullhomotopic, and hence the composite

hocolim H ! z��n�1
�n�1

.�n�1R/! z��n�1
�n�1

.�n�1R/

is nullhomotopic.

Now we claim that the diagram AW P3
n ! Sp given by

.i; j ; k/ 7! z��n�1
�i R^ z��n�1

�j R^ z��n�1
�k

R

is actually Reedy-cofibrant and hence, since P3
n is a direct category (as in Remark 3.4.5),

it is projectively cofibrant. To see this, it is sufficient to check that each object in the
diagram is cofibrant, each map is a cofibration, and for each inclusion of a square-
shaped diagram the map from the pushout of the upper left horn to the terminal vertex
is cofibration by an elementary check of Reedy’s conditions [39]. Each object in the
diagram is cofibrant and each map in the diagram is a cofibration by definition. Also,
one can easily check that for each inclusion of a square-shaped diagram the map from
the pushout of the upper left horn to the terminal vertex is a cofibration by iterated use of
the pushout product axiom (cf Lemma 3.4.6, where essentially the same result is proven
in more detail). The fact that the canonical map from jsr.F/j ! colimF is a weak
equivalence for projectively cofibrant A is Theorem B.1.2, which is a consequence
of [21, Theorems 3.2 and 3.3].

The colimit of the diagram AW P3
n ! Sp described above can be written as an iterated

colimit over directed cubes with terminal vertex removed. So, by an induction totally
analogous to the induction we just carried out using I0; I1; : : : , the question of whether
the map jsr.A/j ! z��m.�n�1R/ is nullhomotopic, as in Question B.1.6, reduces
to the case of Question B.1.6 for diagrams indexed by directed cubes with terminal
vertex removed, which we handle in Lemma B.2.3. Let D be a subcategory of P3

n

isomorphic to a directed cube with terminal vertex removed. By Lemma B.2.3, it
suffices to show that .Rs

E
limd2D /.Z

�tA.d// vanishes for s� t D 0 and s D 0; 1; 2

because .Rs
E

limd2D/.Z
�tA.d//Š 0 for s > 2. The condition

(25) Œ†tz��n�1
�i R^ z��n�1

�j R^ z��n�1
�k

R; z��n�1
�m .�n�1R/�Š 0

for t >�i�j �kCn�1 is sufficient to show that .Rs
E

limd2D/.Z
�tA.d// vanishes

for s� t D 0; 1 and s D 0; 1; 2 when A is any of the truncated cubes in the iterative
process and hence the maps

colimi PCj PCk�n�1 z��n�1
�i R^ z��n�1

�j R^ z��n�1
�k

R! z��n�1
�m R! z��n�1

�m .�n�1R/
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are nullhomotopic for 0�m�n�1. Condition (25) is indeed satisfied, by standard prop-
erties of maps from sufficiently connected spectra to sufficiently coconnected spectra.

Finally, we conclude that the map from the diagram (24) to z��n�1
�m R followed by the

map z��n�1
�m R! z��n�1

�m .�n�1R/ is nullhomotopic, again using Example 17.10 in
Dugger [17], along with the vanishing of each of

Z1.hocolimi PCj PCk�mC1 z��n�1
�i R^ z��n�1

�j R^ z��n�1
�k

R/;

Z0.hocolimi PCj PCk�mC1 z��n�1
�i R^ z��n�1

�j PCk
/;

Z0.hocolimi PCj PCk�mC1 z��n�1

�i PCj
R^ z��n�1

�k
R/:

We may also consider diagram (24) as a diagram in symmetric z��n�1
�� R–bimodules,

and what we have shown is that the map of symmetric z��n�1
�� R–bimodules from the

homotopy colimit of (24) to z��n�1
�� R followed by the map z��n�1

�� R!z��n�1
�� .�n�1R/

is nullhomotopic in the category of z��n�1
�� R–modules. The point is that we can therefore

factor this map through a contractible z��n�1
�� R–module, which we denote by C.n/� .

The pullback of the diagram

(26)

C.n/�

��

z��n�1
�� .R/ // z��n�1

�� .�n�1R/

in the category of symmetric z��n�1
�� .R/–bimodules is a functor B�W J op

n�1
! Sp along

with structure maps

B�˝Day z��n�1
�� .R/! B� and z��n�1

�� .R/˝Day B�! B�:

(For the sake of consistency with our notation z��n�1
�� .R/, the subscripted bullet in B�

indicates that B� is a finite sequence Bn�1! Bn�2! � � � ! B0 .) We observe that
Bn�1 ' Bi for all 0 � i � n� 1, and there is a map Bn�1! z��n�1

�0
R inducing an

isomorphism on �k for k � n and �k.Bn�1/ Š 0 for k < n. We therefore define
z��n
�n R to be Bn�1 .

Next we need to check that the structure maps �i;j W z��n
�i R ^ z��n

�j R ! z��n
�n R for

i C j � n, where z��n
�i R is defined to be z��n�1

�i R when 0 � i < n, are unital,
associative, and commutative. We use the symmetric z��n�1

�� R–bimodule structure to
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produce associative and commutative structure maps �i;nW z��n�1
�i R^ z��n

�n R! z��n
�n R

and �n;i W z��n�1
�n R^z��n

�i R!z��n
�n R for 0� i <n as follows: We have the commutative

diagram of natural transformations

z��n�1
�� R˝Day B //

��

B

B˝Day z��n�1
�� R

99

so by definition of Day convolution, there is, by evaluating at n� 1, a commutative
diagram

colimi PCj�n�1 z��n�1
�i R^Bj

//

��

Bn�1

colim` PCm�n�1 B` ^ z��n�1
�m R

66

in Sp. Since the map of colimits can equivalently be defined as the colimit of factor
swap maps �W z��n�1

�i R^Bj!Bj ^z��n�1
�i R, the commutativity of the diagram above

implies the diagram

z��n�1
�i R^Bn�1

//

��

Bn�1

Bn�1 ^ z��n�1
�i R

88

commutes for all i such that 0� i < n.

We prove that �n;i and �i;n satisfy associativity with respect to the maps �i;j for i; j <n

by the same method. We will just describe one example of this, since the remaining
examples are proven in the same way. By definition of B , there is commutative diagram
of natural transformations

z��n�1
�� R˝Day z��n�1

�� R˝Day B //

��

z��n�1
�� R˝Day B

��

z��n�1
�� R˝Day B // B

so by definition of Day convolution, there is, by evaluating at n� 1, a commutative
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diagram

colimi PCj PCk�n�1 z��n�1
�i R^ z��n�1

�j R^Bk
//

��

colimi PCj PCk�n z��n�1

�i PCj
R^Bk

��

colimi PCj PCk�n�1 z��n�1
�i R^Bj PCk

// Bn�1

Therefore, in particular, there is a commutative diagram

z��n�1
�i R^ z��n�1

�j R^Bn�1
//

��

z��n�1

�i PCj
R^Bn�1

��

z��n�1
�i R^Bn�1

// Bn�1

which proves the desired associativity diagram for Bn�1 .

