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Homological stability for diffeomorphism groups of
high-dimensional handlebodies

NATHAN PERLMUTTER

We prove a homological stability theorem for the diffeomorphism groups of high-
dimensional manifolds with boundary, with respect to forming the boundary con-
nected sum with the product DpC1�Sq for jq�pj<minfp�2; q�3g . In a recent
joint paper with B Botvinnik, we prove that there is an isomorphism

colim
g!1

H�.BDiff..DnC1
�Sn/\g;D2n/IZ/ŠH�.Q0BO.2nC 1/hniCIZ/

in the case that n � 4 . By combining this “stable homology” calculation with the
homological stability theorem of this paper, we obtain the isomorphism

Hk.BDiff..DnC1
�Sn/\g;D2n/IZ/ŠHk.Q0BO.2nC 1/hniCIZ/

in the case that k � 1
2
.g� 4/ .

57R15, 57R50, 57R65, 57S05

1 Introduction

1.1 Main result

Let M be a smooth, compact, m–dimensional manifold with nonempty boundary.
Fix an .m�1/–dimensional disk Dm�1 ,! @M. We denote by Diff.M;Dm�1/ the
group of self-diffeomorphisms of M that restrict to the identity on a neighborhood
of Dm�1 , topologized in the C1–topology. We let BDiff.M;Dm�1/ denote the
classifying space of the topological group Diff.M;Dm�1/. Let V be another smooth,
compact, m–dimensional manifold with nonempty boundary. There is a homomor-
phism Diff.M;Dm�1/! Diff.M \V;Dm�1/ defined by extending a diffeomorphism
identically over the boundary connect-summand V . This homomorphism induces a
map between the classifying spaces, and iterating this map yields the direct system

(1) BDiff.M;Dm�1/!BDiff.M \V;Dm�1/!� � �!BDiff.M \V \g;Dm�1/!� � � :

In this paper we study the homological properties of this direct system in the case when
V is a high-dimensional handlebody DpC1�Sq . Our main result can be viewed as an
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analogue of the homological stability theorems of Harer [6], or the theorem of Galatius
and Randal-Williams [4], for high-dimensional manifolds with boundary.

Below we state our main theorem. For p; q;g 2 Z�0 , let V
g

p;q denote the g–fold
boundary connected sum, .DpC1 �Sq/\g . Let d.�q.S

p// denote the generating set
length of the homotopy group �q.S

p/, which is the quantity

d.�q.S
p//Dminfk 2N j there exists an epimorphism Z˚k

! �q.S
p/g:

We let �.@M / and �.M; @M / denote the degrees of connectivity of @M and .M; @M /,
respectively. The main result of this paper is stated below:

Theorem 1.1 Let M be a compact manifold of dimension m with nonempty boundary.
Let p and q be positive integers with pC qC 1Dm such that the inequalities

(2) jq�pj<minfp� 2; q� 3g and jq�pj<minf�.@M /� 1; �.M; @M /� 2g

are satisfied. Then the homomorphism induced by the maps in (1),

Hk.BDiff.M \V g
p;q;D

m�1/IZ/!Hk.BDiff.M \V gC1
p;q ;Dm�1/IZ/;

is an isomorphism when k � 1
2

�
g � d.�q.S

p// � 3
�

and an epimorphism when
k � 1

2

�
g� d.�q.S

p//� 1
�
.

The above theorem implies that the homology of the direct system (1) stabilizes in the
case V D V 1

p;q . In the special case where p D q we can also identify the homology
of the limiting space. This was done in joint work with B Botvinnik [1]. To state this
result we need to introduce some notation.

Notational Convention 1.2 Let X be a topological space and let k 2 Z�0 .

� We let X hki denote the k –connected cover of X, which is defined to be the k th

stage in the Whitehead tower associated to X. It is uniquely (up to homotopy)
characterized by the following properties: (a) �i.X hki/D 0 for all i � k ; (b)
there exists a map X hki!X that induces an isomorphism �j .X hki/Š�j .X /

for all j > k .
� We define X hkiC to be the pointed space given by the disjoint union X hkitfptg

with basepoint given by the additional point.
� We let QX hkiC denote the infinite loopspace of the suspension spectrum asso-

ciated to the space X hkiC , ie QX hkiC D�
1†1X hkiC .

