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Modulo 2 counting of Klein-bottle leaves
in smooth taut foliations

BOYU ZHANG

We prove a modulo 2 invariance for the number of Klein-bottle leaves in taut folia-
tions. Given two smooth cooriented taut foliations, assume that every Klein-bottle leaf
has nontrivial linear holonomy, and assume that the two foliations can be smoothly
deformed to each other through taut foliations. We prove that the numbers of Klein-
bottle leaves in these two foliations must have the same parity.

57M50, 57R30, 57R57

1 Introduction

Given a smooth cooriented foliation on a three-manifold, it was proved in Bonatti
and Firmo [1] that after a generic smooth perturbation, there is no closed leaf with
genus greater than 1. This article explores the other side of the story, and proves
the deformation invariance of the parity for the number of Klein-bottle leaves in taut
foliations. As a corollary, one can construct a taut foliation such that every smooth
deformation of it through taut foliations has at least one Klein-bottle leaf.

Let L be a smooth cooriented 2–dimensional foliation on a smooth three-manifold Y .
The foliation L and the manifold Y are allowed to be nonorientable. By definition, the
foliation L is called a taut foliation if, for every point p 2 Y , there exists an embedded
circle in Y passing through p and being transverse to L.

Let K be a leaf of L and let  W S1 ! K be a closed oriented curve on K . The
holonomy of L along  is defined as follows: Take a map i W S1 � .�1; 1/! Y such
that, for every x 2 S1 , i.x; 0/D .x/ and the image of fxg � .�1; 1/ is transverse
to L. The intersection of the image of i with L then defines a horizontal direction field
on S1� .�1; 1/, and the integration of the direction field defines a map h W .��; �/!
.�1; 1/ for � sufficiently small. Up to conjugations, the germ of h at 0 is well-defined
and is independent of the choice of i . The holonomy of L along  is defined to be the
germ of h at 0. The value h0 .0/ is called the linear holonomy of L along  .
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Definition 1.1 Let K � Y be a closed leaf of L; then K is said to have nontrivial
linear holonomy if there exists a closed curve  on K such that the linear holonomy
of L along  is not equal to 1.

Let K be a closed 2–dimensional submanifold of Y . If K is cooriented, one can define
an element PDŒK� 2 Hom.H1.Y IZ/IZ/ as follows. Let Œ� be a homology class
represented by a closed curve  ; then PDŒK� maps Œ� to the oriented intersection
number of  and K . Since Hom.H1.Y IZ/IZ/ Š H 1.Y IZ/, the element PDŒK�
can be viewed as an element of H 1.Y IZ/. If both Y and K are oriented and if the
orientations of Y and K are compatible with the coorientation of K , then PDŒK� is
equal to the Poincaré dual of the fundamental class of K .

Definition 1.2 Let A 2H 1.Y IZ/. A closed leaf K of L is said to have homology
class A if PDŒK�D A. The foliation L is called A–admissible if every Klein-bottle
leaf of L in the class A has nontrivial linear holonomy.

The following result is the main theorem of this article:

Theorem 1.3 Let A2H 1.Y IZ/. Let Ls , s2 Œ0; 1� be a smooth family of coorientable
taut foliations on Y . Suppose L0 and L1 are both A–admissible. For i D 0; 1, let ni
be the number of Klein-bottle leaves in the class A. Then n0 and n1 have the same
parity.

Notice that if there is no Klein-bottle leaf of L in the homology class A, then L is
automatically A–admissible. Therefore, the following result follows immediately:

Corollary 1.4 Let A2H 1.Y IZ/, and let L be an A–admissible smooth coorientable
taut foliation on Y . Assume that L has an odd number of Klein-bottle leaves in the
class A. Then every smooth deformation of L through taut foliations has at least one
Klein-bottle leaf in the class A.

Remark 1.5 It would be interesting to understand whether a similar result holds for
torus leaves. Suppose L0 and L1 are two cooriented taut foliations on Y that can
be smoothly deformed to each other through taut foliations, and suppose that there is
a homology class A such that every closed torus leaf of L0 and L1 in class A has
nontrivial linear holonomy. Is it true that the numbers of torus leaves of L0 and L1 in
class A always have the same parity? At the time of writing, the answer is not clear to
the author.
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This article is organized as follows. Sections 2 and 3 build up the necessary tools for the
proof of Theorem 1.3. Section 4 proves the theorem, while some technical details are
left to Section 5. Section 6 gives an explicit example for Corollary 1.4, and constructs
a taut foliation such that every taut deformation of it has at least one Klein-bottle leaf.

This work was finished when the author was a graduate student at Harvard University.
I would like to express my most sincere gratitude to my advisor Clifford Taubes, for
his inspiration, encouragement, and patient guidance. I also thank the anonymous
referee for carefully reading the manuscript and providing many insightful comments
and suggestions.

2 Moduli spaces of J –holomorphic tori

This section recalls some properties of the moduli space of J –holomorphic tori in
a symplectic manifold. Many results in this section are essentially special cases of
Taubes’s theory on Gromov invariants [7].

Let X be a smooth 4–manifold. To avoid complications caused by spherical bubbles,
assume throughout this section that �2.X/D 0. This will be enough for the proof of
Theorem 1.3. Let J be a smooth almost-complex structure on X.

Consider an immersed closed J –holomorphic curve C in X. Let N be the normal
bundle of C ; the fiber of N then inherits an almost-complex structure from J. Let
� W N ! C be the projection from N to C. Choose a diffeomorphism ' from a
neighborhood of the zero section of N to a neighborhood of C in X such that ' maps
the zero section of N to C. The map ' can be chosen in such a way that the tangent map
is C–linear on the zero section of N. Every closed immersed J –holomorphic curve
that is C 1–close to C is the image of a section of N. Fix an arbitrary connection r0
on N and let x@0 be the .0; 1/–part of r0 . If s is a section of N near the zero section,
the equation for '.s/ to be a J –holomorphic curve in X can be schematically written
as

(2-1) x@0sC �.s/.r0.s//CQ.s/.r0.s/;r0.s//CT .s/D 0:

Here � is a smooth section of ��.HomR.T
�C ˝R N; T

0;1C ˝C N//, and Q is a
smooth section of ��.HomR.T

�C ˝RT
�C ˝RN ˝RN; T

0;1C ˝CN//, and T is a
smooth section of ��.T 0;1C˝CN/. The values of � , Q and T are defined pointwise
by the values of J in an algebraic way, and � , Q and T are zero when s D 0. The
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linearized equation of (2-1) at s D 0 is x@0.s/C @T
@s
.s/D 0. Define

(2-2) L.s/ WD x@0.s/C
@T

@s
.s/:

Notice that L is only an R–linear operator. The curve C is called nondegenerate if
L is surjective as a map from L21.N / to L2.T 0;1C ˝C N/. By elliptic regularity, if
C is nondegenerate, then the operator L is also surjective as a map from L2

k
.N / to

L2
k�1

.T 0;1C ˝C N/ for every k � 1. The index of the operator L is given by

(2-3) indLD hc1.N /; ŒC �i � hc1.T 0;1X/; ŒC �i:

It follows from the definition that nondegeneracy only depends on the 1–jet of J on C.
Namely, if there is another almost-complex structure J 0 such that .J �J 0/jC D 0 and
.r.J �J 0//jC D 0, then C is nondegenerate as a J –holomorphic curve if and only if
it is nondegenerate as a J 0–holomorphic curve.