To define �n;nW z��n
�n R^z��n

�n R!z��n
�n R, we use the commutative diagram of symmetric

z��n�1
�� R–bimodules

(27)

B˝Day B //

��

B˝z��n�1
�� R

��

z��n�1
�� R˝Day B // B

which implies that there is a map

colimi PCj�n�1 Bi ^Bj ! Bn�1

by evaluating at n� 1 and therefore there is a map

Bn�1 ^Bn�1! Bn�1;

which we then define to be �n;n . This map is commutative by definition and it is associa-
tive with respect to all the other maps �i;j by the same argument used for associativity
above because the diagram (27) is a diagram of symmetric z��n�1

�� R–bimodules.

The maps �i;j W z��n�1
�i R^z��n�1

�j R!z��n
�n R for iCj � n are compatible with all the

maps �i;j for i C j < n by definition of z��n
�n R as the pullback in diagram (26). (Note

that the forgetful functor from symmetric z��n�1
�� R–modules to SpJ

op
n�1 composed with

the nth evaluation functor to Sp is a right adjoint and therefore it preserves limits.)
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The maps �i;nW z��n�1
�i R^z��n�1

�n R!z��n
�n R and �n;i W z��n�1

�n R^z��n�1
�i R!z��n

�n R are
unital by definition of B as a symmetric z��n�1

�� R–bimodule by the same kind of argu-
ment as given above for commutativity and associativity. We will say why the remaining
maps �i;j W z��n�1

�i R^ z��n�1
�j R! z��n

�n R for i C j � n and i; j < n are unital later.

We now prove associativity of the maps �i;j W z��n�1
�i R ^ z��n�1

�j R ! z��n�1
n R for

0< i; j < n and i C j � n. The diagrams

z��n
�i R^ z��n

�j R^ z��n
�k

R //

��

z��n

�i PCj
R^ z��n

�k
R

��

z��n
�i R^ z��n

�j PCk
R // z��n

�n R

commute for i; j ; k<n and iCjCk�n by the definition of z��n
�n R as the pullback (26).

The maps �i;j W z��n
�i R^ z��n

�j R! z��n
�n R are also commutative because the diagrams

z��n�1
�i R^ z��n�1

�j R

))

// z��n�1
�j R^ z��n�1

�i R

��

z��n�1
�n�1

R // z��n�1
�n�1

.�n�1R/

commute for all i and j , and the diagrams

z��n�1
�i R^ z��n�1

�j R

))

// z��n�1
�j R^ z��n�1

�i R

��

C.n/n // z��n�1
�n�1

�n�1R

commute for all i and j , so by the definition of B as the pullback of the diagram (26),
the diagram

z��n�1
�i R^ z��n�1

�j R

))

// z��n�1
�j R^ z��n�1

�i R

��

z��n
�n R

commutes for i; j < n and i C j � n.

The unitality of the maps �i;j for i; j < n and i C j � n follows by the induction
hypothesis and a similar argument to the one above.
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We have therefore produced an object in Comm SpJ
op
n . We then cofibrantly replace this

object in Comm SpJ
op
n to produce an object ��n

��R. By induction, we can therefore
produce an object in Comm SpN op

and then cofibrantly replace it to produce (by
Remark 3.4.9) a cofibrant decreasingly filtered commutative monoid in Sp, denoted
by ���R, as desired.

Remark 4.2.2 What we really produce in the proof above is a cofibrant commutative
monoid in the category of functors Comm SpN op

, or by the equivalence of categories
discussed in Remark 4.1.5, a lax symmetric monoidal functor in SpN op

. Due to the
triviality of our Sp–enrichment on N , this is the same data as a lax symmetric monoidal
functor in SpNop

, and the cofibrancy condition produces a cofibrant decreasingly filtered
commutative monoid in Sp as discussed in Definition 3.1.2.

We need to check that ���R satisfies the “cofibrancy of degree-0 quotient” condition
from Definition 3.1.2. In order to see that the map S ! ��0R=��1R is a levelwise
cofibration we observe, first of all, that the construction of the map R!H�0R is a
cofibration because it is formed by attaching E1–cells to kill higher homotopy. This
is proven in [20, IV.3.1] in the associative setting, but the same proof works in the
commutative setting. We then observe that ��0R is constructed so that the composite
S ! ��0R! R! H�0R is a cofibration of commutative monoids in Sp, hence
also a levelwise cofibration in Sp. The map ��0R ! H�0R factors through the
projection ��0R! ��0R=��1R, so since levelwise cofibrations are retractile, the
map S ! ��0R=��1R is also a levelwise cofibration. This proves the “cofibrancy of
degree-0 quotient” condition, so ���R is a decreasingly filtered commutative monoid
in symmetric spectra.

Example 4.2.3 Assume a prime p > 2 is fixed. Let j be a cofibrant replacement
in Comm Sp, for the commutative ring spectrum yK.Fq/p , where q is a topological
generator of Z�p . Then by Theorem 4.2.1, we produce a cofibrant decreasingly filtered
commutative monoid in Sp, denoted by j�� . The associated graded commutative
monoid E�

0
j�� is

H�0j _†2p�3H�2p�3j _†4p�5H�4p�5j _ � � �
after forgetting the commutative monoid structure. We therefore denote the associated
graded commutative monoid object by H��j . There is an isomorphism of graded
rings ��.H��j / Š ��.j /, but as we have seen H��j is a generalized Eilenberg–
Mac Lane spectrum so by taking the associated graded of this filtration of j we have
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effectively killed off all the k–invariants of j . Note that by H�nj we mean an explicit
model for the Eilenberg–Mac Lane spectrum constructed as the cofiber of a cofibration
j�nC1! j�n . This example is used to compute V .1/� THH.j / in a paper by the first
author [1].

Example 4.2.4 Let R be a commutative ring spectrum whose homotopy groups satisfy
�k.R/Š yZp for k D 0; n and �k.R/Š 0 otherwise. Then one can build

0!†nH yZp!R

as a cofibrant decreasingly filtered commutative ring spectrum using Theorem 4.2.1,
where †nH yZp is again an explicit model for the Eilenberg–Mac Lane spectrum
constructed in Theorem 4.2.1. Since one can construct a Postnikov truncation of
a commutative ring spectrum as a commutative ring spectrum [6], we can produce
an example of this type by considering the truncation of the connective p–complete
complex K–theory spectrum

†2H�2kup! ku�2
p !H�0kup;

where the map ku�2
p !H�0kup is constructed as in [6, Theorem 8.1].

