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Wild translation surfaces and infinite genus

ANJA RANDECKER

The Gauss–Bonnet formula for classical translation surfaces relates the cone angle of
the singularities (geometry) to the genus of the surface (topology). When considering
more general translation surfaces, we observe so-called wild singularities for which
the notion of cone angle is not applicable any more.

We study whether there still exist relations between the geometry and the topology for
translation surfaces with wild singularities. By considering short saddle connections,
we determine under which conditions the existence of a wild singularity implies
infinite genus. We apply this to show that parabolic or essentially finite translation
surfaces with wild singularities have infinite genus.

53C10; 37D50, 37E35, 57M50

Classical translation surfaces are objects at the intersection of many different fields,
such as dynamical systems, Teichmüller theory, algebraic geometry, topology and
geometric group theory. The history of translation surfaces starts in the time of the
article [9]. Fox and Kershner obtained translation surfaces in the theory of billiards
when “unfolding” polygons with rational angles.

The most visual description of classical translation surfaces is given by considering
finitely many polygons in the Euclidean plane. If every edge of the polygons can
be identified with a parallel edge of the same length so that we obtain a connected,
orientable surface, then the resulting object is a translation surface. It is locally flat at
all points with the possible exception of the former vertices of the polygons. These
exceptional points are called singularities and they are cone points of the resulting
surface with cone angle 2�k for some k � 2.

A natural generalization is to drop the condition that the number of polygons has to
be finite. When gluing infinitely many polygons, the local flatness still holds but the
behaviour of the singularities is more diverse than in the classical case. This kind of
translation surface is often called infinite in the literature, but we will not follow this
convention here and simply call it a translation surface.

Recently, the interest in this generalization of translation surfaces has grown: There are
results on Veech groups by Chamanara [7], Hubert and Schmithüsen [16] and Przytycki,
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Schmithüsen and Valdez [18], results on the dynamics by Hooper [11], Treviño [23]
and Lindsey and Treviño [17], and results on infinite coverings of finite translation
surfaces (especially for the wind-tree model) by Delecroix, Hubert and Lelièvre [8],
Hubert, Lelièvre and Troubetzkoy [15], Avila and Hubert [1], Hooper and Weiss [14],
Hooper, Hubert and Weiss [13] and Frączek and Ulcigrai [10]. However, while we have a
classification of finite translation surfaces by studying strata of the moduli space, there is
no systematic description for the generalized ones so far. A first step towards such a clas-
sification can be to understand and classify the singularities of the translation surfaces.

When considering translation surfaces with interesting singularities, it is natural to
start with translation surfaces with exactly one singularity. So, a lot of the recently
described examples are Loch Ness monsters, ie surfaces with infinite genus and one
end (see Richards [21] for the definition of ends and the classification of noncompact
surfaces using ends). For instance, these examples include the baker’s map surface
by Chamanara [7], the Arnoux–Yoccoz surfaces by Bowman [3], the ladder surface
by Hooper [12], the stack of boxes by Bowman [2] and the exponential surface in the
author’s thesis [20].

For all these mentioned translation surfaces, the singularity is a so-called wild singularity
and the topology is always the same, namely infinite genus and one end. The number of
ends can easily be increased by gluing in half-cylinders but it is hard to reduce the genus.
This leads to the conjecture that the existence of a wild singularity implies infinite genus.

In full generality, this conjecture is not true, as we will see in Example 5.6, but in
our main theorem we provide necessary conditions for a wild singularity to imply
infinite genus. These conditions include xossiness (short for existence of short saddle
connections intersected not by even shorter saddle connections), which describes the
existence of arbitrarily short geodesic segments between singularities, so that there
is a lower bound on the length of intersecting segments of that type. We motivate in
Section 4 that xossiness is not a strong condition, as it is fulfilled, for instance, if the
geodesic flow is defined for all times in almost every direction.

Theorem 1 Let .X;A/ be a translation surface with the following properties:

(i) The singularities of .X;A/ are discrete.

(ii) There exists a wild singularity � that fulfills xossiness.

(iii) There exist two directions �1 and �2 for which the geodesic flows F�1
and F�2

are recurrent.

Then X has infinite genus.
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For example, this theorem is applicable for all of the Loch Ness monster examples
listed above (although for each of them it is easy to check by hand that the genus
is infinite).

On the other hand, the theorem is not applicable to so-called half-translation surfaces
or reflection–translation surfaces, where edges of the polygons can be identified by
translations or by reflections. In particular, there exist infinite reflection–translation
surfaces with wild singularities and genus 0 such as the ones coming from the con-
struction by de Carvalho and Hall [6, Theorem 42]. This might seem contradictory
as it is a standard procedure to pass from a reflection–translation surface to a double
cover which is a translation surface to use the richer theory of translation surfaces.
However, when doubling a capped-off cylinder in a reflection–translation surface, it
might form a handle. This introduces additional genus and so the double cover of a
genus 0 reflection–translation surface can indeed be of infinite genus.

The article is structured as follows. We start with the necessary definitions on translation
surfaces, their singularities and rotational components in Section 1. In Section 2,
a criterion is developed how infinite genus can be detected using saddle connections,
ie geodesics that connect singularities. We establish the existence of short saddle
connections in Section 3 and study the existence of lower bounds of the length of
intersecting saddle connections. In Section 4, we define the notion of xossiness and
illustrate it by proving two criteria that imply xossiness. The proof of the main theorem
is carried out in Section 5, followed by two applications and a discussion on whether
the conditions in the main theorem are necessary.
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1 Basics on translation surfaces and their singularities

As there are several nuances in generalizing the notion of classical translation surfaces,
we first make clear the definition that we use in this article.

Definition 1.1 ((Finite) translation surface) A translation surface .X;A/ is a con-
nected surface X with a translation structure A on X, ie a maximal atlas on X such
that the transition functions are translations. Via the translation structure we can pull
back the Euclidean metric from R2 to X.

The translation surface .X;A/ is called finite if the metric completion X is a compact
surface and X nX is discrete.

Note that there exist examples of translation surfaces which are not finite and such
that the metric completion is not compact but a surface as well as ones such that the
metric completion is compact but not a surface. For the first one consider the Euclidean
plane R2 and for the second one the baker’s map surface studied by Chamanara [7] or
the icicled surface that is defined in Example 5.5.

For a translation surface .X;A/ we call the points in X nX singularities of .X;A/. In
contrast to finite translation surfaces, very exotic behaviour of singularities can occur.
Consider for example the open disk B.0; 1/�R2. It is a translation surface where the
set of singularities is the unit circle, hence not discrete. This leads to the undesirable
feature that for every point in the surface and every direction in S1, the geodesic flow
from that point in this direction is only defined for finite time. This behaviour makes it
quite hard to study dynamical properties, so we restrict ourselves to a certain class of
translation surfaces in this article.

Convention 1.2 (Translation surfaces have discrete singularities) For all translation
surfaces in this article, the set of singularities is discrete in the metric completion, ie
for each singularity � , there exists an � > 0 such that � is the only singularity in
B.�; �/�X.

This convention makes it also possible to distinguish different types of singularities in
the following way:

Definition 1.3 (Cone angle, infinite angle and wild singularities) Let .X;A/ be a
translation surface and � a singularity of .X;A/.

Algebraic & Geometric Topology, Volume 18 (2018)
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(i) The singularity � is called a cone angle singularity of multiplicity k > 0 if there
exist
� � > 0,
� an open neighbourhood B of � in X, and
� a k –cyclic translation covering from B n f�g to the once-punctured disk

B.0; �/ n f0g �R2 .
If k D 1 then the singularity � is also called a removable singularity or flat
point.

(ii) The singularity � is called an infinite angle singularity or cone angle singularity
of multiplicity 1 if there exist
� � > 0,
� an open neighbourhood B of � in X, and
� an infinite cyclic translation covering from B n f�g to the once-punctured

disk B.0; �/ n f0g �R2.

(iii) The singularity � is called wild if it is neither a cone angle nor an infinite angle
singularity.

For cone angle and infinite angle singularities, all geometric information is encoded in
the multiplicity. To understand wild singularities in a similar way, we have to describe
them in more detail. The first attempt at this was done by Bowman and Valdez [4]. We
recall it very briefly.