For a homology class e 2H2.X IZ/, define

d.e/D e � e� hc1.T
0;1X/; ei:

By (2-3), d.e/ is the formal dimension of the moduli space of embedded pseudo-
holomorphic curves in X in the homology class e . By the adjunction formula, the
genus g of such a curve satisfies

e � eC 2� 2g D�hc1.T
0;1X/; ei:

Therefore, d.e/D 2.g� hc1.T 0;1X/; ei � 1/. In general, the formal dimension of the
moduli space of J –holomorphic maps from a genus g curve to X (not necessarily
embedded) in the homology class e , modulo self-isomorphisms of the domain, is also
given by 2.g� hc1.T 0;1X/; ei � 1/.

Now assume X has a symplectic structure ! . Recall that an almost-complex structure J
is compatible with ! if !. � ; J �/ defines a Riemannian metric. Let J .X; !/ be the set
of smooth almost-complex structures compatible with ! . For a closed surface † and
a map �W †!X, define the topological energy of � to be

R
† �
�.!/.

Definition 2.1 Let .X; !/ be a symplectic manifold. Let E > 0 be a constant. An
almost-complex structure J 2 J .X; !/ is called E–admissible if the following condi-
tions hold:

(1) Every embedded J –holomorphic torus C with topological energy less than or
equal to E and with d.ŒC �/D 0 is nondegenerate.
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(2) For every homology class e 2 H2.X IZ/, if hŒ!�; ei � E , and if the formal
dimension of the moduli space of J –holomorphic maps from a torus to X in
the homology class e , modulo self-isomorphisms of the domain, is negative,
then there is no somewhere-injective J –holomorphic map from a torus to X in
the homology class e .

The next lemma is a special case of Proposition 7.1 in [8]. Recall that the C1–topology
on J .X; !/ is defined as the Fréchet topology induced by the distance function

d.j1; j2/D

1X
nD1

2�n �
kj1� j2kCn

1Ckj1� j2kCn

:

Lemma 2.2 Let E > 0 be a constant. If .X; !/ is a compact symplectic manifold,
the set of E–admissible almost-complex structures forms a dense subset of J .X; !/
in the C1–topology.

For e 2 H2.X IZ/, define M.X; J; e/ to be the moduli space of embedded J –
holomorphic tori in X with fundamental class e . A homology class e is called
primitive if e cannot be expressed as n � e0 for any integer n > 1 and e0 2H2.X IZ/.

Now consider smooth families of almost-complex structures. Assume !s for s 2 Œ0; 1�
is a smooth family of symplectic forms on X. For i D 0; 1, let Ji 2 J .X; !i /. Define

J .X; f!sg; J0; J1/

to be the set of smooth families fJsg connecting J0 and J1 such that Js 2 J .X; !s/
for each s 2 Œ0; 1�.

Lemma 2.3 Let X be a compact 4–manifold and let !s for s 2 Œ0; 1� be a smooth
family of symplectic forms on X. Let e 2 H2.X IZ/ be a primitive class with
hc1.T

0;1X/; eiD0 and e �eD0, and let E>0 be a constant such that E�hŒ!i �; ei for
i D 0; 1. For i 2 f0; 1g, let Ji 2 J .X; !i / be an E–admissible almost-complex struc-
ture on X. Then there is an open and dense subset U �J .X; f!sg; J0; J1/ in the C1–
topology such that, for every element fJsg 2 U , the moduli space M.X; fJsg; e/ D`
s2Œ0;1�M.X; Js; e/ has the structure of a compact smooth 1–manifold with boundary

M.X; J0; e/[M.X; J1; e/.

Proof For general .X; fJsg; e/, the moduli space M.X; fJsg; e/ may not be compact.
In fact, the compactness of M.X; fJsg; e/ follows from the assumptions that �2.X/D0
and e is primitive. Since M.X; fJsg; e/ only consists of tori, Gromov’s compactness
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theorem (see for example [9]) implies that, for every sequence fCng �M.X; fJsg; e/,
there is a subsequence fCni

g with Cni
2M.X; Jsi ; e/ and limi!1 si D s0 such that

the sequence Cni
is convergent to the image of one of (1) a possibly branched multiple

cover of a somewhere-injective Js0 –holomorphic map, (2) a Js0 –holomorphic map
with at least one spherical component, or (3) a somewhere-injective Js0 –holomorphic
map from a torus. Case (1) is impossible since e is assumed to be a primitive class.
Case (2) is impossible because there are no nonconstant Js0 –holomorphic maps from
a sphere to X. When case (3) happens, for the limit curve the adjunction formula
states that e � eC 2� 2g D�hc1.T 0;1X/; eiC � , where � depends on the behavior of
singularities and self-intersections of the curve, and � is always positive if the curve
is not embedded (see [4]). Since g D 1, e � e D 0 and hc1.T 0;1X/; ei D 0, it follows
that � D 0, hence the limit curve is an embedded curve, namely it is an element of
M.X; Js0 ; e/. Therefore, the space M.X; fJsg; e/ is compact.

Since both J0 and J1 are E–admissible, the moduli space M.X; fJsg; e/ is cut out
transversely at s D 0 and s D 1. Moreover, since M.X; fJsg; e/ consists of only em-
bedded curves, the standard transversality argument (see for example Section 3.2 of [5])
shows that on a dense subset V �J .X; f!sg; J0; J1/, the moduli space M.X; fJsg; e/

is a smooth 1–manifold with boundary M.X; J0; e/[M.X; J1; e/.

Since M.X; fJsg; e/ is always compact, the transversality condition is an open condi-
tion, therefore there exists an open set U � J .X; f!sg; J0; J1/ such that V � U and,
for every fJsg 2 U , the moduli space M.X; fJsg; e/ is a compact smooth 1–manifold
with boundary M.X; J0; e/[M.X; J1; e/.

With a little more effort one can generalize Lemma 2.3 to noncompact symplectic
manifolds. To start, one needs the following definition:

Definition 2.4 Let .X;!/ be a symplectic manifold, not necessarily compact. Let
J 2J .X;!/. The pair .!;J / defines a Riemannian metric g on X. The triple .X;!;J /
is said to have bounded geometry with bounding constant N if the following conditions
hold:

(1) The metric g is complete.

(2) The norm of the curvature tensor of g is less than N .

(3) The injectivity radius of .X;g/ is greater than 1=N .

One says that a path f.X; !s; Js/g has uniformly bounded geometry if each .X; !s; Js/
has bounded geometry and the bounding constant N is independent of s .
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The following lemma is a well-known result:

Lemma 2.5 Let .X; !; J / be a triple with bounded geometry, with bounding con-
stant N. Let e 2 H2.X IZ/ and let E > 0 be a constant such that E � hŒ!�; ei.
Then there is a constant M.N;E/, depending only on N and E , such that every
connected J –holomorphic curve C with fundamental class e must have diameter less
than M.N;E/ with respect to the metric defined by !. � ; J �/.

Proof By the monotonicity of area for J –holomorphic curves (see for example
[3, Section 2.3.E 02 ]), the area of Bp.1=N /\C is greater than or equal to �=N 2 . Since
C is connected, this implies that its diameter is bounded by Area.C / � 2=N �N 2=� .
Notice that the area of C equals hŒ!�; ei, which is bounded by E , hence the diameter
is bounded by 2EN=� .

In the noncompact case, one needs to be more careful about the topology on the space
of almost-complex structures. A topology on J .X; !/ can be defined as follows.
Cover X by countably many compact sets fAigi2Z . For each Ai define the C1–
topology on J .Ai ; !/. Endow the product spaceY

i2Z

J .Ai ; !/

with the box topology, and consider the map

J .X; !/ ,!
Y
i2Z

J .Ai ; !/

defined by restrictions. The topology on J .X; !/ is then defined as the pullback of
the box topology on the product space.

The topology on J .X; !/ does not depend on the choice of the covering fAig. When X
is noncompact, the topology on J .X; !/ is not first-countable.