5 Applications

Let S=p be the mod p Moore spectrum and let R be a connective commutative
ring spectrum. We now present two calculations: first, we calculate .S=p/� THH.R/
when R has the property that ��.R/Š yZp Œx�=x

2 , where jxj> 0; second, we provide
a bound on topological Hochschild homology of R in terms of THH.H��.R// and
we give an explicit bound in the case ��.R/Š Z.p/Œx�, where jxj D 2n for n> 0.

5.1 Topological Hochschild homology of Postnikov truncations

Let R be a commutative ring spectrum with the property that ��.R/ Š yZp Œx�=x
2 ,

with jxj> 0. We will consider the THH–May spectral sequence

.S=p/�.THH.H yZp Ë†nH yZp//) .S=p/�.THH.R//

produced using the short filtration of a commutative ring spectrum R which was
given in Example 4.2.4. First, we compute the input of the .S=p/–THH–May spectral
sequence for this example.
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Proposition 5.1.1 Let p be an odd prime; then

.S=p/�.THH.H yZp Ë†nH yZp//ŠE.�1/˝Fp
P .�1/˝Fp

HH�.E.x//;

where jxj D n. The grading of HH�.E.x// is given by the sum of the internal and
homological gradings.

Proof Due to Bökstedt [9], there is an isomorphism

��.S=p^THH.H yZp//ŠE.�1/˝Fp
P .�1/:

Let S Ë †nS be the trivial split square-zero extension of S by †nS . Then HZ

and S Ë†nS are commutative S–algebras and there is an equivalence of commutative
S–algebras H yZp Ë †nH yZp ' H yZp ^ .S Ë †nS/. Since the functor S1

�
˝ .�/

commutes with coproducts in Comm Sp by [35], there are equivalences

THH.H yZp Ë†nH yZp//' THH.H yZp ^ .S Ë†nS//

' THH.H yZp/^THH.S Ë†nS/

of commutative ring spectra. Since S=p^H yZp'H Fp and the spectrum THH.H yZp/

is a H yZp–algebra, the spectrum S=p^THH.H yZp/ naturally has the structure of a
H Fp–module. Hence, there are isomorphisms

��.S=p^THH.H yZp/^THH.S Ë†nS//

Š ��
�
.S=p^THH.H yZp//^H Fp

.H Fp ^THH.S Ë†nS//
�

Š ��.S=p^THH.H yZp//˝Fp
H Fp�.THH.S Ë†nS//:

Now, we apply the Bökstedt spectral sequence

HH�.H Fp�.S Ë†
nS//)H�.THH.S Ë†nS/IFp/;

whose input is isomorphic to HH�.E.x//. If jxj is odd, then we have HH�.E.x//Š
E.x/˝Fp

�.�x/, following from [13, Chapter 10, Theorem 6.1] and the standard fact
TorE.x/
� .Fp;Fp/Š�.�x/ (see [36] for details). If jxj is even, then one easily computes

HHn.E.x//Š
8
<
:

E.x/ if � D 0;

†jxj.2i�1/Fpf1g if nD 2i � 1;

†jxj.2iC1/Fpfxg if nD 2i

for i � 1. There is an isomorphism of bigraded rings

HH�;�.E.x//ŠE.x/Œxi ;yj W i � 1; j � 0�=� ;
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where the degrees are given by jxi jD.2i; 2jxjiCjxj/ and jyj j D .2j C 1; 2j jxjC jxj/,
and the equivalence relation is the one that makes all products zero. (See Proposition 3.3
in [5] for the more general calculation of HH�.Fp Œx�=x

h/ when jxj D 2n, n> 0, and
.p; h/D 1.) The representatives in the cyclic bar complex for xi and yj are x˝2iC1

and 1˝ x˝2jC1, respectively. Whether jxj is even or odd, the Bökstedt spectral
sequence collapses, with no hidden multiplicative extensions, for bidegree reasons.

Corollary 5.1.2 (rigidity of THH mod p for Postnikov truncations) Let R be a
connective E1–ring spectrum with ��.R/Š yZp Œx�=x

2 and �i.R/Š 0 for i ¤ 0; k .
Suppose that

p 6� kC 1 mod 2kC 1:

Then the graded abelian group ��.S=p ^ THH.R// depends only on ��.R
�2k/,

ie only on p and k .

Proof The THH–May spectral sequence

.S=p/�;�.THH.H yZp Ë†2kH yZp//) .S=p/�.THH.R//

collapses since there are no possible differentials for bidegree reasons under the as-
sumptions on k with respect to p .

Remark 5.1.3 Corollary 5.1.2 can be considered a rigidity theorem in the sense that
S=p ^ THH does not see the first Postnikov k–invariant in the cases given by the
congruences above.

Corollary 5.1.4 Let p be a prime such that p 6� 2 mod 3. Then

(28) ��.S=p^THH.ku�2
p //ŠE.�1/˝Fp

P .�1/˝Fp
HH�.E.x//;

up to multiplicative extensions in the THH–May E1–term (so, in particular, (28) is an
isomorphism of graded abelian groups), where jxj D 2 and the degree of HH�.E.x//
in �� is given by the sum of the internal and homological degree.

5.2 Upper bounds on the size of THH

Many explicit computations are possible using the THH–May spectral sequence, for
example, the first author’s computations of topological Hochschild homology of the
algebraic K–theory of finite fields, in [1]. These computations are sufficiently lengthy
that they merit their own separate paper.
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In the present paper, in lieu of explicit computations using the THH–May spectral
sequence, we point out that the mere existence of the THH–May spectral sequence
implies an upper bound on the size of the topological Hochschild homology groups
of a ring spectrum: namely, if R is a graded-commutative ring and X� is a simplicial
finite set and E� is a generalized homology theory, then for any E1–ring spectrum A

such that ��.A/ŠR, we have that E�.X�˝A/ is a subquotient of E�.X�˝HR/.
Here HR is the generalized Eilenberg–Mac Lane spectrum of the graded ring R.

In particular:

Theorem 5.2.1 For all integers n and all connective E1–ring spectra A, the cardi-
nality of THHn.A/ is always less than or equal to the cardinality of THHn.H��.A//.

Below are more details in a more restricted class of examples, namely, the E1–ring
spectra A such that ��.A/Š Z.p/Œx�.