Definition 1.4 (Space of linear approaches) Let .X;A/ be a translation surface,
x 2X and � > 0. We define

L�.x/ WD
˚
 W .0; �/!X W  is a geodesic curve and lim

t!0
 .t/D x

	
:

If x is a wild singularity then we can deduce from Definition 1.3 that there exists
no � > 0 such that all geodesic curves starting in x can be extended to have at least
length � . Therefore, we consider equivalence classes instead of curves: 1 2 L�.x/
and 2 2 L�

0

.x/ are called equivalent if 1.t/D 2.t/ for every t 2 .0;minf�; �0g/.

The space
L.x/ WD

G
�>0

L�.x/=�

is called the space of linear approaches of x and the equivalence class Œ � of  2L�.x/
is called the linear approach to the point x .

Algebraic & Geometric Topology, Volume 18 (2018)
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basepoint

� � ea�i

� � eb�i

Figure 1: Examples for i�.U / with I D Œa; b�; in the first two examples we
have b� a< 2� whereas in the last example we have b� a> 2� .

Every L�.x/ can be embedded in L.x/ and also in L�0.x/ for every �0> 0 with �0� � .
The family of all spaces L�.x/ together with these embeddings is a direct system and
L.x/ is the colimit of this direct system.

We now describe the topology with which we endow the space of linear approaches.

Definition 1.5 (Topology on L.x/) Let .X;A/ be a translation surface and x 2X.
For � >0 we can define the uniform metric d� on L�.x/ using the translation metric dX

on X :
d�.1; 2/D sup

0<t<�

dX .1.t/; 2.t//:

The uniform metric defines a topology on L�.x/. As L.x/ is the colimit of the direct
system of the spaces L�.x/, we can define the final topology on L.X /, ie the finest
topology such that all embeddings L�.X / ,! L.X / are continuous.

The last concept we recall from [4] is that of a rotational component as a class of linear
approaches with a one-dimensional translation structure on it. The idea is to mimic the
notion of “going around a singularity” for cone angle and infinite angle singularities.

For � > 0 and a generalized interval I, ie a nonempty connected subset of R, we
consider the infinite strip fz 2 C W Re.z/ < log �; Im.z/ 2 Ig � C . Via the injective
map

f W C! .C n f0g/�R; z 7! .ez; Im.z//;

we can spiral the strip around the puncture at 0. We endow the image U of the strip
under f with the pullback of the Euclidean metric on C via the projection to the first
component. Some examples of the projection of U are sketched in Figure 1.

Algebraic & Geometric Topology, Volume 18 (2018)
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Such an image U together with an embedding in X defines an angular sector, as is
made precise in the following definition.

Definition 1.6 (Angular sector) Let .X;A/ be a translation surface. An angular
sector is a triple .I; �; i�/ of a generalized interval I, an � > 0 and an isometric
embedding i� of

U WD f .fz 2C W Re.z/ < log �; Im.z/ 2 Ig/

into X.

For an angular sector .I; �; i�/ and y 2 I, the limit limx!�1.i� ı f /.x C iy/ is a
point in X and independent of y . This point is called the basepoint of the angular
sector .I; �; i�/.

If .I; �; i�/ is an angular sector with basepoint x 2 X then we can define a map
f.I;�;i�/W I ! L.x/ as follows. For every y 2 I, the image of the map

i� ıf W fz 2C W Re.z/ < log �; Im.z/D yg !X

is a geodesic segment of length � and hence induces an element in L�.x/. Let
f.I;�;i�/.y/ be the corresponding linear approach in L.x/.

In the next definition, we use angular sectors to define an equivalence relation on the
space L.x/ of linear approaches of a point x . In an informal way, we can describe it
as two linear approaches being “contained” in the image of the same angular sector.

Definition 1.7 (Rotational component) Let .X;A/ be a translation surface, x 2X

and Œ1�; Œ2� 2 L.x/. The linear approaches Œ1� and Œ2� are called R–equivalent
if there exists an angular sector .I; �; i�/ with basepoint x and y1;y2 2 I such that
f.I;�;i�/.y1/D Œ1� and f.I;�;i�/.y2/D Œ2�.

The R–equivalence class Œ � of Œ � 2 L.x/ is called the rotational component of x .

We say that a linear approach Œ � is contained in a rotational component c if Œ �D c

holds. The set of all linear approaches assigned to a given angular sector .I; �; i�/ can
be described as

V .I; �; i�/ WD ff.I;�;i�/.y/ W y 2 Ig:

Then V .I; �; i�/ is a subset of the space L.x/ of linear approaches. All linear ap-
proaches in V .I; �; i�/ are contained in the same rotational component c , where
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c WD f.I;�;i�/.y/ for an arbitrary y 2 I. In other words, the map

'.I;�;i�/W V .I; �; i�/!R; f.I;�;i�/.y/ 7! y;

is inverse to f.I;�;i�/ and hence V .I; �; i�/ and I are in one-to-one correspondence.

We want to define a topology on a rotational component Œ � of x by considering
all angular sectors .I; �; i�/ with basepoint x such that I is an open interval and
f.I;�;i�/.y/ is contained in Œ � for every y 2 I. The union of the images of all such
f.I;�;i�/ covers the rotational component except for possibly two linear approaches
Œleft� and Œright�. In this case, half-closed intervals I D .a; b� with f.I;�;i�/.b/ 2

fŒleft�; Œright�g have to be allowed as open sets to obtain a cover of Œ �.

We choose the collection of the corresponding sets V .I; �; i�/ as a basis of the topology.
In particular, any such '.I;�;i�/ for an open interval I is a homeomorphism.

Definition 1.8 (Translation structure on rotational components) Let .X;A/ be a
translation surface, x 2 X and Œ � a rotational component of x that contains more
than one linear approach. Then

f.V .I; �; i�/; '.I;�;i�// W .I; �; i�/ an angular sector with basepoint x; I open;
f.I;�;i�/.I/� Œ �g

[
˚
.V .I; �; i�/; '.I;�;i�// W .I; �; i�/ an angular sector with basepoint x; I D .a; b�;

f.I;�;i�/.I/� Œ �; f.I;�;i�/.b/ 2 fŒleft�; Œright�g
	

forms an atlas of Œ �.

Therefore, Œ � is a one-dimensional manifold, possibly with boundary. As the transition
functions are actually translations in R, Œ � even carries a one-dimensional translation
structure.

Using this one-dimensional translation structure on Œ �, we can pull back the Euclidean
metric from R to Œ � and for this we can measure the length of a rotational component.

2 Criterion for infinite genus

The purpose of this article is to show that a translation surface with certain conditions
has infinite genus. We start by giving a feasible criterion for the infinity of genus in
this section.

The genus of a surface is often defined by Betti numbers or by the idea of handles
of a surface. Instead of those approaches, we will employ a definition in this section
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that uses the number of nonseparating curves. For a connected surface X, a simple
closed curve  W Œ0; l �!X is called nonseparating if X with the image of  removed
is connected. In the same way, we say that a set of simple closed curves f1; : : : ; ng

is nonseparating if X with the images of 1; : : : ; n removed is connected.

Similarly, we say that a closed curve  in X is nonseparating if X nim. / is connected
and a set of closed curves f1; : : : ;ng in X is nonseparating if X nim.1/[� � �[im.m/

is connected. Note that the notion of a nonseparating set of curves is in both cases
stronger than being a set of nonseparating curves.

Definition 2.1 (Genus) Let X be a connected, orientable surface. The genus of X

is g 2N if the following equivalent conditions are true:

(i) The maximum cardinality of a nonseparating set of disjoint curves in X is g .

(ii) The maximum cardinality of a nonseparating set of curves in X is 2g .

Within the meaning of the previous definition, a connected, orientable surface X is
said to have infinite genus if for every n 2N D f0; 1; : : : g there exists a nonseparating
set of curves in X with cardinality n. This is equivalent to X containing subsurfaces
of arbitrarily large genus.

In Proposition 2.2, we specialize this definition to a criterion for the case of translation
surfaces using saddle connections, ie geodesic curves  W Œ0; l �!X such that  ..0; l//
is contained in X and  .0/;  .l/ 2X nX. The criterion involves so-called left-to-right
curves that connect one side of a given curve to the other side. This notion is made
precise in Definitions 2.3 and 2.4.

Proposition 2.2 (Saddle connections and infinite genus) Let .X;A/ be a translation
surface and � a singularity. Suppose that for every n� 1 there exists a set of n saddle
connections from � to itself such that the saddle connections intersect exactly in � and
the set has left-to-right curves. Then X has infinite genus.

We will prove the proposition by several lemmas and start with a precise definition of
left-to-right curves.

Definition 2.3 (Left-to-right curves of curves in X ) Let X be a connected, orientable
surface, n � 1 and 1; : : : ; n simple closed curves in X that intersect pairwise in
exactly one point x 2X.