For N >0 , define J .X; !;N / to be the set of almost-complex structures J 2J .X; !/
such that .X; !; J / has bounded geometry with bounding constant N. With the
topology given above, the space J .X; !;N / is an open subset of J .X; !/.

A topology on J .X; f!sg; J0; J1/ can be defined in a similar way. Cover X by
countably many compact sets fAigi2Z . For each Ai define the C1–topology on
J .Ai ; f!sg; J0; J1/. The topology on the space J .X; f!sg; J0; J1/ is then defined
to be the pullback of the box topology on the product space. This topology does not
depend on the choice of the covering fAig.
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For N > 0, define the set J .X; f!sg; J0; J1; N / to be the set of families fJsg 2
J .X; f!sg; J0; J1/ such that f.X; Js; !s/g has uniformly bounded geometry with
bounding constant N. Then the set J .X; f!sg; J0; J1; N / is an open subset of
J .X; f!sg; J0; J1/.

The following lemma is essentially a diagonal argument. It explains why the topologies
defined above are convenient for the perturbation arguments in this article.

Lemma 2.6 Let fAngn�1 be a countable, locally finite cover of X by compact
subsets. Let ! be a symplectic form on X and let !s be a smooth family of symplectic
forms on X. Let N > 0 be a constant. Let Ji 2 J .X; !i ; N /, where i D 0 or 1.

(1) Let 'W J .X; !/ ,!
Q
n J .An; !/ be the embedding map given by restrictions.

For every n, let Un be an open and dense subset of J .An; !/; then '�1
�Q

n Un
�

is an open and dense subset of J .X; !/.
(2) Let 'W J .X; f!sg; J0; J1/ ,!

Q
n J .Ai ; f!sg; J0; J1/ be the embedding map

given by restrictions. For every n, let

Un � J .An; f!sg; J0; J1/

be an open and dense subset; then '�1
�Q

n Un
�

is an open and dense subset of
J .X; f!sg; J0; J1/.

Proof For part (1), the set '�1
�Q

n Un
�

is open by the definition of the box topology.
To prove that '�1

�Q
n Un

�
is dense, let J be an element of J .X; !/. Let Jn D

J jAn
2 J .An; !/. For every n, let Vn � J .An; !/ be a given open neighborhood

of Jn . One needs to find an element J 0 2 J .X; !/ such that J 0jAn
2 Vn \ Un . For

each n, let Dn be an open neighborhood of An such that the family fDng is still a
locally finite cover of X. One obtains the desired J 0 by perturbing J on the open
sets fDng one by one. To start, perturb the section J on D1 to obtain a section J1 .
Since U1 is dense it is possible to find a perturbation such that J1jA1

2 U1\V1 . Now
assume that after perturbations on D1;D2; : : : ;Dk , one obtains a section Jk such
that JkjAi

2 Uj \Vj for j D 1; 2; : : : ; k . Then a perturbation of Jk on DkC1 gives a
section JkC1 such that JkC1jAkC1

2 UkC1\VkC1 . One can choose the perturbation
on DkC1 to be sufficiently small that JkC1jAj

2 Uj \Vj for j D 1; 2; : : : ; k . Since
fDng is a locally finite cover of X, on each compact subset of X the sequence fJkg
stabilizes for sufficiently large k . The limit limk!1 Jk then gives the desired J 0.

The proof for part (2) is exactly the same; one only needs to change the notation
J . � ; !/ to J . � ; f!sg; J0; J1/.
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Remark 2.7 Lemma 2.6 is essentially a result on the box topology, as it does not use
any specific property of symplectic topology or almost-complex geometry. Since the
lemma above is already sufficient for the purpose of this article, we will not try to give
the most general statement here.

Lemma 2.8 Let X be a 4–manifold and let e 2 H2.X IZ/ be a primitive class
with hc1.T 0;1X/; ei D 0 and e � e D 0. Assume !s .s 2 Œ0; 1�/ is a smooth family
of symplectic forms on X. Let E be a positive constant such that E > hŒ!i �; ei

for i D 0; 1. For i D 0; 1, assume Ji 2 J .X; !i ; N / is E–admissible. If the set
J .X; f!sg; J0; J1; N / is not empty, then there is an open and dense subset U �
J .X; f!sg; J0; J1; N / such that, for each fJsg 2 U , the moduli space

M.X; fJsg; e/D
a

s2Œ0;1�

M.X; Js; e/

has the structure of a smooth 1–manifold with boundary M.X; J0; e/[M.X; J1; e/.
Moreover, if f W X!R is a smooth proper function on X, then the function defined as

fWM.X; fJsg; e/!R; C 7! �

Z
C

f dA;

is a smooth proper function on M.X; fJsg; e/. (Here, for C 2M.X; Js; e/, the form
dA is the area form on C defined by Js and !s .)

Proof One first proves that f is a proper function. For any constant z > 0, take a
sequence of curves Cn 2M.X; fJsg; e/ such that jf.Cn/j< z . By the definition of f,
there exists a sequence of points pn 2 Cn such that jf .pn/j< z . Since f is a proper
function on X, the sequence pn is bounded on X. By Lemma 2.5, this implies that
the curves Cn stay in a bounded subset of X. By the argument for the compact case
(Lemma 2.3), the sequence fCng has a subsequence that converges to another point in
M.X; fJsg; e/, hence the function f is proper.

It remains to prove that there is an open and dense subset U � J .X; f!sg; J0; J1; N /
such that, for every fJsg 2 U , the moduli space M.X; fJsg; e/ is a smooth 1–dimen-
sional manifold. Let gs be the metric on X compatible with Js and !s . Let g be
a complete metric on X such that gs � g for every s . From now on, the distance
function on X is defined by the metric g . By Lemma 2.5, there exists a constant
M > 0 such that the diameter of every Js –holomorphic curve with topological energy
no greater than E is bounded by M. Let fBng be a countable locally finite cover
of X by open balls of radius 1. For every n, let An be the closed ball with the same
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center as Bn and with radius M C 1. The family fAng is also a locally finite cover
of X. For each n, let Mn.X; fJsg; e/ be the set of curves C 2M.X; fJsg; e/ such
that C � An , and let M0n.X; fJsg; e/ be the set of curves C \M.X; fJsg; e/ such
that C \Bn ¤∅. By the diameter bound, M0n.X; fJsg; e/�Mn.X; fJsg; e/. Take f

to be the distance function to the center of Bn ; it was proved in the previous paragraph
that the corresponding function f on the moduli space is proper. Since f is bounded
on M0n.X; fJsg; e/, this implies that M0n.X; fJsg; e/ is a compact set, therefore the
transversality condition on M0n.X; fJsg; e/ is open. As a result, there is an open
and dense subset Un � J .An; f!sg; J0; J1; N / such that if fJsgjAn

2 Un , then the
set M0n.X; fJsg; e/ �Mn.X; fJsg; e/ is a smooth 1–dimensional manifold. Notice
that fM0n.X; fJsg; e/gn�1 is an open cover of M.X; fJsg; e/. It then follows from
Lemma 2.6(2) that there is an open and dense subset U � J .X; f!sg; J0; J1; N / such
that for every element fJsg 2 U the set M.X; fJsg; e/ is a smooth 1–manifold.

3 Symplectization of taut foliations

This section discusses a symplectization of oriented and cooriented taut foliations. It
is the main ingredient for the proof of Theorem 1.3.