Definition 5.2.2 We put a partial ordering on power series with integer coefficients
as follows: given f;g 2 ZŒŒt ��, we write f � g if and only if, for all nonnegative
integers n, the coefficient of tn in f is less than or equal to the coefficient of tn in g .

Definition 5.2.3 Let A be a graded ring. We will say that a graded A–module M is
finite-type and free if there exists a function cW Z!N and an isomorphism of graded
A–modules a

n2Z

.†nA/˚c.n/ Š�!M:

We will say that M is finite-type if there exists an exact sequence of graded A–modules
of the form F1! F0!M ! 0 with F0 and F1 both finite-type and free.

Lemma 5.2.4 Let A be a Noetherian connective commutative graded ring. Then
the collection of bounded-below finite-type graded A–modules is closed under taking
kernels, cokernels, extensions, and tensor products over A. Consequently, every
bounded-below finite-type graded A–module admits a resolution by bounded-below
finite-type free graded A–modules, and if M and N are bounded-below finite-type
graded A–modules, then so is TorA

n;�.M;N / for each nonnegative integer n, and
furthermore, TorA

s;t .M;N / vanishes for all s > t .

Proof This is a bit of elementary algebra and we leave the proof as an exercise.

Lemma 5.2.5 is surely not a new result:
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Lemma 5.2.5 Suppose that A is a connective E1–ring spectrum such that the
ring ��.A/ is commutative and Noetherian, and suppose that the graded ��.A/–module
��.A^A/ is finite-type. Suppose that X� is a simplicial finite set. Then �n.X�˝A/

is a finitely generated �0.A/–module for all n.

Proof First, a quick induction: If we have already shown that the graded ��.A/–
module ��.A^m/ is connective and finite-type, then by Lemma 5.2.4, the input for the
Künneth spectral sequence

(29)
E2

s;t Š Tor��.A/s;t .��.A^A/; ��.A
^m//) �sCt .A

^mC1/;

dr W Er
s;t !Er

s�r;tCr�1;

is first-quadrant and hence strongly convergent, and consists of a finite-type graded
��.A/–module on each s–line. The differentials in spectral sequence (29) are ��.A/–
linear (see [20, Theorem IV.4.1], which is stated in terms of commutative S–algebras,
but the linearity of the spectral sequence differentials is formal and works for any model
of commutative ring spectra), so by Lemma 5.2.4, for all integers r � 2 we have that
each s–line in the Er –page of spectral sequence (29) is a finite-type graded ��.A/–
module. Any differential of length > s supported on the s–line in spectral sequence (29)
must be zero, but it is not impossible that the s–line could be hit by differentials of
arbitrarily long length. Let Er

s;� denote the graded ��.A/–module which is the s–line
in the Er –page of spectral sequence (29). Then, for each pair .s; t/, there exists
some N such that Er

s;t ŠErC1
s;t for all r �N . Consequently E1s;� is the colimit of a

sequence of graded ��.A/–module surjections EsC1
s;� !EsC2

s;� !� � � with the property
that, for each integer t , the sequence of �0.A/–modules EsC1

s;t ! EsC2
s;t ! � � � is

eventually constant. So the graded ��.A/–module E1s;� is finite-type.

Now ��.A
^mC1/ admits a filtration whose filtration quotients are the rows in the

E1–page of (29). For any fixed choice of integer N , we have that ��.A^mC1/ agrees
in grading degrees �N with a graded ��.A/–module given by finitely many of the
filtration quotients (eg the first N C 1 rows in the E1–page), due to the vanishing
property in Lemma 5.2.4. So by Lemma 5.2.4, the graded ��.A/–module ��.A^mC1/

is finite-type (and clearly connective), and we are ready to return to the inductive step.

So ��.A^m/ is a finite-type connective graded ��.A/–module for each m. In particular,
�n.A

^m/ is a finitely generated �0.A/–module for each n. Consequently in the
Bousfield–Kan-type spectral sequence

E1
s;t Š �t .A

^#.Xs//) �sCt .X�˝A/; dr W Er
s;t !Er

s�r;tCr�1
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obtained by applying �� to the simplicial ring spectrum X� z̋ A (here we are using
the pretensor product of Definition 3.2.1), each bidegree is a finitely generated �0.A/–
module, and the spectral sequence is half-plane with exiting differentials, hence also
strongly convergent by [8, Theorem 6.1]. Connectivity of each tensor power A^#.Xs/

implies that only finitely many bidegrees in the E1–page contribute to each total degree
in ��.X�˝A/. Consequently �n.X�˝A/ is a finitely generated �0.A/–module for
each integer n.

Theorem 5.2.6 Let n be a positive integer, p a prime number, and let E be an E1–
ring spectrum such that either ��.E/Š yZp Œx� or ��.E/ŠZ.p/Œx�, with x in grading
degree 2n. Then the Poincaré series of the mod p topological Hochschild homology
.S=p/�.THH.E// satisfies the inequality

X

i�0

�
dimFp

.S=p/�.THH.E//
�
t i � .1C .2p� 1/t/.1C .2nC 1/t/

.1� 2nt/.1� 2pt/
:

Proof It is a classical computation of Bökstedt (see [9]) that

.S=p/�.THH.H yZp//Š .S=p/�.THH.HZ.p///ŠE.�1/˝Fp
P .�1/;

with �1 and �1 in grading degrees 2p� 1 and 2p , respectively.

Now we use the splitting theorem of Schwänzl, Vogt, and Waldhausen, [40, Lemma 3.1]:
if K is a commutative ring, and W is a q–cofibrant S–algebra (ie, up to equivalence,
an A1–ring spectrum), then there exists a weak equivalence of S–modules (not
necessarily a weak equivalence of S–algebras!):

THH.W ^HK/' THH.W /^THH.HK/' .THH.W /^HK/^HK THH.HK/:

In our case, W is the free A1–algebra on a single 2n–cell, and K D yZp or Z.p/ .
Hence THH.W /^HK satisfies

.S=p/�.THH.W /^HK/Š .H Fp/�.THH.W //Š P .x/˝Fp
E.�x/;

by collapse of the Bökstedt spectral sequence for bidegree reasons. Hence

.S=p/�.THH.H yZp Œx�//Š .S=p/�.THH.HZ.p/Œx�//ŠE.�1; �x/˝Fp
P .�1;x/;

as a graded Fp–vector space (but not necessarily as Fp–algebras!), which has Poincaré
series

�
.1C .2p� 1/t/.1C .2nC 1/t/

�
=
�
.1� 2nt/.1� 2pt/

�
.
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Now we give a few amusing consequences of Theorem 5.2.6. Recall that a spectrum is
said to be finite-type if it is weakly equivalent to a CW–spectrum with finitely many
cells in each dimension; if a spectrum X is connective, then X is finite-type if and
only if the graded Z–module H�.X IZ/ is finite-type. We will say that X is p–local
finite-type if X is weakly equivalent to a p–local CW–spectrum with finitely many
S.p/–cells in each dimension. Again, if a p–local spectrum X is connective, then X is
p–local finite-type if and only if the graded Z.p/–module H�.X IZ.p// is finite-type.