(i) Let � > 0 be small enough that the �–neighbourhood N of 1 is a tubular
neighbourhood. Then N is topologically an annulus. So N n im.1/ consists of

Algebraic & Geometric Topology, Volume 18 (2018)
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n

N

n�1

:::

2

1

Figure 2: The connected components N �
l

and N �r are the ones that are
bounded by n and segments of the gray curve and of some 1; : : : ; n�1 .

two connected components Nl and Nr . Considering the underlying orientation
of im.1/, we call points in Nl and Nr points on the left of 1 and points on
the right of 1 , respectively.

(ii) A curve in X n im.1/ from a point on the left of 1 to a point on the right of 1

is called a left-to-right curve of 1 .

(iii) Choose a tubular neighbourhood N of n and let Nl and Nr be as before. We
have that Nl n .im.1/ [ � � � [ im.n�1// consists of one or more connected
components (see Figure 2). The boundary of such a connected component
consists of a subset of the boundary of N and of subsets of the images of
some i . As the curves 1; : : : ; n intersect in exactly one point, there is only
one connected component N �

l
whose boundary contains im.n/.

We call a point in this connected component N �
l

point on the left of n with
respect to 1; : : : ; n�1 . Similarly, we define N �r and points on the right of n

with respect to 1; : : : ; n�1 . Then a curve in X n .im.1/[ � � � [ im.n// is
called a left-to-right curve of n with respect to 1; : : : ; n�1 if it connects a
point on the left of n with respect to 1; : : : ; n�1 to a point on the right of n

with respect to 1; : : : ; n�1 .

(iv) We say that the set of curves f1; : : : ; ng has left-to-right curves if every curve
has a left-to-right curve with respect to the other ones.

Algebraic & Geometric Topology, Volume 18 (2018)
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For a translation surface .X;A/ and a curve in X, for instance a saddle connection, we
cannot find such a tubular neighbourhood N as in Definition 2.3(i) but use a slightly
different neighbourhood instead. So we can define left-to-right curves for a special
type of curves in X in a similar way while avoiding the singularity.

Definition 2.4 (Left-to-right curves of curves in X ) Let .X;A/ be a translation
surface, � a singularity, n� 1 and 1; : : : ; n simple closed curves in X [f�g whose
images contain � exactly as startpoint and endpoint and that are disjoint in their
interiors.

(i) Let l be the length of 1 and let � > �0 > 0 be sufficiently small. Consider the
set N �X [f�g which is the union of B.�; �/ and the open �0–neighbourhood
zN � X of the segment 1.Œ�; l � ��/. Again, zN n im.1/ consists of two

connected components zNl and zNr . In this situation, we call points in zNl points
on the left of 1 and points in zNr points on the right of 1 , with respect to the
orientation of 1 .

(ii) A curve in X n im.1/ from a point on the left of 1 to a point on the right of
1 is called a left-to-right curve of 1 .

(iii) Choose a neighbourhood N of n and let zNl and zNr be as before. Again,
it is possible that zNl n .im.1/ [ � � � [ im.n�1// consists of more than one
connected component. In this case, we can avoid the indicated behaviour by
choosing �0 > 0 small enough that none of the curves 1; : : : ; n�1 intersects
zNl or zNr . We call a point in these newly chosen zNl and zNr a point on the left

of n with respect to 1; : : : ; n�1 and point on the right of n with respect to
1; : : : ; n�1 , respectively.

Then a curve in X n .im.1/[ � � � [ im.n// is called a left-to-right curve of n

with respect to 1; : : : ; n�1 if it connects a point on the left of n with respect
to 1; : : : ; n�1 to a point on the right of n with respect to 1; : : : ; n�1 .

(iv) We say that the set of curves f1; : : : ; ng has left-to-right curves if every curve
has a left-to-right curve with respect to the other ones.

Note that the existence of left-to-right curves as in Definitions 2.3 and 2.4 does not
depend on the choice of � or �0 as long as these values are small.

By means of left-to-right curves we can now formulate a criterion for a set of curves to
be nonseparating.

Algebraic & Geometric Topology, Volume 18 (2018)
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Lemma 2.5 (Criterion for simple closed curves to be nonseparating) Let X be
a connected, orientable surface, n � 1 and 1; : : : ; n simple closed curves in X

that intersect pairwise in exactly one point x 2 X. Then the set f1; : : : ; ng is
nonseparating if and only if the set has left-to-right curves.

Proof We prove this statement by induction on the number n of curves. For the base
case we show that the curve 1 is nonseparating if and only if it has a left-to-right
curve.

If 1 is nonseparating then we can take any point on the left and any point on the right
of 1 and, as X n im.1/ is connected, there exists a curve connecting these two points
without intersecting 1 .

Now assume we have such a left-to-right curve ı1 connecting a point xl on the left
of 1 and a point xr on the right of 1 . Choose two points x1;x2 2X n im.1/. We
have to show that there exists a curve ˇ in X n im.1/ that connects x1 and x2 .

Let N , Nl and Nr be as in Definition 2.3. As X is connected, there exists a curve ˇ0

in X that connects x1 to x2 . If ˇ0 does not intersect 1 then we can choose ˇ WD ˇ0.
If it does then let ˇ0C be the subcurve of ˇ0 from x1 to the first intersection of ˇ0

and N and let ˇ0� be the subcurve of ˇ0 from the last intersection of ˇ0 and N to x2

(see Figure 3 for a sketch).

1

N

x1

x2

ˇ0

ˇ0C

ˇ0�

Figure 3: This configuration of 1 and ˇ0 is treated in Case 2.
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Case 1 (the endpoint of ˇ0C and the startpoint of ˇ0� both belong to Nr or both to Nl )
Then we can choose a curve between these two points in the connected set Nr or Nl

and the concatenation of this curve with ˇ0C and ˇ0� gives us a curve ˇ as desired.

Case 2 (the endpoint of ˇ0C belongs to Nl or to Nr and the startpoint of ˇ0� belongs
to the other) For simplicity of notation, let ˇ0C end in Nl and ˇ0� start in Nr . Again,
as Nl and Nr are connected we find curves connecting the endpoint of ˇ0C to xl in Nl

and connecting xr to the startpoint of ˇ0� in Nr . Concatenating all these curves with
the left-to-right curve ı1 in the correct order yields a curve ˇ as desired.

This concludes the proof of the base case. For the inductive step, let n � 2 and
f1; : : : ; ng be a set of simple closed curves that intersect pairwise exactly in x

and are such that the set f1; : : : ; n�1g is nonseparating if and only if the set has
left-to-right curves.

Let f1; : : : ; ng be a nonseparating set of curves. We show for every i 2f1; : : : ; ng that
i has a left-to-right curve with respect to 1; : : : ; i�1; iC1; : : : ; n by choosing a
point on the left and a point on the right of i with respect to 1; : : : ; i�1; iC1; : : : ; n .
As X n fim.1/[ � � � [ im.n/g is connected, there exists a curve connecting the two
chosen points without intersecting one of the curves 1; : : : ; n .

Now assume that the set f1; : : : ; ng has left-to-right curves. Then f1; : : : ; n�1g

has left-to-right curves and is hence nonseparating. Let ın be the left-to-right curve
of n with respect to 1; : : : ; n�1 connecting a point xl on the left of n to a point xr

on the right of n .

We have to show that for two chosen points x1;x2 2X n .im.1/[� � �[ im.n// there
exists a curve ˇn in X n .im.1/[ � � � [ im.n// that connects x1 and x2 . As the set
f1; : : : ; n�1g is nonseparating, there exists ˇ0n in X n .im.1/[� � �[ im.n�1// that
connects x1 and x2 .

If ˇ0n does not intersect n then we can choose ˇn WDˇ
0
n. If it does then it also intersects

one of the connected components N �
l

or N �r of N n .im.1/[ � � � [ im.n//. This is
because the boundaries of all other connected components contain only one point of
im.n/ which is the point xD im.1/\� � �\im.n/. Now let ˇ0C be the subcurve of ˇ0n
from x1 to the first intersection of ˇ0n and N �

l
[N �r and let ˇ0� be the subcurve of ˇ0n

from the last intersection of ˇ0n and N �
l
[N �r to x2 . Then we proceed as in the base

case and construct a curve ˇn in X n .im.1/[� � �[ im.n// that connects x1 and x2 .