Let M be a smooth 3–manifold, let F be a smooth oriented and cooriented taut
foliation on M. Since F is cooriented, it can be written as F D ker� such that � is a
smooth 1–form and is positive in the positive normal direction of F . Since F is taut,
there exists a smooth closed 2–form ! such that !^�> 0 everywhere on M. Choose
a metric g0 on M such that �g0

�D ! . By the Frobenius theorem, d�D �^� for a
unique 1–form � satisfying h�; �ig0

D0. Locally, write !D e1^e2 , where e1 and e2

are orthonormal with respect to the metric g0 . Consider the 2–form �D !C d.t�/

on R�M and the metric g defined by

g D
1

1C t2
.dt C t�/2C .1C t2/�2C .e1/2C .e2/2:

The 2–form � is a symplectic form on R�M, and the metric g is independent of the
choice of fe1; e2g and is compatible with �. Let J be the almost-complex structure
compatible with .�; g/. To simplify notation, let X be the manifold R�M.

Lemma 3.1 [10, Lemma 2.1] The triple .X;�; J / has bounded geometry.

Locally, let fe0; e1; e2g be the basis of TM dual to f�; e1; e2g, and extend them
to R–translation-invariant vector fields on R �M. Let ye1 D e1 � t�.e1/

@
@t

and
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ye2 D e2� t�.e2/
@
@t

. The almost-complex structure J is then given by

J
@

@t
D

1

1C t2
e0; J ye1 D ye2:

Define zF D spanfye1; ye2g; it is a J –invariant plane field on X.

Lemma 3.2 The plane field zF is a foliation on X. Under the projection R�M !M,
the leaves of zF project to the leaves of F .

Proof Since d�^�D d.d�/D 0, there is a �1 such that d�D �1 ^�. Therefore,
one has d.dt C t�/D .dt C t�/^�C t�1 ^�, and d�D �^�. By the Frobenius
theorem, the plane field zF D ker.dt C t�/\ ker� is a foliation. The tangent planes
of zF projects isomorphically to the tangent planes of F pointwise, thus the leaves
of zF project to the leaves of F .

It turns out that every closed J –holomorphic curve in X is a closed leaf of zF.

Lemma 3.3 Let �W †!X be a J –holomorphic map from a closed Riemann surface
to X. Then either � is a constant map, or it is a branched cover of a closed leaf of zF.

Proof Since � is J –holomorphic, ��..dt C t�/^ �/ � 0 pointwise on †. On the
other hand, Z

†

��..dt C t�/^�/D

Z
†

��.d.t�//D 0:

Therefore, �.†/ is tangent to ker.dt C t�/\ ker�, hence either � is a constant map,
or it is a branched cover of a closed leaf of zF.

Lemma 3.4 Let L be a leaf of F and  a closed curve on L. Let � W R�M!M be
the projection map. The foliation zF is then transverse to ��1./ and gives a horizontal
foliation on ��1./ŠR�  . The holonomy of this foliation along  is given by the
multiplication of l./�1 , where l./ is the linear holonomy of F along  .

Proof Recall that locally .�; e1; e2/ is an orthonormal basis of T �M and .e0; e1; e2/
is its dual basis. Let .��; �/�L�M be a tubular neighborhood of L in M and let z
be the first coordinate function on .��; �/ �L. The parametrization of the tubular
neighborhood can be chosen such that @

@z
D e0 . Now � has the form �D dzC �.z/,
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where �.z/ is a 1–form on L depending on z and �.0/D 0. The condition that ker�
is a foliation is equivalent to

d�C
@�

@z
^ � D 0:

The 1–form � satisfies d�D �^�, therefore �jL D�@�@z jzD0 .

Suppose  is a closed curve on L parametrized by u 2 Œ0; 1�. Let .t.u/; .u// be a
curve in R�M that is a lift of  and tangent to zF. Then the function t .u/ satisfies
Pt C t�. P/D 0. Therefore,

t .1/D exp
�
�

Z 1

0

�. P/ du

�
� t .0/D exp

�Z 1

0

@�

@z
.0/. P.u// du

�
� t .0/:

Now compute the linear holonomy of F along  . If .z.u/; .u// is a curve in
.��; �/�L tangent to F , then

(3-1) PzC �.z/. P/D 0:

If zs.u/ for s 2 Œ0; �/ is a smooth family of solutions to (3-1) with z0.u/D 0, then
the linearized part l.u/D @zs=@sjsD0.u/ satisfies

Pl C l �
@�

@z

ˇ̌̌
zD0

. P/D 0:

Therefore, the linear holonomy of F along  is

exp
�
�

Z 1

0

@�

@z
.0/. P.u// du

�
;

hence the linear holonomy of F along  is inverse to the holonomy on ��1./ given
by zF.

The following result follows immediately from Lemmas 3.3 and 3.4.

Corollary 3.5 Let C be a closed embedded J –holomorphic curve on X. Then either
C �M�f0g and C is a closed leaf of F , or C does not intersect the slice M�f0g and
it projects diffeomorphically to a closed leaf of F with trivial linear holonomy.

The next lemma studies J –holomorphic tori on X.

Lemma 3.6 Suppose T is a torus leaf of F with nontrivial linear holonomy. Then
T � f0g is a nondegenerate J –holomorphic curve in X.

Proof Notice that d.ŒT �/D 0, thus the index of the deformation operator is zero, and
one only needs to prove that the operator L on T defined by (2-2) has a trivial kernel.
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Let T0 D T � f0g be the torus in X. As in Lemma 3.4, let .e0; e1; e2/ be the dual
basis of .�; e1; e2/. Let .��; �/� T �M be a tubular neighborhood of T , let z be
the first coordinate function and choose a parametrization such that @

@z
D e0 . Then

on this neighborhood, � has the form �D dzC �.z/, where �.z/ is a 1–form on T
depending on z and �.0/D 0. The condition that ker� is a foliation is equivalent to

d�C
@�

@z
^ � D 0:

Let ˇ D @�
@z

ˇ̌
zD0

. Apply @
@z

on the equation above at z D 0; one obtains dˇ D 0.
Extend ˇ to .��; �/�T by pulling back from the second factor. Let �0 D dzC z �ˇ ;
then ker�0 defines another foliation near T . Let �0 D�ˇ .

Let e01 and e02 be vector fields on .��; �/�T such that they are tangent to ker�0 and
that their projections to T form a positive orthonormal basis. Consider R�.��; �/�T ,
let t be the coordinate function of the R–component and extend e01 and e02 to a
neighborhood of T0 in X by translations in the t –direction. Define an almost-complex
structure J 0 on R� .��; �/�T by

J 0
@

@t
D

@

@z
; J 0

�
e01� t�

0.e01/
@

@t

�
D e02� t�

0.e02/
@

@t
:

One claims that the deformation equation (2-1) for J 0–holomorphic curves near T0 is
a linear equation. In fact, let

.f; g/W T !R� .��; �/

be the parametrization of a curve C near T0 . For p 2 T Š T0 , let v D e01.p/ and
wD e02.p/; then the tangent space of C at .f .p/; g.p/; p/ is spanned by .@vf; @vg; v/
and .@wf; @wg;w/. Notice that

�0.e01/.f .p/; p/D�ˇ.v/; �0.e02/.f .p/; p/D�ˇ.w/:

Therefore,

J 0.f .p/;g.p/;p/.@vf; @vg; v/D .�@vgCˇ.w/f; @vf �ˇ.v/f;w/;

J 0.f .p/;g.p/;p/.@wf; @wg;w/D .�@wg�ˇ.v/f; @wf �ˇ.w/f;�v/:

Hence, C is J 0–holomorphic at .f .p/; g.p/; p/ if and only if

ˇ.w/f D @vgC @wf;

ˇ.v/f D @vf � @wg:

This shows that (2-1) is linear for curves near T0 .
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On the other hand, since T has nontrivial linear holonomy, the same arguments as in
Lemmas 3.3 and 3.4 show that T0 is the only embedded J 0–holomorphic torus in a
neighborhood of T0 . Since (2-1) is linear for T0 , this implies that T0 is nondegenerate
as a J 0–holomorphic curve. Recall that J 0 and J agree up to first-order derivatives
along the curve T0 , therefore T0 is nondegenerate with respect to J.