� We let Q0X hkiC denote the path component of QX hkiC that contains the
constant loop.
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In [1] we construct a map

colim
g!1

BDiff..DnC1
�Sn/\g;D2n/!Q0BO.2nC 1/hniC;

which we prove induces an isomorphism in H�.�;Z/ in the case that n�4. Combining
this homological equivalence with Theorem 1.1, we obtain a corollary which lets us
compute the homology of the classifying space BDiff..DnC1 �Sn/\g;D2n/ in low
degrees relative to g .

Corollary 1.3 Let 2nC 1� 9. Then there is an isomorphism

Hk.BDiff..DnC1
�Sn/\g;D2n/IZ/ŠHk.Q0BO.2nC 1/hniCIZ/

when k � 1
2
.g� 4/.

In addition to the classifying spaces of diffeomorphism groups of manifolds, we prove
an analogous homological stability theorem for the moduli spaces of manifolds equipped
with tangential structures; see Theorem 8.2. The precise statement of this theorem
requires a number of preliminary definitions and so we hold off on stating this result
until Section 8, where the theorem is proven.

1.2 Ideas behind the proof

The proof of our main theorem follows the strategy developed by Galatius and Randal-
Williams [4], used to prove homological stability for the diffeomorphism groups
Diff..Sn �Sn/#g;D2n/ for g 2N. The technique is also inspired by the homological
stability theorem of Harer [6] for the mapping class groups of surfaces, and furthermore
follows the general proof scheme for proving homological stability formalized by
Randal-Williams and Wahl [17]. Given a compact manifold triad .M; @0M; @1M / and
integers pCqC1D dim.M /, we construct a semisimplicial space K@

�
.M /p;q , which

admits a continuous action of the diffeomorphism group Diff.M; @0M /. Roughly, an
l –simplex of K@

�
.M /p;q is given by a list of embeddings, �0; : : : ; �l W .V

1
p;q; @V

1
p;q/!

.M; @1M /, for which �i.V
1

p;q/ \ �j .V
1

p;q/ D ∅ for all i ¤ j . Nearly all of the
technical work of this paper is devoted to showing that the connectivity of the geometric
realization jK@

�
.M /p;qj increases linearly — with a slope of 1

2
— in the number of

boundary connect-summands of V 1
p;q contained in M (see Theorem 3.6). Once high-

connectivity is established, the homological stability theorem follows by applying
the same spectral sequence argument used in [4] or [17]. Most of the simplicial
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and homotopy-theoretic techniques that we use come from [4], but the geometric–
topological aspects of the paper require new constructions and arguments. We describe
some of these new features below.

The semisimplicial space K@
�
.M /p;q can be viewed as a “relative version” of the

semisimplicial space constructed in our previous work [15], used to prove homological
stability for the diffeomorphism groups Diff..Sq � Sp/#g/ for g 2 N. Our proof
that the space jK@

�
.M /p;qj is highly connected follows a similar strategy to what

was employed in [15]. The idea is to map K@
�
.M /p;q to another simplicial object,

L.W@
p;q.M; @1M //, that is constructed entirely out of algebraic data associated to the

manifold M, which we call the Wall form associated to M (see Section 5). Wall forms
were initially defined in [15] to study closed manifolds and their diffeomorphisms. In
this paper we have to use a relative version of the Wall form used to study manifold
pairs .M; @M / and diffeomorphisms M !M that are nontrivial on the boundary.
High-connectivity of the complex L.W@

p;q.M; @1M // follows from our work in [15] as
well, and so it remains to prove that the map ‚W jK@

�
.M /p;qj ! jL.W@

p;q.M; @1M //j

is highly connected.

One of the main ingredients used in our proof that the map ‚ is highly connected is a
new disjunction result for embeddings of high-dimensional manifolds with boundary;
this is Theorem A.1, stated in the appendix. If .P; @P /; .Q; @Q/ � .M; @M / are
submanifold pairs, Theorem A.1 gives conditions for when one can find an ambient
isotopy ‰t W .M; @M / ! .M; @M / with ‰0 D IdM such that ‰1.P / \ Q D ∅.
Theorem A.1 can be viewed as a generalization of the disjunction results of Wells [20]
and Hatcher and Quinn [7], and thus could be of independent interest.