This concludes the proof of the inductive step and hence the proof of the lemma.
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It follows by the same arguments that the criterion in Lemma 2.5 is also true for saddle
connections or, more generally, simple closed curves in X whose image contains
singularities exactly as startpoint and endpoint. While the beginning of the proof of
the base case is literally the same, we have to choose an � > 0 small enough that
all intersection points of ˇ0 and 1 are contained in the �0–neighbourhood zN of the
segment 1.Œ�; l � ��/. Then we can use zN instead of N and finish the proof of the
base case in the same way as before. The replacement of N by zN also makes the
proof of the inductive step work for this type of curves as the connected components
of zN n im.1/ can also play the role of the connected components N �

l
and N �r .

Altogether, we have the following version of Lemma 2.5:

Lemma 2.6 (Criterion for curves in X to be nonseparating) Let .X;A/ be a trans-
lation surface, � a singularity, n� 1 and 1; : : : ; n simple closed curves in X [f�g

whose images contain � exactly as startpoint and endpoint and that are disjoint in
their interiors. Then the set f1; : : : ; ng is nonseparating if and only if the set has
left-to-right curves.

The statement of Lemma 2.6 is already close to our goal. However, as “genus” is
a concept for surfaces we have to consider curves in X instead of curves in X to
determine infinite genus. Because of this, we show in Lemma 2.8 how to replace curves
in X by curves in X without disturbing their left-to-right curves.

In the proof of the lemma, we use some curves whose existence is ensured by the
following proposition:

Proposition 2.7 (Balls around singularities are path-connected) Let .X;A/ be a
translation surface, � a singularity and � > 0. Then B.�; �/\X is path-connected.

Proof For a fixed � > 0, let x;y 2 B.�; �/ \ X and ı > 0 small enough that
d.x; �/ < � � 3ı and d.y; �/ < � � 3ı . As � is contained in the metric completion
of X, there exists a point z 2X with d.�; z/ < ı . Then we have

d.x; z/� d.x; �/C d.�; z/ < �� 2ı

and d.y; z/ < �� 2ı .

As the metric of X is the path-length metric, there exists a curve x in X which
connect x to z and has at most length �� ı . This means that, for every point in the

Algebraic & Geometric Topology, Volume 18 (2018)



Wild translation surfaces and infinite genus 2675

image of x , the distance to � is at most d.�; z/C .�� ı/ < � . Hence, x is a curve
in B.�; �/\X.

In the same way we can define a curve y in B.�; �/ \ X from y to z and, by
concatenation of x with the reversed curve of y , we obtain a curve from x to y in
B.�; �/\X. This means that B.�; �/\X is path-connected.

The path-connectedness is also fulfilled for B.�; �/ � X. The proof is literally the
same as the metric of X is also the path-length metric.

Lemma 2.8 (Nonseparating curves in X give rise to nonseparating curves in X ) Let
.X;A/ be a translation surface, � a singularity, n�1 and f1; : : : ; ng a nonseparating
set of simple closed curves in X [f�g whose images contain � exactly as startpoint
and endpoint and that are disjoint in their interiors. Then there also exists a set of simple
closed curves f 0

1
; : : : ;  0ng in X that is nonseparating.

Proof By Lemma 2.6, there exist left-to-right curves ıi of i with respect to 1; : : : ;

i�1; iC1; : : : ; n for every i 2 f1; : : : ; ng. Choose � > 0 small enough that the
�–neighbourhood B.�; �/ of � avoids all ıi and that @B.�; �/ intersects im.i/ at
least two times for every i 2 f1; : : : ; ng. For every i 2 f1; : : : ; ng, the first intersection
point of @B.�; �/ and im.i/ (with respect to the orientation of im.i/) is called xCi
and the last intersection point is called x�i .

We now replace the curves 1; : : : ; n in X [ f�g by curves in X that have similar
properties. For this choose a point z 2 B.�; �/ n f�g that will play the role of the
current intersection point � . Because of the path-connectedness of B.�; �/\X (see
Proposition 2.7) we have a curve in B.�; �/ n f�g from z to xC

1
and a curve from x�

1

to z (see Figure 4). Now let  0
1

be the closed curve that is the concatenation of the
curve from z to xC

1
, the subcurve of 1 from xC

1
to x�

1
and the curve from x�

1
to z .

If  0
1

intersects itself then we smooth the crossing by joining other pairs of subcurves
at the crossing. Hence, we can assume that  0

1
is simple. Also, as � is chosen small

enough, the curve ı1 is still a left-to-right curve of  0
1

with respect to 2; : : : ; n .

Now we do the same construction for the rest of the curves successively: For the
construction of  0i we use a curve from xCi to the prospective intersection point z that
does not leave B.�; �/ and does not intersect the curves  0

1
; : : : ;  0

i�1
. We find such

a curve by taking any curve from xCi to z in B.�; �/ n f�g and instead of possibly
crossing some  0j we follow  0j in a sufficiently small tubular neighbourhood without
intersecting it until we reach z . Then we define  0i as the closed curve that consists of
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Figure 4: The subcurves of the i that are contained in B.�; �/ are replaced
by curves in B.�; �/ n f�g .

a curve from z to xCi as described, the subcurve of i from xCi to x�i and similarly a
curve from x�i to z . Again, the curve ıi is still a left-to-right curve of  0i with respect
to  0

1
; : : : ;  0

i�1
; iC1; : : : ; n .

So we have a set of simple closed curves  0
1
; : : : ;  0n that are intersecting exactly in z .

Also, the set has left-to-right curves ı1; : : : ; ın so it is nonseparating by Lemma 2.5.

By the criterion in Lemma 2.5, we can show that a set of curves is nonseparating but
so far we do not have candidates of nonseparating curves for which we could use the
criterion. Therefore, we introduce a generalization of the well-known fact that saddle
connections of finite translation surfaces are nonseparating.

For this, recall that the geodesic flow F� on a translation surface .X;A/ in a given
direction � 2 S1 is an action of R, defined on a subset of X. For a point x 2X and a
time t 2R, the point F� .t;x/ is the unique point in X (if it exists) such that x and
F� .t;x/ are connected by a geodesic segment of direction � and length t . A geodesic
flow F� is called recurrent if for almost every point x 2 X it holds that, for every
neighbourhood U �X of x and every t0 2R, there exists a t > t0 with F� .t;x/ 2U.

Lemma 2.9 (Saddle connections are nonseparating) Let .X;A/ be a translation
surface such that for two directions �1; �2 2 S1 the geodesic flows F�1

and F�2
are

recurrent. Furthermore, let  be a saddle connection starting and ending at the same
singularity. Then  is nonseparating.
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Proof Consider a geodesic segment s� im. / and the geodesic flow F� in a direction
� 2 S1 that is transversal to the direction of  and such that the flow is recurrent.
So there exists a point x 2 s that returns to s under the flow F� after time t1 . In
particular, there exists a time t0 with 0< t0 � t1 such that F� .x; t0/ 2 im. / for the
first time. Additionally, as X is orientable,  is geodesic and F� is a geodesic flow,
the curve ıW Œ0; t0�!X, t 7! F� .x; t/, is approaching im. / from the other side than
it is leaving. Then, for every � > 0 the curve ı�W Œ�; t0 � ��! X, t 7! F� .x; t/, is a
curve in X n im. /. The curve ı� or its reversed curve connects a point on the left side
of  to a point on the right side of  , so it is a left-to-right curve of  . Hence,  is
nonseparating.

Note that there exist translation surfaces of infinite but also of finite area such that the
geodesic flow is not recurrent for all but at most one direction. We describe such a
translation surface of finite area in Example 5.6 and note that it has in fact separating
saddle connections.

We now have all ingredients to prove Proposition 2.2, which was stated at the beginning
of the section.

Proof of Proposition 2.2 As saddle connections are curves that fulfill the conditions of
Lemma 2.8, we have a nonseparating set of n simple closed curves in X for every n�1.
By Definition 2.1, this means that the genus of X exceeds every number n 2N , so X

has infinite genus.

3 Intersection of saddle connections

In the previous section, we showed that saddle connections are a good tool to prove
infinite genus. However, these saddle connections cannot intersect arbitrarily and they
need to have left-to-right curves. Therefore, we introduce the immersion radius of saddle
connections, which is related to the minimal length of intersecting saddle connections.

For translation surfaces with finitely many singularities which are all cone angle or
infinite angle singularities, the lengths of the saddle connections are bounded from below.
This is because for every singularity � there exists an �� > 0 such that B.�; �� / n f�g

is locally flat. Therefore, the lengths of the saddle connections are bounded from below
by

minf�� W � a singularity; B.�; �� / n f�g locally flatg:
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For wild singularities, this argument does not work. In fact, for a wild singularity, the
opposite is true.