Corollary 5.2.7 Let n be a positive integer, p a prime number, and let E be a p–
local finite-type E1–ring spectrum such that ��.E/ Š Z.p/Œx�, with x in grading
degree 2n> 0. Then:

� If p does not divide n, then THH2i.E/Š 0 for all i congruent to �p modulo n

such that i �pn�p�n, and THH2i.E/Š0 for all i congruent to �n modulo p

such that i � pn�p� n. In particular, THH2.pn�p�n/.E/Š 0.

� If p divides n, then THHi.E/ Š 0, unless i is congruent to �1, 0, or 1

modulo 2p .

Proof Since we have assumed that E is p–local finite-type, each homology group
Hs.EI��.E// is a finite-type graded ��.E/–module, and consequently each s–line
in the Atiyah–Hirzebruch spectral sequence

(30)
E2

s;t ŠHs.EI�t .E//) �sCt .E ^E/;

dr W Er
s;t !Er

sCr;t�rC1

is a finite-type graded ��.E/–module. Connectivity of E ensures strong conver-
gence of the spectral sequence, as in [8, Theorem 12.2]. As the Atiyah–Hirzebruch
spectral sequence is the spectral sequence obtained by applying E–homology to a
CW–decomposition of E , an easy analysis of the spectral sequence of a tower of cofiber
sequences shows that the spectral sequence differentials are graded ��.E/–module
morphisms. Consequently Lemma 5.2.4 implies that each s–line in the Er –page of
spectral sequence (30) is a finite-type graded ��.E/–module, for each r � 2. Now an
argument exactly like that used in the proof of Lemma 5.2.5 implies that each s–line in
the E1–page of (30) is also a finite-type graded ��.E/–module, and that ��.E ^E/

is a finite-type graded ��.E/–module. So we can make use of Lemma 5.2.5 later in
this proof.

Now we split the proof into two cases, the case where p−n and the case where p j n:
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Case 1 If p does not divide n, then the largest integer i such that the graded poly-
nomial algebra P .�1;x/ is trivial in grading degree 2i is 2.pn�p� n/. (This is a
standard exercise in elementary number theory. In schools in the United States it is
often presented to students in a form like “What is the largest integer N such that you
cannot make exactly 5N cents using only dimes and quarters?”) Triviality of P .�1;x/

in grading degree 2.pn�p� n/ also implies triviality of P .�1;x/ in grading degree
2.pn�p�n/�2.pCn/, hence the triviality of E.�1; �x/˝Fp

P .�1;x/ in grading
degree 2.pn� p � n/, hence (multiplying by powers of x or �1 ) the triviality of
E.�1; �x/˝Fp

P .�1;x/ in all grading degrees � 2.pn�p�n/ which are congruent
to �2p modulo 2n or congruent to �2n modulo 2p .

So .S=p/2i.THH.E// vanishes if i � pn�p� n and i ��p modulo n or i ��n

modulo p . The long exact sequence

� � � ! .S=p/2iC1.THH.E//! THH2i.E/
p�!THH2i.E/! .S=p/2i.E/! � � �

then implies that THH2i.E/ is p–divisible. By Lemma 5.2.5, THH2i.E/ is a finitely
generated �0.E/–module. Since �0.E/ Š Z.p/ is a PID, one knows its finitely
generated modules explicitly, and the only finitely generated Z.p/–module which is
p–divisible is the trivial module.

Case 2 If p divides n, then E.�1; �x/˝Fp
P .�1;x/ is concentrated in grading

degrees congruent to �1, 0, and 1 modulo 2p . An argument exactly as in the previous
part of this proof then shows that if i is not congruent to �1, 0, or 1 modulo 2p , then
THHi.E/ must be a p–divisible finitely generated Z.p/–module, hence is trivial.

Appendix A: The THH–May spectral sequence with filtered
coefficients

In this appendix, we briefly describe how to generalize the THH–May spectral se-
quence to include filtered coefficients; ie given a pointed simplicial finite set Y� , a
connective generalized homology theory E� (as in Definition 3.4.1), a decreasingly
filtered commutative monoid I� in C , and a decreasingly filtered I�–module M� in C
(see Definition A.1.1), there is a spectral sequence

(31) E1
�;� DE�;� .Y�˝ .E0I�IE0M�//) Y�˝ .I0IM0/;

where Y�˝.I0IM0/ is defined in Definition A.2.1 and E0M� is defined in Remark A.1.2.
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A.1 Filtered coefficients

Recall from Remark 3.1.5 and Section 4.1 that a cofibrant object in Comm CN op
(with

the model structure created by the forgetful functor to CN op
, where CN op

is equipped
with the projective model structure) is a cofibrant decreasingly filtered commutative
monoid in C in the sense of Definition 3.1.2.

Definition A.1.1 Let I� be a cofibrant object in Comm CN op
. By a cofibrant decreas-

ingly filtered I�–module we mean a cofibrant object in CN op
with the structure of an

I�–module (equivalently a symmetric I�–bimodule); ie there are natural transformations

 `W I�˝Day M�!M� and  r W M�˝Day I�!M�

satisfying the usual commutative diagrams for a module over a commutative monoid
along with the commutativity of the diagram

I�˝Day M�
�

//

 `

%%

I�˝Day M�

 r

yy

M�

where � is the factor swap map that we have by the definition of CN op
as a symmetric

monoidal category with respect to ˝Day .