4 Proof of Theorem 1.3

Now let L be a cooriented smooth taut foliation on a smooth 3–manifold Y . Consider
its orientation double cover zL. It is an oriented and cooriented taut foliation on the
orientation double cover zY of Y . Let pW zY ! Y be the covering map. If K is a
Klein-bottle leaf of L, then p�1.K/ is a torus leaf of zL. Recall that in the beginning
of Section 1, a homology class PDŒK� 2H 1.Y IZ/ was defined for every embedded
cooriented surface in Y .

Lemma 4.1 Let K be an embedded cooriented surface in Y ; then p�1.K/ is coori-
ented and hence inherits an orientation from zY . Let PDŒp�1.K/� be the Poincaré dual
of the fundamental class of p�1.K/; then p�.PDŒK�/D PDŒp�1.K/�.

Proof Let  be a closed curve in zY . Use I. � ; � / to denote the intersection number.
Then

hPDŒp�1.K/�; Œ�i D I.p�1.K/; /

D I.K; p.//D hPDŒK�; p�Œ�i D hp�.PDŒK�/; Œ�i:

Therefore, p�.PDŒK�/D PDŒp�1.K/�.

Lemma 4.2 The pullback map p�W H 1.Y IZ/!H 1. zY IZ/ is injective.

Proof Every element in kerp� is represented by an element ˛ 2 Hom.�1.Y /;Z/
such that ˛ is zero on the image of p�W �1. zY /! �1.Y /. Since Imp� is a normal
subgroup of �1.Y / with index 2, the map ˛ is decomposed as

˛W �1.Y /! �1.Y /=�1. zY /Š Z=2! Z;

which has to be zero. Therefore, p� is injective.

By Lemmas 4.1 and 4.2, a Klein-bottle leaf K has PDŒK� D A if and only if
PD.Œp�1.K/�/ D p�.A/. The next lemma shows that for every Klein-bottle leaf K
of L, the fundamental class Œp�1.K/� is a primitive class.

Algebraic & Geometric Topology, Volume 18 (2018)



Modulo 2 counting of Klein-bottle leaves in smooth taut foliations 2715

Lemma 4.3 Let F be an oriented and cooriented taut foliation on a smooth three-
manifold M; then the fundamental class of every closed leaf of F is a primitive
class.

Proof Let L be a closed leaf of F . Take a point p 2L. By the definition of tautness,
there exists an embedded circle  passing through p and transverse to the foliation.
Let  W Œ0; 1�!M with .0/D .1/D p be a parametrization of  . By transversality,
�1.L/ is a finite set. Let t0 be the minimum value of t > 0 such that .t0/ 2 L.
Then, for � sufficiently small, one can slide the part of  on .t0� �; t0C �/ along the
foliation so that the resulting curve is still transverse to F , and so that, after sliding,
.t0/D p . Now  jŒ0;t0� defines a circle whose intersection number with L equals 1.
The existence of such a curve implies that the fundamental class of L is primitive.

With the preparations above, one can now prove Theorem 1.3.

Proof of Theorem 1.3 Let A 2 H 1.Y IZ/. Suppose L0 and L1 are two smooth
A–admissible taut foliations on Y that can be deformed to each other by a smooth
family of taut foliations Ls for s 2 Œ0; 1�. Let zY be the orientation double cover of Y .
Then the orientation double covers zLs of Ls form a smooth family of oriented and
cooriented taut foliations on zY .

Let z� W zY ! zY be the deck transformation of the orientation double cover. Then the
map z� preserves the coorientation of zLs and reverses its orientation for each s .

There exists a smooth family of 1–forms �s and closed 2–forms !s on zY such that
zLs D ker�s and �s ^!s > 0. By changing �s to 1

2
.�sC z�

��s/ and changing !s to
1
2
.!s � z�

�!s/, one can assume that z���s D �s , and z��!s D�!s . Let .�s; Js/ be
the corresponding symplectic structures and almost-complex structures on X DR� zY

as defined in Section 3. Define

� W X !X; .t; x/ 7! .�t; z�.x//:

Then ��.�s/ D ��s and ��.Js/ D �Js . The family f.X;�s; Js/g has uniformly
bounded geometry. This means that there is a constant N > 0 such that Js 2
J .X;�s; N / for each s .

If neither L0 nor L1 has any Klein-bottle leaf in the class A, the statement of
Theorem 1.3 is trivially true. From now on assume that either L0 or L1 has at
least one Klein-bottle leaf in the class A. This implies either zL0 or zL1 has at least
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one torus leaf. By a theorem of Novikov [6] (or see for example Theorem 9.1.7
of [2]), �2.X/D �2. zY /D 0. Let e be the pushforward of PD.p�.A// 2H2. zY IZ/
to H2.X IZ/ via the inclusion map zY Š f0g � zY ,! X. The class e then satisfies
��.e/D�e . By Lemma 4.3, e is a primitive class.

Take a positive constant E such that E � hŒ�i �; ei for i D 0; 1. For every J 0 2

J .X;�s; N / and every C 2M.X; J 0; e/, Lemma 2.5 gives a diameter bound of C
by M.N;E/.

Let t0 > 0 be a fixed positive number. For i D 0; 1, the union of torus leaves L in zLi
in the homology class p�.A/ such that (1)

R
L !i �E , and (2) L is not the lift of any

Klein-bottle leaf, form a compact set zBi . The set zBi satisfies z�. zBi /D zBi . Let zUi be
a neighborhood of zBi such that z�. zUi /D zUi and the closure of zUi does not intersect
the lift of any Klein-bottle leaf of Li . Let

V D ..�1;�t0/[ .t0;1//� zY ;

Ui D .R� zUi /[ ..�1;�t0/[ .t0;1//� zY :

V and Ui are open subsets of X. The following two lemmas will be proved in Section 5.

Lemma 4.4 For i D 0; 1, the almost-complex structure Ji can be perturbed to J 0i 2
J .X;�i ; N / such that J 0i D Ji near the lifts of Klein-bottle leaves, and J 0i is E–
admissible. Moreover, one can choose J 0i such that the following are satisfied:

(1) One has ��.J 0i /D�J
0
i on Ui .

(2) Every J 0i –holomorphic torus of X in the homology class e is either contained
in Ui or is the lift of a Klein-bottle leaf in Li in the class A.

(3) If C is a J 0i –holomorphic curve in the homology class e contained in Ui , then
�.C /¤ C.

Lemma 4.5 The almost-complex structures J 00 and J 01 given by Lemma 4.4 can be
connected by a smooth family of almost-complex structures

J 0s 2 J .X;�s; N /;

such that ��.J 0s/D�J
0
s on V , and the moduli space

M.X; fJ 0sg; e/D
a

s2Œ0;1�

M.X; J 0s; e/
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has the structure of a smooth 1–manifold with boundary M.X; J 00; e/[M.X; J 01; e/.
Moreover, let t W X !R be the projection of X DR� zY to R; then the function

fWM.X; fJ 0sg; e/!R; C 7! �

Z
C

t dA;

is a smooth proper function on M.X; fJ 0sg; e/, where for C 2M.X; J 0s; e/, the form
dA is the area form on C given by gs .

Let fJ 0sg be the family of almost-complex structures given by the lemmas above. By the
bound on geometry and the diameter bound, there exists a sufficiently large t1 >0 such
that for every J 0s –holomorphic torus C in the homology class e , if jf.C /j> t1 , then C
is contained in V . Take a constant t2 > t1 such that both t2 and �t2 are regular values
of f, and that t2… f.M.X; J 00; e/[M.X; J 01; e//. Let SiDM.X; J 0i ; e/\f

�1.Œ�t2; t2�/.
The set f�1.t2/ [ f�1.�t2/ [ S0 [ S1 is the boundary of the compact 1–manifold
f�1.Œ�t2; t2�/, hence it has an even number of elements.