Proposition 3.1 (Existence of short saddle connections) Let .X;A/ be a translation
surface and � a wild singularity. Then, for every � > 0, there exists a saddle connection
connecting � to itself of length less than � .

Proof As the singularities are discrete by Convention 1.2, there exists an �0 > 0 such
that � is the only singularity in B.�; �0/�X. We distinguish between the following
two cases.

Case 1 (there exists a rotational component of � which is bounded in at least one
direction) This means � itself is an obstacle to extending the rotational component in
that direction. Hence, there exist curves from � to itself shorter than any given length,
for instance shorter than � . We now pass to the universal cover zX of X and consider
a lift of such a short curve in the metric completion of zX. The metric completion of zX
is a nonpositively curved metric space and so, by [5, Part II, Theorem 4.13], there
exists a geodesic in the metric completion of zX which is homotopic to the lift of the
original curve. As all additional points in the metric completion of zX are projected
to � in X, the image of the chosen geodesic in X is either a saddle connection or it
passes through � at least once. In the latter case, it contains a regular point and so a
subsegment is in fact a saddle connection which then has length less than � .

Case 2 (every rotational component is unbounded) Assume there exists a minimal
length � < �0 of saddle connections from � to itself. Then, for every linear approach
Œ � to � , there exists a representative  2 L�.�/. Therefore, there exists a cyclic
translation covering from B.�; �/ n f�g to the once-punctured disk B.0; �/ n f0g �R2.
This means that � is not a wild singularity.

Even if there exist arbitrarily short saddle connections, a closed geodesic in X cannot
be intersected by arbitrarily short saddle connections, as we will see in the discussion
below. We can give a lower bound on the length of intersecting saddle connections by
the immersion radius of a closed geodesic.

The immersion radius of a point or of a curve is defined similarly to the well-known
injectivity radius. In contrast to the injectivity radius, allow the image of the disk that
we map into X to overlap itself.
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Definition 3.2 (Immersion radius) Let .X;A/ be a translation surface.

(i) For a regular point x 2X, we define the immersion radius ir.x/ by

ir.x/ WD d.x;X nX / 2 .0;1�:

This is well defined as X is a metric space and the set of singularities X nX is
discrete and hence closed in X. Note that the open ir.x/–neighbourhood of x

does not contain a singularity but its closure does (if .X;A/ has at least one
singularity).

(ii) For a curve  W Œ0; l �!X, we define the immersion radius ir. / by

ir. / WD inffir. .t// W t 2 Œ0; l �g:

As the image of the curve  is compact, we can cover it by finitely many disks
B. .ti/; ir. .ti/// around points  .ti/. Then the set @

�S
B. .ti/; ir. .ti///

�
is compact and does not intersect im. /, thus its distance to im. / is positive.
As this distance is a lower bound for the immersion radius of the curve, this
means that ir. / > 0 still holds and again the open ir. /–neighbourhood of
im. / is locally flat.

Note that every saddle connection that intersects  has at least a length of
2 ir. / > ir. /.

When generalizing the notion of immersion radius to saddle connections, we have to
be careful as saddle connections are not curves in X but in X. Therefore, we have to
slightly modify the notion of immersion radius which compels us to restrict to so-called
well-immersed saddle connections. These are defined by considering the corresponding
linear approaches.

Remark 3.3 (Saddle connections and linear approaches) Recall that every saddle
connection  W Œ0; l � ! X is geodesic and has by definition an orientation. So the
curve j.0;l/ and its reversed curve define two linear approaches, one belonging to
emanating from a singularity and one belonging to going into a singularity. We call the
first linear approach ŒC� and the second one Œ��.

Definition 3.4 (Well-immersed saddle connections) Let .X;A/ be a translation
surface, �C and �� two (not necessarily different) singularities and  W Œ0; l �!X

a saddle connection from �C to �� . Let ŒC� and Œ�� be linear approaches as in
Remark 3.3.
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We say that  is a well-immersed saddle connection if there exists an �C>0 and an angu-
lar sector ..0; �/; 2�C; i2�C/ with basepoint �C such that ŒC� 2 im.f..0;�/;2�C;i2�C

//

and the same is true for Œ�� with some �� > 0 and angular sector ..0; �/; 2��; i2��/
with basepoint �� .

Note that for a rotational component of length strictly greater than � , there always
exists an angular sector ..0; �/; �; i�/ for some � > 0. This is true because the length
of the longest representative of a linear approach varies lower-semicontinuously in a
rotational component and hence has a minimum on a compact set of linear approaches
(see [4, Corollary 2.7 and the subsequent remark]). Hence, if for a saddle connection 
the linear approaches ŒC� and Œ�� are both contained in rotational components of
length strictly greater than � then  is well immersed.

For well-immersed saddle connections, we can now also define the immersion radius.

Definition 3.2 (Immersion radius continued) (iii) Now let  W Œ0; l �!X be a well-
immersed saddle connection from �C to �� and let C be the representative of
ŒC� in L�C.�C/. Because the length of ŒC� is at least � , the image of C is
contained in a locally flat, open half-disk (see Figure 5). Suppose there exists a
saddle connection that intersects C . Then it has to start outside of the image of
i2�C and go through the half-annulus-like set

.i2�C ıf /
�
fz 2C W log �C � Re.z/ < log 2�C; Im.z/ 2 .0; �/g

�
to intersect the image of C . This means that the intersecting saddle connection
has at least length �C .

A similar statement holds true for � and �� . Furthermore, c WD jŒ�C;l����

is a curve as in (ii) with a compact image and a well-defined immersion radius
�c WD ir.c/ > 0.

Then minf�C; �c ; ��g is a lower bound for the length of saddle connections that
intersect  . We define the (generalized) immersion radius ir. / by

ir. / WD sup
˚
minf�C; �c ; ��g W �C and �� small enough that

angular sectors as described above exist
	
:

In the case of a regular point x 2X, the term “immersion radius” is reasonable as an
open disk of radius ir.x/ can be immersed and the image under the immersion is a
locally flat neighbourhood of the point x . Similarly, for a closed geodesic  , an open
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2�C�C

�C
C

Figure 5: Any saddle connection that intersects the well-immersed saddle
connection  close to its startpoint �C has length at least �C .

�



�

Figure 6: An example of a trapezoidal neighbourhood of a saddle connection 

cylinder of height 2 � ir. / and circumference the length of  can be immersed and the
image is a locally flat tubular neighbourhood of the curve  .

In the case of well-immersed saddle connections, we can immerse an open trapezoid
of height 2 � ir. / so that the median has the same length as the saddle connection (see
Figure 6). The image forms a neighbourhood of the interior of the saddle connection
and around the singularities we have the images of angular sectors of length � .

We finish this section by stating that the immersion radius varies continuously in
the surface.
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Lemma 3.5 (Immersion radius is continuous) For a translation surface .X;A/, the
map irW X ! .0;1�, x 7! ir.x/, is continuous.

Proof For all x1;x2 2X and � 2X nX, we have

ir.x1/D d.x1;X nX /� d.x1; �/� d.x1;x2/C d.x2; �/:

Therefore, it follows that

ir.x1/� d.x1;x2/C inf
�2X nX

d.x2; �/D d.x1;x2/C ir.x2/

and interchanging x1 and x2 yields jir.x1/ � ir.x2/j � d.x1;x2/. So the map is
Lipschitz continuous and hence continuous.

4 Singularities that fulfill xossiness

The discussion on the immersion radius in the previous section shows that for well-
immersed saddle connections, there exists a lower bound on the length of intersecting
saddle connections. To fulfill the conditions of Proposition 2.2, we are especially
interested in translation surfaces for which there exist infinitely many saddle connections
with such a lower bound on the length of intersecting saddle connections. We say that
the corresponding singularities fulfill xossiness — short for existence of short saddle
connections intersected not by even shorter saddle connections.

Definition 4.1 (Xossiness) Let .X;A/ be a translation surface and � a singularity.
We say that � fulfills xossiness if for every � > 0 there exists a saddle connection s

that connects � to itself, that has length less than � and is such that there exists a
ı WD ı.s/ > 0 such that no saddle connection of length less than ı intersects s .

Here and in the following, by saying “two saddle connections do not intersect” we
mean that the images of the interiors of the saddle connections do not intersect. If we
consider two saddle connections that connect the same singularity to itself then their
images naturally have a common point, namely the singularity.