Plan of the paper

In Section 2 we recast the maps of the direct system (1) as maps arising from concatena-
tion with a relative cobordism between two compact manifold pairs. This will enable us
to restate Theorem 1.1 in a slightly more general form that will be easier for us to prove.
In Section 3 we construct the main semisimplicial space, K@

�
.M /p;q . In Section 4 we

define certain algebraic invariants associated to a manifold with boundary. Section 5
is devoted to a recollection of some results from our previous work in [15] regarding
Wall forms. In Section 6 we use the results developed throughout the rest of the paper
to prove that jK@

�
.M /p;qj is highly connected. In Section 7 we show how to obtain

Theorem 2.7 (and thus Theorem 1.1) using the high-connectivity of jK@
�
.M /p;qj. In

Algebraic & Geometric Topology, Volume 18 (2018)
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Section 8 we show how to obtain an analogue of Theorem 2.7 for the moduli spaces
of handlebodies equipped with tangential structures. In the appendix we prove a
disjunction theorem for embeddings of high-dimensional manifolds with boundary.
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2 Relative cobordism and stabilization

To prove Theorem 1.1, we will need to recast the direct system (1) as arising from
concatenation with a relative cobordism between two compact manifold pairs. Doing
this will make our constructions consistent with the cobordism categories considered
in [5; 1]. Below we introduce some definitions and terminology that we will use
throughout the paper.

Let us recall first the definition of a manifold with corners. The following definition is
lifted from [11] with a few minor changes in terminology.

Definition 2.1 A smooth manifold with corners is a topological manifold X together
with a C1–structure with corners. That is, X is covered by charts, �W U ! Œ0;1/n ,
which are homeomorphisms from open sets U onto open subsets of Œ0;1/n . Two
charts .�i ;Ui/iD0;1 are said to be compatible if �2ı�

�1
1
W �1.U1\U2/!�2.U1\U2/

is a diffeomorphism. Such a collection of charts covering X is called an atlas (with
corners). A C1–structure with corners is a maximal atlas.

Let M be an n–dimensional smooth manifold with corners. Let .�;U / be a chart
on M. For any x 2 U the number of zeros in the n–tuple �.x/ 2 Œ0; 1/n does not
depend on the choice of chart .�;U /. We denote the number of zeros in �.x/ by c.x/.
The boundary @X of X consists of all points x 2X with c.x/� 1. All points with
c.x/D 0 belong to the interior. The depth of a manifold with corners X is defined to
be the number depth.X / WDmaxfc.x/ j x 2X g.

We refer the reader to [11] for more background on manifolds with corners. In this
paper we will only need to work with manifolds with corners with depth 2. We will
work with such manifolds with corners that are equipped with some extra structure.
The main definition is given below:

Algebraic & Geometric Topology, Volume 18 (2018)
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Definition 2.2 A manifold triad of dimension n is a triple .W I @0W; @1W / where

� W is an n–dimensional smooth manifold with corners with depth.W /D 2,

� @0W; @1W � @W are .n�1/–dimensional submanifolds,

subject to the conditions

(i) @W D @0W [ @1W ,

(ii) @.@0W /D @0W \ @1W D @.@1W /,

(iii) c.x/D 2 for all x 2 @0W \ @1W .

We will write @0;1W WD @0W \ @1W . Since depth.W / D 2, it follows from the
conditions above that @0;1W is a closed manifold of dimension n� 2.

Two compact d –dimensional manifold pairs .M; @M / and .N; @N / are said to be
cobordant if there exists a .dC1/–dimensional compact manifold triad .W I @0W; @1W /

such that
.@0W; @0;1W /D .M tN; @M t @N /:

The pair .W; @1W / is then said to be a relative cobordism between the pairs .M; @M /

and .N; @N /.