The construction of t2 implies that every element in f�1.t2/[ f�1.�t2/ is contained
in V . The properties of fJ 0sg given by Lemma 4.5 state that ��.J 0s/D�J

0
s on V , thus

� maps f�1.t2/ to f�1.�t2/, hence the set f�1.t2/[ f�1.�t2/ has an even number of
elements. The properties given by Lemma 4.4 implies that � acts on the set Si , and the
fixed-point set consists of tori in f0g � zY which are lifts of Klein-bottle leaves of Li
in the homology class A. On the other hand, let Ki be the set of lifts of Klein-bottle
leaves of Li in the homology class A; then for every

C 2 f0g � .K0[K1/�M.X; J 00; e/[M.X; J 01; e/;

one has f.C /D 0, hence C 2 S0[S1 and it is fixed by � .

The arguments above showed that the number of elements in f�1.t2/[f
�1.�t2/[S0[S1

has the same parity as the number of elements in K0[K1 . Therefore, the set K0[K1
has an even number of elements, and the desired result is proved.

5 Technical lemmas

The purpose of this section is to prove Lemmas 4.4 and 4.5. The proofs are routine
and straightforward; they are given here for lack of a direct reference. Throughout this
section X will be a smooth 4–manifold with �2.X/D 0.
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Definition 5.1 Let .X; !/ be a symplectic manifold. Let B �X be a closed subset.
Let E;N > 0 be constants. An almost-complex structure J 2 J .X; !;N / is called
.B;E/–admissible if the following conditions hold:

(1) Every embedded torus C with topological energy less than or equal to E ,
d.ŒC �/D 0 and ŒC � primitive, and satisfying C \B ¤∅, is nondegenerate.

(2) For every primitive homology class e 2H2.X IZ/, if hŒ!�; ei � E , and if the
formal dimension of the moduli space of J –holomorphic maps from a torus
to X in the homology class e , modulo self-isomorphisms of the domain, is
negative, then there is no somewhere-injective J –holomorphic map � from a
torus to X in the homology class e such that Im.�/\B ¤∅.

The next lemma follows from Gromov’s compactness theorem and the diameter bound
of Lemma 2.5.

Lemma 5.2 Let .X; !/ be a symplectic manifold. Let B �X be a closed subset and
E;N > 0 be constants. The elements of J .X; !;N / that are .B;E/–admissible form
an open and dense subset of J .X; !;N /.

Proof First consider the case when B is compact. The denseness of .B;E/–admissible
almost-complex structures then follows from the standard transversality argument. One
only needs to prove the openness. Let M.N;E/ be the upper bound of diameter given
by Lemma 2.5. Suppose J is a .B;E/–admissible almost-complex structure; endow
X with the metric given by .J; !/. Let A be a compact set containing B such that
the distance between @A and B is greater than M.N;E/C 2. Let U be a sufficiently
small open neighborhood of J jA 2 J .A; !/ such that, for every J 0 2 J .X; !;N /,
if J 0jA 2 U then the distance between @A and B is greater than M.N;E/C 1. One
claims that there is a smaller neighborhood V � U containing J such that for every
J 0 2J .X; !;N /, if J 0jA 2 V then J 0 is .B;E/–admissible. In fact, assume the claim
is not true; since J .A; !/ is first-countable, there is a sequence fJng � J .X; !;N /
such that JnjA!J jA in the C1–topology and that every Jn is not .B;E/–admissible.
Therefore, for every n, there exists a Jn–holomorphic curve Cn with topological energy
no greater than E such that ŒCn� is primitive and Cn\B ¤∅. Moreover, either Cn
is an embedded degenerate curve with index zero, or Cn is a curve with negative index.
The diameter bound implies Cn � A for each n. Gromov’s compactness theorem then
implies that there is a subsequence of Cn converging to a nonconstant J –holomorphic
map, possibly with bubbles, nodal singularities and branched-cover components. Since
it is assumed that �2.X/D 0 and ŒCn� is primitive, the argument in Lemma 2.3 shows
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that the limit map has to be an embedded J –holomorphic torus. The torus given by the
limit map has topological energy less than or equal to E , and it violates the assumption
that J is .B;E/–admissible.

Now consider the case when B is not necessarily compact. Choose any J02J .X; !;N /
and define a metric on X by .J0; !/. Cover B by a locally finite family of compact
subsets Bn , let An be the closed .M.N;E/C2/–neighborhood of Bn . By the argu-
ments in the previous paragraph, for each n there is an open subset Vn � J .An; !/
such that J0jAn

2 Vn , and such that for every J 0 2 J .X; !;N / with J 0jAn
2 Vn ,

the almost-complex structure J 0 is .Bn; E/–admissible. Moreover, if J0 is .Bn; E/–
admissible, then one can choose Vn such that J0 2 Vn . Since J 0 is .B;E/–admissible
if and only if it is .Bn; E/–admissible for every n, the desired result follows from
Lemma 2.6(1).

Now let � W X ! X be a map that acts diffeomorphically on X such that �2 D idX
and the quotient map X !X=� is a covering map.

Definition 5.3 Let .X; !/ be a symplectic manifold. Let d;E;N > 0 be constants.
Let B be a closed subset of X such that �.B/ D B . An almost-complex structure
J 2J .X; !;N / is called .d;E/–regular with respect to B if for every J –holomorphic
map � from a torus to X with topological energy less than or equal to E , at least one
of the following conditions hold:

(1) The distance between the sets Im.�/ and �.Im.�// is greater than d .

(2) The distance between Im.�/ and B is greater than d .

Here the distance is defined by the metric gJ D !. � ; J �/ on X.

Remark 5.4 Since the map � in the definition above is allowed to be a constant
map, for a .d;E/–regular almost-complex structure J with respect to B , one has
dist.p; �.p// > d for every p 2 B .

The following result is another consequence of Gromov’s compactness theorem, and
the proof follows a similar strategy as Lemma 5.2.

Lemma 5.5 Let d;E;N > 0 be constants and B be a closed subset of X such that
�.B/ D B . The elements of J .X; !;N / that are .d;E/–regular with respect to B
form an open subset of J .X; !;N /.

Proof First consider the case when B is compact. Let M.N;E/ be the upper bound
of diameter given by Lemma 2.5. Suppose J is a .d;E/–regular almost-complex
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structure with respect to B ; endow X with the metric given by .J; !/. Let A be a
compact set containing B such that the distance between @A and B is greater than
M.N;E/CdC2. Let U be a sufficiently small open neighborhood of J jA 2 J .A; !/
such that, for every J 0 2J .X; !;N /, if J 0jA 2U then the distance between @A and B
is greater than M.N;E/C d C 1. One claims that there is a smaller neighborhood
V � U containing J such that for every J 0 2 J .X; !;N /, if J 0jA 2 V then J 0 is
.d;E/–regular with respect to B . In fact, assume the claim is not true; since J .A; !/
is first-countable, there is a sequence fJng � J .X; !;N / such that JnjA! J jA in
the C1–topology and that every Jn is not .d;E/–regular with respect to B . By
the definition of .d;E/–regularity, there is a sequence of Jn–holomorphic maps �n
from the torus to X with topological energy less than or equal to E such that the
distance of Im.�/ to B with respect to the metric given by Jn is less than or equal
to d , and the distance between Im.�/ and �.Im.�// with respect to the metric given
by Jn is less than or equal to d . By the diameter bound, every curve Cn is contained
in the set A. Gromov’s compactness theorem then implies that there is a subsequence
of �n converging to a nonconstant J –holomorphic map possibly with bubbles, nodal
singularities and branched-cover components. Since is it assumed that �2.X/D 0, the
limit map has to be a possibly branched cover of a torus. The torus given by the limit
map has topological energy less than or equal to E , and it violates the assumption that
J is .d;E/–regular with respect to B .