As the lengths of saddle connections starting in a fixed cone angle or infinite angle
singularity are bounded away from 0, cone angle and infinite angle singularities do
not fulfill xossiness. In the remainder of the section, we give two conditions for a wild
singularity to fulfill xossiness.
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Proposition 4.2 (Xossiness and the geodesic flow) Let .X;A/ be a translation
surface and � a wild singularity. Suppose that for a dense set of directions, for almost
every point, the geodesic flow is defined for all time. Then � fulfills xossiness.

Proof Fix �0 > 0 such that � is the only singularity in B.�; �0/ � X and choose
� > 0 with � < �0. By Proposition 3.1, there exists a saddle connection sW Œ0; l �!X

of length l less than �
2

.

If there exists no saddle connection of length less than �
2

that intersects s then s is a
saddle connection as desired with ı.s/D �

2
.

Now suppose there exists a saddle connection s0W Œ0; l 0�!X of length l 0 less than �
2

that intersects s in s.t/ with t 2 .0; l/. Choose a direction � so that for almost
every point the geodesic flow F� is defined for all time and so that � is so close
to the direction of s0 that F� .s

0.0/; Œ0; l 0�/ intersects s in s.t2/ with t2 2 .0; t/ and
F� .s

0.l 0/; Œ0;�l 0�/ intersects s in s.t3/ with t3 2 .t; l/ (see Figure 7). Furthermore,
choose t1 2 .0; t2/ and t4 2 .t3; l/ so that s.t1/ and s.t4/ are points for which the
geodesic flow F� is defined for all time, in particular backward and forward.

Let s.Œt1; t4�/ flow backward and forward under F� until it hits a singularity. This
singularity is in both cases � because of the choice of � < �0. By this, we obtain
an open parallelogram in X that contains a singularity on two opposite edges but
no singularities in the vertices as the vertices are images of t1 or t4 under F� (see
Figure 8).

The geodesic g in the parallelogram between the two appearances of � on the boundary
as in Figure 9 is a saddle connection of length at most l C l 0 � � . The singularity �
has a distinct distance to the left edge and to the right edge of the parallelogram and,
as the interior of the parallelogram is locally flat, this distance is a lower bound for the
immersion radius. Therefore, there exists a ı > 0 such that no saddle connection of
length less than ı can intersect g . Hence, g is a saddle connection, as desired.

The second criterion uses a technical condition on the rotational components of a wild
singularity. The idea is again to find short well-immersed saddle connections.

Proposition 4.3 (Xossiness and rotational components) Let .X;A/ be a translation
surface and � a wild singularity. Suppose that for every rotational component of �
of length exactly � there exists an angular sector ..0; �/; �; i�/ such that the image of
f..0;�/;�;i�/ is contained in this rotational component. Then � fulfills xossiness.
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Figure 7: A saddle connection s from � to itself that is intersected by a
saddle connection s0 and two trajectories of the geodesic flow in a direction
close to the direction of s0
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Figure 8: The segment s.Œt1; t4/� is flowed forward and backward by F�
until it hits a singularity for the first time.
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Figure 9: The new saddle connection g cannot be intersected by saddle
connections that are shorter than the distance of g to the left edge and to the
right edge of the parallelogram.
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Proof Fix �0> 0 such that � is the only singularity in B.�; �0/�X and choose � > 0

with � < �0. By Proposition 3.1, there exists a linear approach Œ � for which the longest
representative  has length l < �

2
.

For every t 2 .0; l/, the immersion radius of  .t/ is greater than 0 but at most
d. .t/; �/� t . So we can define the immersion radius along  as the map

ir W .0; l/! .0; l/; t 7! ir. .t//:

For every time t 2 .0; l/, there exists a geodesic in X of length ir .t/ connecting  .t/
to a singularity. Since t C ir .t/ < �0, this singularity is again � .

To prove that � fulfills xossiness, we show the existence of a time t0 such that ir .t0/
is realized by two different geodesics in X. Then we can join the two occurrences of
the singularity � at the endpoints of the geodesics in B. .t0/; ir .t0//. The condition
on the rotational components of length � makes sure that we obtain a well-immersed
saddle connection s for which the immersion radius is defined as in Definition 3.2(iii).
This means that there exists a lower bound on the length of saddle connections that
intersect s in its interior.

For every t 2 .0; l/, there exists a locally flat disk B. .t/; ir .t//. We define the locally
flat subset

B WD
[

t2.0;l/

B. .t/; ir .t//�X:

Furthermore, we consider a lift of  to the universal cover, together with lifts of
B. .t/; ir .t// for every t 2 .0; l/. The union of the disks is a simply connected set
and we develop it into the plane along the lift of  in the following way: let z 2R2

be the holonomy vector of  and define

zB WD
[

t2.0;l/

B.z .t/; ir .t//�R2:

The set zB is open and simply connected (see Figure 10). Furthermore, there exists a
map from zB to X which is a translation covering to B and which can be extended to
a map of the closure of zB to X. The preimages of � 2 X under this map are called
representatives of � . Note that the singularity � is always the same on the boundary
of B �X while the representatives are not identified on the boundary of zB �R2.

Define the set R WD fr 2 @ zB W r is a representative of �g �R2. Every sequence in R

converging to a point x 2 R2 corresponds to a sequence in X where all elements
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r

r 0

z

Figure 10: The open and simply connected, developed set zB �R2

are � , so the limit is � and hence x is a representative of � . Therefore, R is a closed
set in R2.

For every representative r 2R we define the set

Tr WD ft 2 .0; l/ W d.z .t/; r/D ir .t/g:

Then the set Tr is closed in .0; l/ and connected:

� Let .tn/n2N � Tr be a sequence converging to a time t 2 .0; l/. We have

d.z .tn/; r/� d.z .t/; r/C d.z .t/; z .tn//D d.z .t/; r/Cjt � tnj

and

d.z .tn/; r/� d.z .t/; r/� d.z .t/; z .tn//D d.z .t/; r/� jt � tnj:

As irW X ! .0;1� is continuous (see Lemma 3.5), ir is also continuous and
we deduce

ir .t/D lim
n!1

ir .tn/D lim
n!1

d.z .tn/; r/D d.z .t/; r/:

So t is in Tr and therefore Tr is closed in .0; l/.

� For the proof of the connectedness consider t1 and t3 in Tr and t2 2 .0; l/

such that t1 < t2 < t3 . Then the circle around z .t2/ through r is contained
in the closure of B.z .t1/; ir .t1// [ B.z .t3/; ir .t3// (see Figure 11). This
implies that for every r 0 2R with d.z .t2/; r

0/ < d.z .t2/; r/ it holds as well that
d.z .t1/; r

0/<d.z .t1/; r/ or d.z .t3/; r
0/<d.z .t3/; r/. Because we have chosen

t1; t3 2 Tr , this is impossible and therefore we have d.z .t2/; r/� d.z .t2/; r
0/

for every r 0 2R and hence t2 2 Tr .
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�

z .t1/
z .t2/

z .t3/

r

Figure 11: The circle around z .t2/ through r is contained in the closure of
the disks around z .t1/ and z .t3/ through r .

We continue with a case-by-case analysis of @ zB and how it contains R:

Case 1 (there is an open, connected subset of @ zB which is disjoint from R) Then
there exists a closed connected subset b of @ zB whose interior is disjoint from R but
whose endpoints (in a relative sense) are contained in R. We call these endpoints r1

and r2 .

To avoid technical subtleties, we now consider half-disks instead of disks B. .t/; ir .t//
and slightly abuse notation. This means we only consider the connected components
of B.z .t/; ir .t// n im.z / which are on the same side of z as r1 and r2 . Also, we
only consider representatives in R on the same side as r1 and r2 , in Tr we consider
times t where the geodesic from z .t/ to r is the shortest on the chosen side, ir .t/ is
the minimum of lengths of geodesics on the chosen side, and so on.

In this sense we have that Tr1
[Tr2

is connected: Choose t1 2 Tr1
and t2 2 Tr2

and
assume t1 < t2 . Furthermore, choose t 0 2 .0; l/ with t1 < t 0 < t2 (see Figure 12). Then
we have for every r 2Rnfr1; r2g on the same side of z as r1 and r2 that the inequality
d.z .t 0/; r/�minfd.z .t 0/; r1/; d.z .t 0/; r2/g holds, by similar geometric arguments as
in the proof of the connectedness of Tr . This means t 0 2 Tr1

[Tr2
and Tr1

[Tr2
is

connected.