Let .M I @0M; @1M / be an m–dimensional, compact manifold triad. Let Diff.M /

denote the topological group of self-diffeomorphisms f W M !M with f .@iM /D

@iM for i D 0; 1. We are mainly interested in the subgroup Diff.M; @0M /�Diff.M /

consisting of those self-diffeomorphisms that restrict to the identity on a neighborhood
of @0M. We will need the following construction:

Construction 2.3 Let .P; @P / be an .m�1/–dimensional manifold pair and let
.KI @0K; @1K/ be a compact manifold triad such that @0K D @0M tP, ie the pair
.K; @1K/ is a relative cobordism between .@0M; @0;1M / and .P; @P /. Let M [@0

K

be the manifold obtained by attaching K to M along the face @0M � @0K . Similarly,
let @1.M [@0

K/ WD @1M [@0;1
@1K be the manifold obtained by attaching @1K to

@1M along their common boundary @0;1M. By setting @0.M [@0
K/ WDP, we obtain

a new manifold triad,

.M [@0
KI @0.M [@0

K/; @1.M [@0
K//:

The cobordism .K; @1K/ induces a homomorphism

Diff.M; @0M /! Diff.M [@0
K;P /; f 7! f [ IdK ;

Algebraic & Geometric Topology, Volume 18 (2018)
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defined by extending diffeomorphisms identically over K . This homomorphism in
turn induces a map on the level of classifying spaces,

(3) BDiff.M; @0M /! BDiff.M [@0M K;P /:

This map should be compared to the one from [4, Equation 1.1]. Indeed, they are the
same map in the case that @1M D @1K D∅.

Suppose now that @0M and @1M are nonempty. Let p and q be integers such that
pC qC 1Dm. Choose embeddings

(4) @DpC1
�Sq

 -Dm�1 ,! @0;1M � .0; 1/:

Let Kp;q then denote the manifold obtained by forming the boundary connected sum
of DpC1�Sq and @0M � Œ0; 1� along the embeddings (4). Notice that by construction
the boundary of Kp;q contains @0M � f0; 1g. We then set

@0Kp;q WD @0M � f0; 1g;

@1Kp;q WD @Kp;q n Int.@0Kp;q/D .@0;1M � Œ0; 1�/ # .Sp
�Sq/:

The triple .Kp;qI @0Kp;q; @1Kp;q/ is a manifold triad and .Kp;q; @1Kp;q/ is a relative
cobordism between the manifold pairs

.@0M � f0g; @0;1M � f0g/ and .@0M � f1g; @0;1M � f1g/:

We apply Construction 2.3 to this relative cobordism .Kp;q; @1Kp;q/. We form the
manifold M [@0

Kp;q and notice that @0.M [@0
Kp;q/D @0M. We define

(5) sp;qW BDiff.M; @0M /! BDiff.M [@0
Kp;q; @0M /

to be the map on classifying spaces induced by .Kp;q; @1Kp;q/ from (3). We will refer
to this map as the .p; q/th stabilization map.

Remark 2.4 The manifold M [@0
Kp;q is diffeomorphic to the boundary connected

sum M \V 1
p;qDM \.DpC1�Sq/. By identifying M[@0

Kp;q with M \V 1
p;q , (5) yields

the map

BDiff.M; @0M /! BDiff.M \V 1
p;q; @0M /:

In the case that @0M DDpCq , we obtain the maps used in the direct system (1); we
take this to be the definition of those maps.
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Remark 2.5 In Section 7.1 we give an alternative definition of the .p; q/th stabilization
map (5), using a particular geometric model for the classifying spaces BDiff.M; @0M /.
The proof of our main theorem (Theorem 2.7) will use the latter definition of sp;q . It
is a simple exercise to show that the two definitions of the .p�q/th stabilization map
agree up to homotopy.