Now consider the case when B is not necessarily compact. Let J be a .d;E/–regular
almost-complex structure with respect to B . Endow X with the metric given by .J; !/.
Cover B by a locally finite family of compact subsets Bn such that �.Bn/ D Bn

for each n. Let An be the closed .M.N;E/CdC2/–neighborhood of Bn . By the
argument of the previous paragraph, for each n there is an open neighborhood Vn
of J jAn

in J .An; !/ such that, for every J 0 2 J .X; !;N /, if J 0jAn
2 Vn then J 0 is

.d;E/–regular with respect to Bn . Notice that J 0 is .d;E/–regular with respect to B
if and only if it is .d;E/–regular with respect to every Bn . By the definition of the
topology on J .X; !;N /, this implies that J has an open neighborhood consisting of
.d;E/–regular almost-complex structures with respect to B .

The following lemma is a 1–parametrized version of Lemma 5.5.

Lemma 5.6 Let d;E;N > 0 be constants and B be a closed subset of X such
that �.B/D B . Let !s for s 2 Œ0; 1� be a smooth family of symplectic forms on X,
and let Ji 2 J .X; !i ; N /. Then the set of elements fJsg 2 J .X; f!sg; J0; J1; N /
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such that every Js is .d;E/–regular with respect to B forms an open subset of
J .X; f!sg; J0; J1; N /.

Proof The proof is exactly the same as Lemma 5.5. One only needs to change the
notation J to fJsg and change the notation J .X; !;N / to J .X; f!sg; J0; J1; N /.

Lemma 5.7 Let .X; !/ be a symplectic manifold such that ��.!/ D �! . Let
d;E;N >0 be constants. Let B be a closed subset of X such that �.B/DB . Assume
J 2 J .X; !;N / is .d;E/–regular with respect to B and assume that ��.J /D �J
on B . Then, for every open neighborhood U of J in J .X; !;N /, there is an ele-
ment J 0 such that J 0 is .d;E/–regular with respect to B and is E–admissible, and
��.J 0/D�J 0 on B . Moreover, if there is a closed subset H �X such that �.H/DH
and J is .H;E/–admissible, then J 0 can be taken to be equal to J on the set H.

Proof By shrinking the open neighborhood U , one can assume that every element
of U is .d;E/–regular with respect to B and that there is a complete metric g0 on X
such that ��.g0/D g0 and g0 � gJ 0 for every J 0 2 U . For the rest of this proof, the
metric on X is given by g0 .

Cover X by a locally finite family of closed balls with radius d
10

. Say

X D

C1[
iD1

Bi ;

where fBig are closed balls with radius d
10

. Let Di be the open d
10

–neighborhood
of Bi ; then the diameter of Di is less than d

2
.

Let Aj D
S
i�j Bj ; then A0 D ∅. The construction of J 0 follows from induction.

Assume that Jj is already .Aj ; E/–admissible with ��.Jj /D�Jj on B ; the following
paragraph will perturb Jj to JjC1 such that JjC1 is .AjC1; E/–admissible with
��.JjC1/D�JjC1 on B .

In fact, if DjC1 \B D ∅, then a generic perturbation on DjC1 will do the job. If
DjC1\B ¤∅, choose a small perturbation on DjC1 such that the resulting almost-
complex structure J 0jC1 is still in U and is .BjC1; E/–admissible. Recall that every
element in U is .d;E/–regular with respect to B ; hence, by Remark 5.4 and the
diameter bound on DjC1 , one has �.DjC1/\DjC1 D∅. Now make an additional
perturbation on �.DjC1/ such that the resulting almost-complex structure JjC1 satis-
fies �.JjC1/D�JjC1 on B . One can choose the perturbation on DjC1 to be small
enough that JjC1 is also in U .
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Notice that JjC1 is .d;E/–regular with respect to B , the diameter of Dj is less
than d

2
and Dj \B ¤∅. One claims that there is no JjC1–holomorphic map from a

torus with topological energy less than or equal to E and passing through both DjC1
and �.DjC1/. In fact, assume C passes through both DjC1 and �.DjC1/; then the
distance between C and �.C / is less than or equal to d

2
. Since Dj \B ¤ ∅, the

distance between C and B is less than or equal to d
2

. This is contradictory to the fact
that J 0jC1 is .d;E/–regular with respect to B .

Since a JjC1–holomorphic map from a torus with topological energy less than or equal
to E can never pass through both DjC1 and �.DjC1/, the almost-complex struc-
ture J 0jC1 being .DjC1; E/–admissible implies that JjC1 is .DjC1; E/–admissible.
By Lemma 5.2, being .Aj ; E/–admissible is an open condition, thus when the per-
turbation is sufficiently small JjC1 is also .Aj ; E/–admissible. Therefore, one can
choose JjC1 such that the almost-complex structure JjC1 is .AjC1; E/–admissible.
Since the family fDng is locally finite, on each compact set the sequence fJj g stabilizes
for sufficiently large j . The desired J 0 can then be obtained by taking limj!1 Jj .
Moreover, if there is a closed subset H �X such that �.H/DH and J is .H;E/–
admissible, then each step of the perturbation can be taken to be outside of H.

The following lemma is a 1–parametrized version of Lemma 5.7, and the proof is
essentially the same.

Lemma 5.8 Let e 2 H1.Y IZ/ be a primitive class. Let B be a closed subset
of X such that �.B/ D B . Assume !s .s 2 Œ0; 1�/ is a smooth family of sym-
plectic forms such that ��.!s/ D �!s for each s . Let d;N > 0 be constants
and let E > 0 be a constant such that E � he; Œ!i �i for i D 0; 1. For i D 0; 1,
assume Ji 2 J .X; !i ; N / is E–admissible and .d;E/–regular with respect to B .
Assume fJsg 2 J .X; f!sg; J0; J1; N / is such that, for each s , the almost-complex
structure Js is .d;E/–regular with respect to B , and ��.Js/ D �Js on B . Then,
for every open neighborhood U of fJsg in J .X; f!sg; J0; J1; N /, there is an ele-
ment fJ 0sg such that fJ 0sg is .d;E/–regular with respect to B , and the moduli space
M.X; fJ 0sg; e/D

`
s2Œ0;1�M.X; J 0s; e/ has the structure of a smooth 1–manifold with

boundary M.X; J0; e/[M.X; J1; e/, and ��.J 0s/D�J
0
s on B for every s . Moreover,

if there is a closed subset H �X such that �.H/DH and fJsg is .H;E/–admissible
for every s , then J 0s can be taken to be equal to Js on the set H.

Proof The proof follows verbatim as the proof of Lemma 5.7. One only needs to
change the notation J to fJsg and change J .X; !;N / to J .X; f!sg; J0; J1; N /.
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Combining the results above, one obtains the following lemma:

Lemma 5.9 Let e 2H2.X IZ/ be a primitive class. Let B be a closed subset of X
such that �.B/D B . Assume !s .s 2 Œ0; 1�/ is a smooth family of symplectic forms
on X such that ��.!s/ D �!s for each s . Let d;N > 0 be constants. Let E
be a positive constant such that E � hŒ!i �; ei for i D 0; 1. For i D 0; 1, assume
Ji 2 J .X; !i ; N / is E–admissible and .d;E/–regular with respect to B . Let J
be the subset of elements fJsg of J .X; f!sg; J0; J1; N / such that, for each s , the
almost-complex structure Js is .d;E/–regular with respect to B , and ��.Js/D�Js
on B . If J is not empty, let U � J be the subset of J such that, for every fJsg 2 U ,
the moduli space M.X; fJsg; e/D

`
s2Œ0;1�M.X; Js; e/ has the structure of a smooth

1–manifold with boundary M.X; J0; e/[M.X; J1; e/. Then J is open and U is
dense in J . Moreover, if f W X ! R is a smooth proper function on X, then the
function defined as

fWM.X; fJsg; e/!R; C 7! �

Z
C

f dA:

is a smooth proper function on M.X; fJsg; e/, where, for C 2M.X; Js; e/, the area
form dA of C is given by .Js; !s/.