As Tr1
and Tr2

are both closed and their union is connected, there exists a point
t0 2 Tr1

\Tr2
. In particular, the geodesics from z .t0/ to r1 and from z .t0/ to r2 in

zB �R2 have the same length and the corresponding two geodesics from  .t0/ to � in
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r1

r2

r

z .t1/

z .t2/
z .t 0/

Figure 12: If there exists no representative between r1 and r2 , then t 0 is
contained in Tr1

[Tr2
.

B �X are contained in B. .t0/; ir .t0// except for their endpoints. So we can join
the endpoints of the two geodesics in B �X and obtain a saddle connection from �

to itself of length less than 2 � ir .t0/� 2 � t0 � 2l < � (see Figure 13).

The saddle connection from this construction is a chord of the half-disk B. .t0/; ir .t0//,
so the two corresponding linear approaches are contained in rotational components
of length at least � . By the remark after Definition 3.4 (for rotational components of
length strictly greater than � ) and by assumption (for rotational components of length
exactly � ) there exist angular sectors ..0; �/; �C; i�C/ and ..0; �/; ��; i��/ such that
the linear approaches defined by the saddle connection are contained in one of the
images of f..0;�/;�C;i�C

/ and f..0;�/;��;i�� /
. This means that the saddle connection is

well immersed and that there exists a lower bound on the length of saddle connections
that intersect the resulting saddle connection in its interior.

Case 2 (every open, connected subset of @ zB contains a representative r ) This means
that R is dense in @ zB . As R is a closed set, this implies RD @ zB . When considering

r1

r2

z .t0/
z .t1/

z .t2/

Figure 13: The dashed geodesic between r1 and r2 in zB corresponds to a
saddle connection in B .
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the situation in X, we have f�g D @B , hence no point in B can be connected to a point
in X nB . As X is connected, it follows X D B . Consider two parallel geodesics
in X which are close to each other and both end in � , and a Cauchy sequence on each
of these geodesics. Then the distance of the corresponding elements of the Cauchy
sequences in X is bounded away from 0. This means that the limits of the Cauchy
sequences are two different points, but this is a contradiction as we only have one
singularity in @B D f�g.

As Case 2 can never happen and, in Case 1, for each � > 0 we find a saddle connection
as desired, the statement is proven.

We have now seen in the proof how the peculiar condition on the existence of an angular
sector ..0; �/; �; i�/ for every rotational component of length exactly � is used. In
particular, if such an angular sector does not exist then it is possible in Case 1 that
short chords of the disk B. .t0/; ir .t0// intersect the obtained saddle connection in
its interior (see Figure 13).

5 The main theorem, applications and notes on generalizing

In this section, we prove the main theorem that the existence of a wild singularity implies
infinite genus under certain conditions. The key tool for the proof is Proposition 2.2.
From the main theorem, we deduce three corollaries for classes of translation surfaces
of particular interest.

Furthermore, we discuss whether the conditions in the main theorem are necessary and
present an example of a translation surface that has a wild singularity and genus 0.

Theorem 1 (Wild singularity implies infinite genus) Let .X;A/ be a translation
surface such that for two directions �1; �2 2 S1 the geodesic flows F�1

and F�2
are

recurrent. Furthermore, let � be a wild singularity of .X;A/ that fulfills xossiness.
Then X has infinite genus.

Proof According to the criterion in Proposition 2.2, to prove the statement we have
to show that for every n � 1 there exist n saddle connections from � to itself that
intersect exactly in � and are such that the set has left-to-right curves. We do this by
induction on n.
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For the base case n D 1 we choose a saddle connection 1 such that there exists a
lower bound �1 > 0 on the length of intersecting saddle connections. Such a saddle
connection exists by the assumption that � fulfills xossiness and, by Lemma 2.9, it is
nonseparating.

For the inductive step assume that we have a nonseparating set of saddle connections
f1; : : : ; n�1g for which there exist lower bounds �1; : : : ; �n�1 on the lengths of
intersecting saddle connections. In particular, for every i 2 f1; : : : ; n�1g there exists a
left-to-right curve ıi , ie a curve in X that connects the left side and the right side of i

without intersecting any of the j for j 2 f1; : : : ; n� 1g. Let � be the minimum of
�1; : : : ; �n�1 and of the immersion radii of ı1; : : : ; ın�1 . As proven in Proposition 3.1
there exists a saddle connection n from � to itself with length less than � . Therefore,
n does not intersect any of the curves 1; : : : ; n�1; ı1; : : : ; ın�1 . Additionally, as �
fulfills xossiness we can choose n so that there exists a lower bound �n > 0 on the
length of intersecting saddle connections.

As n is nonseparating in X (see again Lemma 2.9) there exists a left-to-right curve ı0n
in X n im.n/. If ı0n does not intersect 1; : : : ; n�1 then we can define ın WD ı0n and
ın connects the left side of n to the right side of n in X n .im.1/[ � � � [ im.n//.
Furthermore, none of the curves ı1; : : : ; ın�1 intersects n . Therefore, we have that
X n .im.1/[ � � � [ im.n// is connected and the set of curves f1; : : : ; ng has left-
to-right curves.

If ı0n intersects at least one of the curves 1; : : : ; n�1 then we modify it in the following
way: For every intersection with a curve i (without loss of generality, from the left
of i ) we choose a point xl on the left and a point xr on the right of i in im.ı0n/.
Then we can replace the subcurve of ı0n that intersects i by a curve in N �

l
from xl

to the startpoint of ıi concatenated with ıi and concatenated with a curve in N �r from
the endpoint of ıi to xr . By the induction hypothesis and by the choice of � , every ıi
for i 2 f1; : : : ; n�1g does not intersect any of the curves 1; : : : ; n . Additionally, the
new curve ın is a left-to-right curve of n with respect to 1; : : : ; n�1 .

We have thus shown that for every n� 1, there exists a set of saddle connections of
cardinality n which has left-to-right curves. This implies, by Proposition 2.2, that X

has infinite genus.

We now use the results from Propositions 4.2 and 4.3 to give two possible conditions
that make sure that Theorem 1 is applicable.
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Corollary 5.1 (Wild singularity implies infinite genus) Let .X;A/ be a translation
surface and � a wild singularity. If one of the following two conditions is fulfilled then
X has infinite genus:

(i) In a dense set of directions, the geodesic flow is recurrent.

(ii) No rotational component of � has length � and there exist two directions for
which the geodesic flow is recurrent.

Note that the two properties in this corollary are not equivalent. The second condition
is more helpful for concrete given examples whereas the first condition can be used
for more abstractly given classes of translation surfaces, such as parabolic translation
surfaces and essentially finite translation surfaces.

Parabolic translation surfaces are defined as having no Green’s function. For them,
it follows from Strebel’s work [22, Theorems 13.1 and 24.4] that for all directions
the geodesic flow is recurrent (see Treviño [23, Remark 1]). Therefore, we have the
following corollary:

Corollary 5.2 (Wild parabolic translation surfaces have infinite genus) Let .X;A/
be a parabolic translation surface with a wild singularity. Then X has infinite genus.

The other interesting class of translation surfaces was recently defined in [19].

Definition 5.3 (Essentially finite translation surfaces) A translation surface .X;A/
is called essentially finite if it fulfills the following three properties:

(i) The surface X has finite area.

(ii) The set of singularities is discrete.

(iii) Every singularity has countably many rotational components.

Examples are all finite translation surfaces as in Definition 1.1 and again the baker’s
map surface from [7] and the exponential surface from [20].

Note that every neighbourhood of an infinite angle singularity has infinite area so an
essentially finite translation surface can only have cone angle singularities and wild
singularities. The number of these singularities is countable and, for every singularity,
the number of linear approaches of a given direction is also countable. This implies that
for a geodesic segment and a given transversal direction, the geodesic flow is defined
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for all but countably many points of the segment for all time. As the area is also finite,
we can deduce from Poincaré recurrence that for all directions the geodesic flow on
an essentially finite translation surface is recurrent. Therefore, by Corollary 5.1, an
essentially finite translation surface with a wild singularity has infinite genus.

These observations help us to state a version of the Gauss–Bonnet formula for essentially
finite translation surfaces. The classical Gauss–Bonnet theorem relates the curvature of
a surface X to its Euler characteristic �.X /. As the curvature of a translation surface
is 0 everywhere, the formula for finite translation surfaces is given in a slightly different
version in terms of the cone angles of the singularities. If ord.�/ is the multiplicity of
a singularity � then it can be formulated as

��.X /D
X

�2X nX

.ord.�i/� 1/:

This is considered to be a formula in the spirit of the Gauss–Bonnet theorem as the
singularities can roughly be seen as the points where the curvature of the closed
surface X is concentrated.