We will now restate Theorem 1.1 in terms of the maps defined above. We need one
more preliminary definition. Recall from the previous section the manifold V

g
p;q D

.DpC1 �Sq/\g . Choose an embedded .pCq/–dimensional closed disk D � @V
g

p;q

and set @0V
g

p;q WDD and @1V
g

p;q WD@V
g

p;qnInt.D/. By creating a corner at @D�@V g
p;q ,

V
g

p;q obtains the structure of a manifold triad. With dim.M /Dm and pC qC 1Dm

as above, we let rp;q.M / be the integer defined by

(6) rp;q.M /Dmaxfg2N j there exists an embedding .V g
p;q; @1V g

p;q/!.M; @1M /g:

We refer to this quantity as the .p; q/–rank of M. This quantity rp;q.M / is equivalent
to the maximal number of boundary connect-summands of DpC1 �Sq that split off
of M. This maximum exists as a consequence of the compactness of M. We emphasize
that the embeddings .V g

p;q; @1V
g

p;q/! .M; @1M / used in (6) need not send the face
@0V

g
p;q into @0M.

Remark 2.6 The value rp;q.M / depends on the structure of the triad .M I @0M; @1M /

and not just the manifold M itself. In particular, switching the roles of @0M and @1M

in (6) will change the value of the rank rp;q.M /.

As in the statement of Theorem 1.1 we will need to assume that the following inequalities
are satisfied:

(7) jq�pj<minfp� 2; q� 3g; jq�pj<minf�.@1M /� 1; �.M; @1M /� 2g;

where recall that �.@1M / and �.M; @1M / denote the degrees of connectivity of @1M

and .M; @1M /, respectively. The main theorem that we will prove in this paper is
stated below; it is a generalization of Theorem 1.1. Recall the generating set length
d.�q.S

p//.

Theorem 2.7 Let .M I @0M; @1M / be an m–dimensional, compact, manifold triad
with @0M and @1M nonempty. Let p and q be positive integers with pCqC1Dm

Algebraic & Geometric Topology, Volume 18 (2018)
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and suppose that the inequalities of (7) are satisfied. Let rp;q.M / � g . Then the
homomorphism

.sp;q/�W Hk.BDiff.M; @0M /IZ/!Hk.BDiff.M [@0
Kp;q; @0M /IZ/

is an isomorphism when k � 1
2

�
g � 3 � d.�q.S

p//
�

and an epimorphism when
k � 1

2

�
g� 1� d.�q.S

p//
�
.

3 The complex of embedded handles

In this section we construct a semisimplicial space that is analogous to [4, Defini-
tion 5.1]. The definition requires a preliminary geometric construction. For inte-
gers p , q and g , let .V g

p;qI @0V
g

p;q; @1V
g

p;q/ be the .pCqC1/–dimensional manifold
triad defined in the previous section. For each g 2 N we let W

g
p;q denote the face

@1V
g

p;q Š .S
p �Sq/#g n Int.DpCq/. We will write Vp;q WD V 1

p;q and Wp;q WDW 1
p;q .

Definition 3.1 For an integer m let Dm
C denote the m–dimensional half-disk, ie

the subspace given by the set fxx 2 Rm j jxxj � 1; x1 � 0g. The boundary of Dm
C

has the decomposition @Dm
C D @0Dm

C [ @1Dm
C , where @0Dm

C and @1Dm
C are given

by @0Dm
C D fxx 2 Dm

C j x1 D 0g and @1Dm
C D fxx 2 Dm

C j jxxj D 1g. In this way,
.Dm
CI @0Dm

C; @1Dm
C/ forms a manifold triad.

We will construct a slight modification of the manifold Vp;q . Choose an embedding

˛W .D
pCq
C � f1g; @0D

pCq
C � f1g/! .@0Vp;q; @0;1Vp;q/:

Let yVp;q denote the manifold obtained by attaching D
pCq
C � Œ0; 1� to Vp;q along the

embedding ˛ , ie
yVp;q D Vp;q [˛ .D

pCq
C � Œ0; 1�/:

We then denote by �Wp;q the manifold obtained by attaching @0DpCq� Œ0; 1� to @1Vp;q

along the restriction of ˛ to @0DpCq � f1g.

Construction 3.2 We construct a subspace of yVp;q as follows. Choose a basepoint
.a0; b0/ 2 @D

pC1 �Sq such that the pair .a0;�b0/ is contained in the face @1Vp;q .
Choose an embedding  W Œ0; 1�! �Wp;q that satisfies the following conditions:

(i)  .1/D .a0;�b0/ and  .0/D .0; 0/ 2 @0D
pCq
C � f0g.