Remark A.1.2 There is an associated graded symmetric E�
0
I�–bimodule, E�

0
M� ,

which can be defined in a similar way to E�
0
I� ; ie as an object in C , it is

E�0 M� D
W

i�0 Mi=MiC1;

and to define it as a symmetric E0I�–bimodule we define maps

Ii=IiC1 ^Mj=MjC1!MiCj=MiCjC1

using the structure maps  ` and  r along with the structure maps gmW Mm!Mm�1

and the structure maps of I� and then extend to a map

�W
i�0 Ii=IiC1

�^ �Wi�0 Mj=MjC1

�! W
i�0 MiCj=MiCjC1

in the same way as in Definition 3.1.6.
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A.2 Loday construction in the pointed setting

Definition A.2.1 For a finite pointed set S write �S for the basepoint of S and
S 0 for S � f�Sg. Given a cofibrant commutative monoid R in a model category C
satisfying Running Assumption 2.0.3 define a functor

f Set� �R–mod!R–mod

by sending .S;N / to N ^Vs2SR and on morphisms by sending a based map of finite
sets S ! T to the composite map

N ^Vs2SR'N ^Vs2f �1.�T /
R^Vs2S�f �1.�T /

R!X ^Vt2T R

defined as follows: the first map is the factor swap map and the second map is the
smash product of the iterate of the (right) action map

N ^Vs2f �1.�T /
R!N

and the map
V

s2S�f �1.�T /
R! V

s2S�f �1.�T /
R

as defined as in Definition 3.2.1. This functor naturally extends to a functor

.�/ z̋ .RI �/W sf Set� �R–mod! sR–mod

by sending .Y�;N / to the simplicial R–module with n–simplices

N ^Vy2Y 0n
R

and using the functoriality of the functor f Set��R–mod!R–mod to define the face
and degeneracy maps. We can therefore define

Y�˝ .RIN /D jY�˝ .RIN /j:

Remark A.2.2 This construction is sufficiently general that given a cofibrant object I�

in Comm CN op
and a cofibrant decreasingly filtered I�–module M� in C , we can define

an object in CommN op

Y�˝ .I�IM�/:
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A.3 The fundamental theorem of the May filtration with coefficients

Recall that the fundamental theorem of the May filtration may be described using the
slogan “higher order Hochschild homology commutes with passage to the associated
graded commutative ring spectrum”.

Definition A.3.1 Let C satisfy Running Assumptions 2.0.3 and 2.0.4. Given a pointed
simplicial finite set Y� , a cofibrant object I� in Comm CN op

, and a cofibrant decreasingly
filtered I�–module M� , we define the May filtration of M0 ^

V
y2Y0

I0 to be the
cofibrant decreasingly filtered I�–module in C : Y�˝ .I�IM�/.

Remark A.3.2 Running Assumption 2.0.4 is needed to ensure that Y�˝ .I�IM�/ is
actually a cofibrant object in CN op

.

Theorem A.3.3 (Fundamental Theorem of the May filtration with coefficients) There
is an equivalence of E�

0
I�–modules

E�0 .Y�˝ .I�˝M�//' Y�˝ .E�0 I�;E
�
0 M�/:

Proof To prove the theorem requires generalizing all of the definitions and lemmas
from Section 3.3 to the pointed setting. The proofs of each of these generalizations
of the lemmas from Section 3.3 follow in an evident way from the proofs that are
already given. We therefore do not reprove them. The proof of the fundamental theorem
of the May filtration also follows from the evident generalizations of the lemmas in
Section 3.3 in the same way as the proof of Theorem 3.3.10.

Remark A.3.4 The construction of the spectral sequence is exactly the same and
therefore we do not discuss it here. To prove convergence and strong convergence of
the spectral sequence we must prove the lemmas and theorems of Section 3.4 in the
pointed setting, but these generalizations follow easily. We therefore produce a spectral
sequence of the form (31) in the same way as before.

Appendix B: The Bousfield–Kan spectral sequence

B.1 The BKSS and nullhomotopic maps out of diagrams

Definition B.1.1 Given a small category D , a category A, and a functor F W D!A,
we adopt this notation: we will write D0 for the set of objects of D ; we will write D1

for the set of morphisms in D ; if n is a positive integer, we will write Dn for the set of
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composable ordered n–tuples of morphisms in D ; given a composable ordered n–tuple
d D .X0

f1�!� � � fn�!Xn/ of morphisms in D , we will write zd for Xn ; we will write
sr.F/ for the simplicial replacement of F , that is, the simplicial object of A given by

a

d2D0

F. zd/ //
a

d2D1

F. zd/oo

oo //

//

a

d2D2

F. zd/
oo

oo

oo

//

//

// � � �
oo

oo

oo

oo

with face and degeneracy maps induced by composition and inserting of an identity
morphism, respectively, as operations on composable ordered tuples of morphisms
in D . (This construction is standard; see eg [10, Section XI.5.1].)

The following theorem seems to have had a long history: It seems as though it was
understood in some form, at least in the setting of simplicial sets, by Bousfield and Kan
when they wrote [10], and a proof is sketched in Corollary 9.8 and Proposition 9.11 of
Dugger’s unpublished notes [17], limited to the setting of topological spaces, but clearly
using the technology of [18] which applies to much more general model categories.
Finally, a really clear and general treatment can be derived from Theorems 3.2 and 3.3
of Gambino’s paper [21], as explained in [21, Section 4]. Gambino’s result only requires
that C be a simplicial model category.

Theorem B.1.2 Suppose that D is a small category such that the projective model
structure on CD exists. Suppose that F W D! C is projectively cofibrant. Then the
natural map jsr.F/j ! colimF in C is a weak equivalence.

Theorem B.1.2 is our justification for the following notational convention: in this
section and the following section, we will write hocolim for the Bousfield–Kan model
for the homotopy colimit, as in [10]; that is, hocolimF D jsr.F/j.

Definition B.1.3 Let D be a small category, and write Ab for the category of abelian
groups. We will write E for the allowable class, in the sense of relative homological
algebra (see [30, Chapter IX]), on the category of functors AbD , given as follows: a
short exact sequence 0! F 0! F ! F 00! 0 in AbD is in E if and only if the short
exact sequence of abelian groups 0! F 0.d/! F.d/! F 00.d/! 0 is split for all
objects d of D .

In the case where the underlying model category is simplicial sets (not a stable model cat-
egory!), the spectral sequence of Theorem B.1.4 was constructed by Bousfield and Kan
[10, Chapter XII]. It is a widespread bit of folklore that the construction also works in
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more general model categories (see eg the discussion preceding [25, Proposition A.10]),
so we give only a sketch of the proof of Theorem B.1.4.

In Theorem B.1.4, as everywhere in this paper, we let C be as in Running Assumption
2.0.3, but in the proof we sketch, we only use the assumptions that C is cocomplete,
stable, closed and simplicial, and left proper.

Theorem B.1.4 (the Bousfield–Kan spectral sequence (BKSS) for generalized coho-
mology of a homotopy colimit) Let D be a small category and let F W D! C be a
functor such that F.d/ is cofibrant for all d 2 obD . Let E be as in Definition B.1.3.
Let X be a fibrant object of C . Then there exists a spectral sequence

(32) E2
s;t Š .Rs

E limd2D/.Œ†
tF.d/;X �/) Œ†t�s hocolim F;X �

which is strongly convergent if the functor limW AbD ! Ab is of finite E–injective
dimension (ie if there exists N 2 Z such that .Rs

E
lim/.F/ vanishes for all s > N

and all F 2 ob AbD ).