Proof The openness of J follows from Lemma 5.6. The fact that U is dense in J
follows from Lemma 5.8. The properness of the function f was proved in Lemma 2.8.

The following lemma controls the location of pseudoholomorphic curves after pertur-
bation of the almost-complex structure:

Lemma 5.10 Let .X; !/ be a symplectic manifold and let J 2 J .X; !;N /. Let
E > 0 be a positive constant and let B be a closed subset of X. Assume that there
is no nonconstant J –holomorphic map � from a torus to X such that Im.�/\B is
nonempty and the topological energy of � is no greater than E . Then there is an
open neighborhood U of J in J .X; !;N / such that, for every J 0 2 U , there is no
embedded J 0–holomorphic torus in X intersecting B with topological energy less
than or equal to E .

Proof Endow X with the metric given by .!; J /. Cover the set B by a locally finite
family of compact subsets Bn . Let M.N;E/ be the upper bound given by Lemma 2.5
for geometry bound N and energy bound E . Let An be the closed .M.N;E/C1/–
neighborhood of Bn .
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One claims that there is an open neighborhood Un of J jAn
2 J .An; !/ such that for

every J 0 2 J .An; !;N /, if J 0jAn
2 Un , then there is no embedded J 0–holomorphic

torus in X intersecting Bn with topological energy less than or equal to E . Assume
the result does not hold, then there is a sequence of Jn � J .A; !;N / such that for
each n there exists a Jn–holomorphic map �n from a torus to X which intersects B
and has topological energy less than or equal to E , and JnjAn

! J jAn
. For sufficiently

large n, the distance between @An and Bn is greater than M.N;E/ with respect to the
distance given by Jn , therefore the relevant Jn–holomorphic curve is contained in An .
By Gromov’s compactness theorem, a subsequence of �n will give a nonconstant J –
holomorphic map from a torus to An such that the intersection Im.�/\B is nonempty,
and the topological energy of � is less than or equal to E , which is a contradiction.
Therefore, the claim holds. The result of the lemma then follows from Lemma 2.6(1).

With the preparations above, one can now prove Lemmas 4.4 and 4.5:

Proof of Lemma 4.4 Let gi be the metric on X given by .�i ; Ji /. By Corollary 3.5,
every C 2M.X; Ji ; e/ either satisfies �.C /\C D∅, or C is the lift of a Klein-bottle
leaf. Since the space of torus leaves in Y is compact, there exists a positive constant
d
.1/
i > 0 such that when �.C /\ C D ∅, the distance between C and �.C / with

respect to gi is greater than d .1/i . Let d .2/i be the distance from zUi to the union of
the lifts of Klein-bottle leaves.

Recall that
Ui D .R� zUi /[ ..�1;�t0/[ .t0;1//� zY ;

and Ui is the closure of Ui . Let

d
.3/
i D

1
3

inf
p2Ui

dgi
.p; �.p//:

Let
d D min

iD0;1
jD1;2;3

d
.j /
i :

Fix a metric g� on X such that g��gi for iD0; 1, and define .d;E/–regularity using
the metric g� . For every E > 0, the almost-complex structure Ji is .d;E/–regular
with respect to Ui . In fact, every Ji –holomorphic map from a torus to X is one of
(1) a constant map, (2) a covering to the lift of a torus leaf, or (3) a covering to the
lift of a Klein-bottle leaf. Let C be its image. In case (1), either the distance from C

to Ui is at least d .3/i , or the distance from C to �.C / is at least d .3/i . In case (2), the
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distance from C to �.C / is at least d .1/i . In case (3), the distance from C to Ui is at
least d .2/i . Choose E to be any positive constant such that E �maxi h�i ; ei.

Apply Lemma 5.7 to B D Ui ; there is a perturbation

J 0i 2 J .X;�i ; N /

of Ji such that J 0i is E–admissible and ��.J 0i / D �J
0
i on Ui . Let Wi be a small

open neighborhood of the union of lifts of Klein-bottle leaves such that �.Wi /DWi
and Ji is .Wi ; E/–admissible. The almost-complex structure J 0i can then be taken
to be equal to Ji on Wi . By the definition of the set Ui , every Ji –holomorphic map
from a torus to X in the homology class e is either a lift of a Klein-bottle leaf in
f0g � Y or is mapped into the set Ui . Therefore, Lemma 5.10 shows that when the
perturbation is sufficiently small, every J 0i –holomorphic torus with homology class e is
either contained in Ui or is contained in Wi . In the latter case the curve is contained in
zY �f0g and it is a lift of a Klein-bottle leaf of Li in class A. Since J 0i is .d;E/–regular
with respect to Ui , for every J 0i holomorphic torus C in Ui one has �.C /¤ C.

Proof of Lemma 4.5 The almost-complex structures J 00 and J 01 can be connected
by a smooth family of almost-complex structures J 0s 2 J .X;�s; J 00; J

0
1; N / such that

��.J 0s/D�J
0
s on the closure of V . Using Lemma 5.9, the family J 0s can be further

perturbed to satisfy the desired conditions.

6 An example

This section gives an example of a taut foliation with an odd number of Klein-bottle
leaves such that every closed leaf has nontrivial linear holonomy. By Corollary 1.4,
every deformation of such a foliation via taut foliations has at least one Klein-bottle
leaf.

Think of the torus T0DS1�S1 as a trivial S1–bundle over S1 . Let z1; z2 2R=2� be
the coordinates of the two S1 factors, where z1 is the coordinate for the fiber and z2 is
the coordinate for the base. Let  be a closed curve on the base that wraps the S1 once
in the positive direction. Take a horizontal foliation yI on T0 such that the holonomy
along  has two fixed points z1D 0 and z1D� , and that holonomy map has nontrivial
linearization at these two points. Moreover, choose yI so that it is invariant under the
map .z1; z2/ 7! .z1C�; � � z2/ and the map .z1; z2/ 7! .z1; z2C�/. Figure 1 gives
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2�

�

0 � 2�

Figure 1: The foliation yI on S1 �S1

a picture for such a foliation yI, where z2 is the horizontal coordinate, and z1 is the
vertical coordinate.

Consider the pullback of the foliation yI to T0�S1 . Let z3 2R=2� be the coordinate
for the S1 factor; then spanfyI; @=@z3g defines a foliation I on T0 � S1 . There are
exactly two torus leaves in I , and they are given by z1 D 0 and z1 D � .

The foliation I is invariant under the maps

�1W .z1; z2; z3/ 7! .z1C�; � � z2; z3/;

�2W .z1; z2; z3/ 7! .z1; z2C�;�z3/;

�3W .z1; z2; z3/ 7! .z1C�;�z2;�z3/:

The set V D fid; �1; �2; �3g is a group acting freely and discontinuously on T0 �S1

and it preserves the coorientation of I . The two torus leaves in T0 �S1 are identified
under the quotient by V , and their images give the unique Klein-bottle leaf in I=V .
Moreover, the Klein-bottle leaf has nontrivial linear holonomy. Therefore, Corollary 1.4
implies the following result:

Proposition 6.1 Every deformation of I=V through taut foliations must have at least
one Klein-bottle leaf.
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