Algebraic & Geometric Topology, Volume 18 (2018)
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(ii) There exists � 2 .0; 1/ such that  .t/ D .0; t/ 2 @0D
pCq
C � Œ0; 1� whenever

t 2 .0; �/.

(iii)  ..0; 1//\ Œ.DpC1 � fa0g/[ .fb0g �Sq/�D∅.

We define .Bp;q;Cp;q/� . yVp;q; �Wp;q/ to be the pair of subspaces given by�
 .Œ0; 1�/[ .DpC1

� fb0g/[ .fa0g �Sq/;  .Œ0; 1�/[ .Sp
� fb0g/[ .fa0g �Sq/

�
:

The inclusion .Bp;q;Cp;q/ ,! . yVp;q; �Wp;q/ is clearly a homotopy equivalence of pairs.
We will refer to the pair .Bp;q;Cp;q/ as the core of . yVp;q; �Wp;q/.

We now use this construction to construct a simplicial complex. Let .M I @0M; @1M /

be a compact manifold triad of dimension m. Let Rm�1
C denote Œ0;1/�Rm�2 and

let @Rm�1
C denote f0g �Rm�2 . Choose an embedding aW Œ0; 1/�Rm�1

C !M with
a�1.@0M /D f0g�Rm�1

C and a�1.@1M /D Œ0; 1/�@Rm�1
C . For each pair of positive

integers p and q with pC qC 1Dm, we define a simplicial complex K@.M; a/p;q .

Definition 3.3 The simplicial complex K@.M; a/p;q is defined as follows:

(i) A vertex in K@.M; a/p;q is defined to be a pair .t; �/, where t 2 .0;1/ and
�W yVp;q!M is an embedding that satisfies:

(a) ��1.@0M /DD
pCq
C � f0g and ��1.@1M /D �Wp;q .

(b) There exists � > 0 such that for .s; z/ 2 Œ0; �/�Dm�1
C � yVp;q , the equality

�.s; z/D a.s; zC te2/ is satisfied, where e2 2 Rm�1
C denotes the second

basis vector.

(ii) A set of vertices f.�0; t0/; : : : ; .�l ; tl/g forms an l –simplex if ti ¤ tj and

�i.Bp;q/\�j .Bp;q/D∅

whenever i ¤ j , where recall that Bp;q �
yVp;q is the core from Construction 3.2.

Remark 3.4 The embedding a was necessary in order to define K@.M; a/p;q ; how-
ever, it will not play a serious role in any of our proofs later on in the paper. For this
reason we will drop the embedding a from the notation and will write K@.M /p;q WD

K@.M; a/p;q .

The majority of the technical work of this paper is devoted to proving Theorem 3.6
stated below. The statement of this theorem will require the use of a definition from [4],
which we recall below:
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Definition 3.5 A simplicial complex X is said to be weakly Cohen–Macaulay of
dimension n if it is .n�1/–connected and the link of any p–simplex is .n�p�2/–
connected. In this case we write wCM.X /� n. The complex X is said to be locally
weakly Cohen–Macaulay of dimension n if the link of any simplex is .n�p�2/–
connected but no connectivity condition is imposed on X itself. In this case we shall
write lCM.X /� n.

Theorem 3.6 Let .M I @0M; @1M / be an m–dimensional manifold triad with @0M

nonempty. Let p; q 2N be such that pCqC1Dm and suppose that the inequalities

(8) jq�pj<minfp� 2; q� 3g; jq�pj<minf�.@1M /� 1; �.M; @1M /� 2g

are satisfied. Let d D d.�q.S
p// be the generating set rank and suppose that

rp;q.M /� g . Then the geometric realization jK@.M /p;qj is 1
2
.g�4�d/–connected

and lCM.K@.M /p;q/�
1
2
.g� 1� d/.