Sketch of proof It is routine to show that the cofibrancy assumption on each F.d/

is enough to imply that the simplicial object sr.F / of C is Reedy-cofibrant, and
consequently that the geometric realization jsr.F /j is a homotopy colimit for F . Reedy-
cofibrancy plays another role here, however: the latching comparison maps Ln sr.F /!
sr.F /n are each cofibrations in C , and consequently (by Quillen’s “condition SM7(b)”,
which holds for any closed simplicial model category by [38, Proposition 2.3]) the
natural map .Ln sr.F /˝�n/qLn sr.F /˝ı�n .sr.F /n ˝ ı�n/ ! sr.F /n ˝�n is a
cofibration in C . By [39, Lemma 3.1], we can build jsr.F /j as a colimit colimnjsr.F /jn
of objects jsr.F /jn given inductively by jsr.F /j0 D sr.F /0 and for each positive
integer n a pushout square

(33)

.Ln sr.F /˝�n/qLn sr.F /˝ı�n .sr.F /n˝ ı�n/ //

��

sr.F /n˝�n

��

jsr.F /jn�1
// jsr.F /jn

Now since each F.d/ is assumed cofibrant,
`

d2D0 F.d/D sr.F /0D jsr.F /j0 is also
cofibrant. Consequently, when n D 1, square (33) is a pushout square in which the
two objects on the left are cofibrant, and the top vertical map is a cofibration, so left
properness of C implies that square (33) is also a homotopy pushout square, and that
jsr.F /j0! jsr.F /j1 is a cofibration, hence that jsr.F /j1 is cofibrant.
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That was the initial step in an induction. The inductive step works as follows: Since
0˝ ı�n Š 0˝�n Š 0, another application of Quillen’s condition SM7(b) gives
us that, since Ln sr.F / is cofibrant (because it is a colimit of cofibrant objects), the
map Ln sr.F /˝ ı�n ! Ln sr.F /˝ �n is a cofibration, and hence we have that
.Ln sr.F /˝�n/qLn sr.F /˝ı�n .sr.F /n˝ı�n/ is cofibrant, again using left properness
of C . So, if we have already shown that jsr.F /jn�1 is cofibrant, then the bottom
horizontal map in (33) is a pushout of a cofibration, hence is a cofibration, hence
jsr.F /jn is cofibrant; and furthermore the square (33) is a homotopy pushout square,
with horizontal cofiber †n sr.F /n by an argument dual to Proposition X.6.3 of [10].
By induction, we have a tower of cofiber sequences

jsr.F /j0 //

Š

��

jsr.F /j1 //

��

jsr.F /j2 //

��

� � �

sr.F /0 † sr.F /1 †2 sr.F /2

and, applying the generalized cohomology theory on Ho.C/ represented by X , we get
spectral sequence (32).

Similarly, we have the following theorem:

Theorem B.1.5 (the Bousfield–Kan spectral sequence (BKSS) for generalized homol-
ogy of a homotopy colimit) Let D be a small category and let F W D! C be a functor
such that F.d/ is cofibrant for all d 2 obD . Let E be as in Definition B.1.3. Let H�

be a connective generalized homology theory on C , as defined in Definition 3.4.1. Then
there exists a strongly convergent spectral sequence

E2
s;t Š .LE

s colimd2D/.Ht .F.d///)HsCt hocolim F:

Proof The argument is essentially the same as in Theorem B.1.4, which is only a
generalization of the proof of [10, XII.5.7]. Since hocolim F Š jsr.F /j is the cofiber
of the map a

n2N

jsr.F /jn id�T���!
a

n2N

jsr.F /jn;

the exactness and additivity conditions in Definition 3.4.1 ensure that the homology of
hocolim F is the colimit of the homologies of the finite stages jsr.F /jn ; ie the spectral
sequence computes H�.hocolim F / as claimed. Strong convergence is automatic since
this is a half-plane spectral sequence with exiting differentials, as in [8].
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The rest of this section is occupied with an application of Theorem B.1.4. Here is the
basic problem to be solved:

Question B.1.6 Suppose we are given a diagram of objects in our model category C ,
and a map from the diagram to some particular object X . Suppose that the map from
each of the objects in the diagram to X is nullhomotopic. Do all these maps from
objects in the diagram to X factor through some homotopy colimit of the diagram,
such that the map from the homotopy colimit to X is also nullhomotopic?

The answer to this question is not always yes: it depends on the diagram, and on X ,
and on the maps to X ! The only tool we really need to answer Question B.1.6 is
Theorem B.1.4, so while Question B.1.6 does not appear in [10] or in [39] or in any
other reference we know of, nevertheless the question seems natural enough (and, in
some situations, unavoidable enough) and its solution, in Theorem B.1.7, is a direct
enough application of ideas from the 1970s that we do not claim that anything in this
section is really “new”.

Theorem B.1.7 Let C be as in Running Assumption 2.0.3. Suppose that D is a
small category, F W D! C is a functor such that F.d/ is cofibrant for each d 2 obD ,
X is a fibrant object of C and X W D! C the constant X–valued functor on C , and
�W F!X is a natural transformation such that �.d/ is nullhomotopic for each d 2obD .
Let E be as in Definition B.1.3, and suppose that the functor limW AbD ! Ab has
finite E–injective dimension. If .Rn

E
limd2D/.Œ†

nF.d/;X �/Š 0 for all n > 0, then
the resulting map hocolim F !X is also nullhomotopic.

Proof The terms in the E2–page of spectral sequence (32) which can contribute to
Œ†0 hocolim F;X � in the E1–page are those of the form .Rn

E
limd2D/.Œ†

nF.d/;X �/.
Consequently the vanishing hypothesis in the statement of the theorem ensures that
the projection map Œhocolim F;X �! .R0

E
limd2D/.ŒF.d/;X �/ Š limd2DŒF.d/;X �

is an isomorphism, and consequently that the map induced by �, which represents zero
in limd2DŒF.d/;X �, also represents zero in Œhocolim F;X �.