Together with the previous observation that essentially finite translation surfaces have
no infinite angle singularities and with applying Corollary 5.1 to essentially finite
translation surfaces, we can state the following version of the Gauss–Bonnet formula:

Corollary 5.4 (Gauss–Bonnet formula for essentially finite translation surfaces) Let
.X;A/ be an essentially finite translation surface. Then the genus g of X fulfills

2g� 2D
X

�2X nX

.s� � 1/; where s� D

�
ord.�/; � a cone angle singularity;
1; � a wild singularity:

One of the key points of the proof of Theorem 1 is the assumption of recurrence of
the geodesic flow. By Poincaré recurrence one can deduce recurrence of the geodesic
flow from the two weaker conditions that the flow is defined for a set of points of
full measure for all time and that the area is finite. We show that neither of the two
conditions on its own works for the proof by considering the following two examples.

Example 5.5 (Icicled surface) Consider a half-open rectangle of height 2 and width 1.
The left side is glued to the right side; the bottom and the top are excluded.

For every n� 1, we consider a vertical segment starting at the bottom and a vertical
segment starting at the top, at i=2n of length 1=2n for every odd i 2 f1; : : : ; 2n� 1g

(see Figure 14). We call the vertical segments icicles.
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Figure 14: Vertical segments in the icicled surface

Then we glue the segments as sketched in Figure 15. Note that no icicle on the top is
glued to an icicle on the bottom. Formally, we can describe the gluings in the following
way (starting with the icicles on the left part of the top):

� For each side of the icicle at 1
2

, we cut the segment again: first we cut it in half,
then we cut the upper half into halves again, cut the upper quarter into halves
again, . . . . So, for every n> 1 we have a segment of length 1=2n on each side
of the icicle.

� The left side of the lower half of the icicle at 1
2

is glued to the right side of the
icicle at 1

4
.

� For every n> 2 and every odd i 2 f3; : : : ; 2n�1� 1g, the left side of the icicle
at i=2n is glued to the right side of the icicle at .i � 2/=2n .
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z2

z1

a

a

z1

b

bcc
z2

d

deeff

Figure 15: Gluings for the icicled surface; segments with the same letters are glued.

� For every n > 2, the left side of the icicle at 1=2n�1 is cut into two segments
of the same length. The lower part is glued to the right side of the icicle at
.2n�1 � 1/=2n . The upper part is glued to the right side of the segment at 1

2

which has the correct length.

� We do the similar gluing for the right part of the top and also for the bottom.

The resulting translation surface .X;A/ is called an icicled surface and has the following
properties:

(i) There exist exactly two singularities: all the tips of the icicles on the top are
identified by the definition of the gluings. We call the corresponding singularity �top .
Now consider a nondyadic point p in the top boundary of the rectangle, ie a point
where no icicle starts. There exists a sequence of icicles such that the tips of the icicles
converge to p , seen as points in R2 without gluings. Therefore, the distance from
�top to p is 0 and p D �top in X. The same argument works for the dyadic points on
the boundary where an icicle starts. Note that the points where we cut some icicles
into more segments are glued to points on the boundary, so these are also identified
with �top .

Also, the same reasoning holds for the tips of the icicles on the bottom and the points in
the bottom boundary. So we have only two singularities, �top and �bottom . In particular,
the set of singularities is discrete.
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Figure 16: The first and the third saddle connection of the set described in
Example 5.5(ii) to show xossiness

Note that both of the singularities have one rotational component of infinite length and
uncountably many rotational components of finite length, so the icicled surface is not
essentially finite.

(ii) Every icicle defines a saddle connection or a chain of saddle connections. However,
for most of these saddle connections defined by icicles, there also exist arbitrarily short
saddle connections close to the top or bottom, intersecting them. On the other hand,
we can define saddle connections from the tip of the icicle at 1=2n to the tip of the
icicle at 1=2nC1 for every n � 1 (see Figure 16). The length of the nth such saddle
connection is

p
2=2nC1 and no saddle connection of length smaller than

p
2=2nC1

can intersect it. This means that both singularities fulfill xossiness.

(iii) For a regular point in X, the trajectory under a geodesic flow is only defined until
it hits the tip of an icicle or the top or bottom of the rectangle. Hence, there exists no
point in X such that the geodesic flow in the vertical direction is defined for all time.

Let � be a direction in .0; �/. Suppose that the geodesic flow F� is defined for all
time for a set of points of full measure. Consider a closed horizontal geodesic g in the
middle of the surface and a tubular neighbourhood N of g not intersecting any icicles.
Then F� is defined on a subset of N of full measure for all time. From Poincaré
recurrence we can deduce that there exists a point x 2N and a time tx > 0 such that
F� .x; tx/ 2 N. This means that F� .x; tx � �/ is contained in the lower part of the
surface for an � > 0. But this is impossible as there does not exist a way to reach the
lower part of the surface from the upper part of the surface without intersecting N .

Hence, for all directions except for the horizontal one, there is no set of points of full
measure for which the geodesic flow is defined for all time.
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(iv) Because all but the horizontal geodesic flow are not recurrent, we cannot use the
arguments of Theorem 1 to show infinite genus. On the other hand, we can check by
a sharp look that every icicle is defining at least one saddle connection which has a
left-to-right curve. Moreover, every set of saddle connections defined by icicles has
left-to-right curves and the number of icicles is not bounded. Therefore, for every n� 1

there exists a set of n saddle connections that has left-to-right curves. With this we can
show directly by Proposition 2.2 instead of Theorem 1 that X has infinite genus.

We want to emphasize that, in this example, the top and bottom boundary is in some
sense “trapping” the whole geodesic flow. This kind of dynamical behaviour was so far
only known for translation surfaces with a continuum of singularities, for instance for
the open disk (see the remark before Convention 1.2). However, we explicitly excluded
this kind of example by requiring that our translation surfaces have discrete singularities.
There was the expectation that discreteness of the set of singularities should imply
good dynamical properties. However, when starting with a continuum of singularities
such as the open rectangle in Example 5.5 and introducing additional gluings, we can
maintain the bad dynamical properties and identify the continuum of singularities to
one point. So the icicled surface is morally derived from a translation surface with
nondiscrete singularities but formally it shows that there exist translation surfaces with
a discrete set of singularities such that for at most one direction � the geodesic flow F�

is defined for almost every point for all time. In particular, for such an example it is
not possible to apply Poincaré recurrence to conclude from the finiteness of the area
that a geodesic flow is recurrent.

The recurrence of the flow is needed for the proof of Theorem 1 as it is an assumption in
Lemma 2.9, which states the crucial ingredient of the proof that saddle connections are
nonseparating under the condition on recurrence. In fact, there are translation surfaces
(with discrete singularities) that have separating saddle connections. For example, the
horizontal saddle connection of the icicled surface that connects the tip of the longest
icicle to itself is separating. However, as was indicated in Example 5.5(v) there exist
other saddle connections that are nonseparating. This is not necessarily the case, as we
will see in the next example, which was worked out together with Pat Hooper.

Example 5.6 (Nested cylinders) Consider a Euclidean half-plane with a distinguished
midline. We cut vertical slits of infinite length in the half-plane from the midline upward,
starting from

Pn
iD1

1
i

for n odd. Additionally, we cut vertical slits of infinite length
from the midline downward, starting from

Pn
iD1

1
i

for n even. Now we glue the right
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a a b b c c

d d e e f f
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� � �

Figure 17: The nested cylinders example has a wild singularity and genus 0

side of a slit to the left side of the slit which is next to the right and the left side of
the slit to the right side of the slit which is next on the left (see Figure 17). By this
construction, we obtain half-cylinders with smaller and smaller circumferences that are
glued in a nested way.

The resulting translation surface has infinite area, genus 0 and exactly one singularity.
The singularity is wild as the distance between the startpoints of the slits is going to 0,
ie there exists no cyclic translation covering from a punctured neighbourhood of � to
a once-punctured disk in R2. This singularity has exactly one rotational component
which is isometric to R.

For every direction � , the geodesic flow F� is defined for almost every point for all
time. However, recurrence only occurs in the horizontal direction. In this example,
Poincaré recurrence is not applicable because the area is not finite.

In particular, all saddle connections are horizontal and all of them are separating.

The last example indicates that the statement in Theorem 1 is wrong if we give up the
condition on recurrence in two directions. However, the example does not destroy the
prospect of replacing the recurrence condition by a weaker condition like finite area.
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