B.2 Application to truncated cubes

In this subsection, we prove a few lemmas on a particular special case of Theorem B.1.7
which arises in Section 4.2. The main result here is Lemma B.2.3, which we use in
our proof of Theorem 4.2.1. As in Section 4.2, we will write Sp for the category of
symmetric spectra in pointed simplicial sets with the positive flat stable model structure.
We will continue to write Ab for the category of abelian groups.
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Definition B.2.1 Let D be the small category with all objects and nonidentity mor-
phisms drawn below:

.1; 1; 1/ .1; 1; 0/

.0; 1; 1/ .0; 1; 0/

.1; 0; 1/ .1; 0; 0/

.0; 0; 1/

Lemma B.2.2 Let F W Dop!Ab be a functor. Then the following statements all hold :

� R0
E

limF Š limF is a subgroup of F.1; 0; 0/˚F.0; 1; 0/˚F.0; 0; 1/.

� R1
E

limF is a subquotient of

F.1; 1; 1/˚3˚F.1; 1; 0/˚2˚F.1; 0; 1/˚2˚F.0; 1; 1/˚2:

� R2
E

limF is a subquotient of F.1; 1; 1/.
� Rn

E
limF vanishes for all n> 2.

Proof That R0
E

limF Š limF is a standard consequence of lim being left exact. For
the remaining statements, we first find all the relative cofree objects, ie the functors
AbDop

that are in the image of the cofree functor C W Ab�jD
opj D AbobDop ! AbDop

,
which is right adjoint to the functor .evd /d2Dop . The relative cofree objects are the
products of the diagrams of the form Ci 2 AbDop

, which we can think of as functors
Cijk W Ab! AbDop

, as displayed in Figure 2.

Now we resolve F by relative cofree objects. We have a long exact sequence

(34) 0! F !M0!M1!M2! 0;

where the Mi are defined as follows:

M0 D
a

i;j ;k

Cijk.F.i;j ;k//;

M1 D C011.F.1;1;1//˚C101.F.1;1;1//˚C110.F.1;1;1//˚C001.F.1;0;1//
˚C100.F.1;1;0//˚C010.F.0;1;1//˚C010.F.1;1;0//

˚C100.F.0;1;1//˚C100.F.1;0;1//;

M2 D C001.F.1;1;1//˚C010.F.1;1;1//˚C100.F.1;1;1//:

Algebraic & Geometric Topology, Volume 18 (2018)



A May-type spectral sequence for higher topological Hochschild homology 2655

C111 D

2
666666666664

X X

X X

X X

X

id

id

id

idid

id

id

id
id

3
777777777775

C101 D

2
666666666664

0 0

0 0

X X

X

id

id

id

id0

id

0

id
0

3
777777777775

C011 D

2
666666666664

0 0

X X

0 0

X

id

0

id

0id

id

id

0

id

3
777777777775

C110 D

2
666666666664

0 X

0 X

0 X

0

id

id

0

idid

0

id

id

id

3
777777777775

C100 D

2
666666666664

0 0

0 0

0 X

0

id

id

id

idid

0

0

id

id

3
777777777775

C001 D

2
666666666664

0 0

0 0

0 0

X

id

id

id

idid

id

id

0

0

3
777777777775

C010 D

2
666666666664

0 0

0 X

0 0

0

id

id

0

0id

id

id

id

id

3
777777777775

Figure 2

Clearly (34) is a resolution of F by E–projective objects in AbDop
. For each object d

of D , each morphism in (34) has the property that its evaluation at d is the composite,
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in Ab, of a split epimorphism followed by a split monomorphism. In other words, (34)
is an E–resolution of F , and we can use it to compute right E–derived functors. (See
[30, Chapter IX] for these ideas from relative homological algebra.)

So, to compute R�
E

limF , we can omit F from (34) and apply lim, producing the
cochain complex

(35) 0!N0! N1! N2! 0;

where the Ni are defined as follows:

N0 D F.1; 1; 1/˚F.1; 1; 0/˚F.1; 0; 1/˚F.0; 1; 1/
˚F.1; 0; 0/˚F.0; 1; 0/˚F.0; 0; 1/;

N1 D F.1; 1; 1/˚F.1; 1; 1/˚F.1; 1; 1/˚F.1; 0; 1/˚F.1; 1; 0/
˚F.0; 1; 1/˚F.1; 1; 0/˚F.0; 1; 1/˚F.1; 0; 1/;

N2 D F.1; 1; 1/˚F.1; 1; 1/˚F.1; 1; 1/:

Consequently Rn
E

limF is a subquotient as claimed, and vanishes for all n> 2. (One
could also compute the maps in (35) to get an explicit presentation of R1

E
limF

and R2
E

limF , but while interesting, this is unnecessary for the present paper.)

Lemma B.2.3 Suppose we have a commutative diagram in Sp

(36)

A.1;1;1/ A.1;1;0/

A.0;1;1/ A.0;1;0/

A.1;0;1/ A.1;0;0/

A.0;0;1/

f
.1

;1
;1

/

.0
;1

;1
/

f
.1;1;1/

.1;1;0/

f
.1;1;1/

.1;0;1/

f
.1;1;0/

.1;0;0/

f
.1

;1
;0

/

.0
;1

;0
/

f
.0;1;1/

.0;1;0/

f
.0;1;1/

.0;0;1/

f
.1;0;1/

.1;0;0/

f
.1

;0
;1

/

.0
;0

;1
/

and suppose there is a fibrant symmetric spectrum Z satisfying the conditions1

� Z�1.A.i;j ;k// vanishes whenever i C j C k D 2, and

� Z�1.A.1;1;1// and Z�2.A.1;1;1// vanish.

1Recall that Z�m.A.i;j ;k// is a standard notation for Œ†mA.i;j ;k/;Z� .
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Regard (36) as a functor AW D ! Sp. Then the natural map of abelian groups
Œhocolim A;Z�! limd2Dop ŒA.d/;Z� is an isomorphism.

In particular, if we make the additional assumption that Z0.A.i;j ;k// vanishes whenever
i C j C k D 1, then Œhocolim A;Z� vanishes.

Proof By Theorem B.1.7, the obstruction to Œhocolim A;Z�! limd2Dop ŒA.d/;Z�

being an isomorphism arises from the groups

.Rs
E lim

d2D
/.Z�sA.d//

for s > 0. By Lemma B.2.2, .R1
E

limd2D/.Z
�1A.d// vanishes as long as Z�1Ai;j ;k

vanishes for all triples .i; j ; k/ satisfying i C j C k � 2. Also by Lemma B.2.2,
.R2

E
limd2D/.Z

�2A.d// vanishes as long as Z�2A1;1;1 vanishes. Finally, the group
.Rs

E
limd2D/.Z

�sA.d// vanishes for all s > 2. This proves the first claim. If
we additionally assume that Z0.A.i;j ;k// vanishes whenever i C j C k D 1, then
limd2Dop ŒA.d/;Z� vanishes and consequently Œhocolim A;Z� vanishes as well.
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