The proof of the above theorem takes place over the course of the next three sections
of the paper. In addition to the simplicial complex defined above, we will need to work
with two related semisimplicial spaces. Let .M I @0M; @1M /, p and q be as above
and let aW Œ0; 1/�Rm�1

C !M be the same embedding as used in Definition 3.3. We
define two semisimplicial spaces K@

�
.M /p;q and K@

�
.M; a/p;q below:

Definition 3.7 The semisimplicial space K@
�
.M; a/p;q is defined as follows:

(i) The space of 0–simplices K@
0
.M; a/p;q is defined to have the same underly-

ing set as the set of vertices of the simplicial complex K@.M; a/p;q . That is,
K@

0
.M; a/p;q is the space of pairs .t; �/, where t 2R and �W yVp;q!M is an

embedding which satisfies the same condition as in part (i) of Definition 3.3.

(ii) The space of l –simplices, K@
l
.M; a/ � .K@

0
.M; a//lC1 , consists of ordered

.lC1/–tuples,
..t0; �0/; : : : ; .tl ; �l//;

such that t0 < � � �< tl and �i.Bp;q/\�j .Bp;q/D∅ when i ¤ j .

The spaces K@
l
.M; a/ � .R � Emb. yVp;q;M //lC1 are topologized using the C1–

topology on the space of embeddings. The assignments Œl � 7! K@
l
.M; a/ define a

semisimplicial space, denoted by K@
�
.M; a/p;q . The i th face map di W K

@
l
.M; a/!

K@
l�1
.M; a/ is defined by forgetting the i th entry in the l –tuple ..t0; �0/; : : : ; .tl ; �l//.
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Finally, K@
�
.M; a/p;q �K@

�
.M; a/p;q is defined to be the subsemisimplicial space of

all simplices ..�0; t0/; : : : ; .�l ; tl// 2 K@
l
.M; a/ such that �i. yVp;q/\ �j . yVp;q/ D ∅

whenever i ¤ j .

As in Remark 3.4, when working with K@
�
.M; a/p;q and K@

�
.M; a/p;q we will drop

the embedding a from the notation and write

K@
�
.M /p;q WDK@

�
.M; a/p;q and K@

�
.M /p;q WDK@

�
.M; a/p;q:

We will ultimately need to use the fact that the geometric realizations jK@
�
.M; a/p;qj and

jK@
�
.M; a/p;qj are highly connected. We prove that jK@

�
.M; a/p;qj and jK@

�
.M; a/p;qj

are highly connected by comparing them to the simplicial complex K@.M /p;q .

Corollary 3.8 Let .M I @0M; @1M / be an m–dimensional manifold triad with @0M

nonempty. Let p; q 2N be such that pC qC 1Dm and suppose that the inequalities
(8) are satisfied. Let d D d.�q.S

p// be the generating set rank and suppose that
rp;q.M /� g . Then the geometric realization jK@

�
.M /p;qj is 1

2
.g�4�d/–connected.

Proof of Corollary 3.8 The result is obtained from Theorem 3.6 by assembling several
results from [4]. Let g 2 Z�0 be given. Consider the discretization K@

�
.M /ıp;q . This

is the semisimplicial space obtained by defining each K@
l
.M /ıp;q to have the same

underlying set as K@
l
.M /p;q , but topologized in the discrete topology. The correspon-

dence ..�0; t0/; : : : ; .�l ; tl// 7! f.�0; t0/; : : : ; .�l ; tl/g induces a map jK@
�
.M /ıp;qj !

jK@.M /p;qj, which is easily seen to be a homeomorphism. Indeed, if

� D f.�0; t0/; : : : ; .�l ; tl/g �K@.M /p;q

is a simplex, then ti ¤ tj if i ¤ j , and so there is exactly one l –simplex in K@
�
.M /ıp;q

with underlying set equal to � . It follows from this that jK@
�
.M /ıp;qj is 1

2
.g�4�d/–

connected.

Next, we compare the connectivity of jK@
�
.M /ıp;qj to jK@

�
.M /p;qj. By replicat-

ing the same argument used in the proof of [4, Theorem 5.5] it follows that the
connectivity of jK@

�
.M /p;qj is bounded below by the connectivity of jK@

�
.M /ıp;qj,

and thus jK@
�
.M /p;qj is 1

2
.g�4�d/–connected as well. We remark that this proof

from [4] uses the fact that lCM.K@.M /p;q/�
1
2
.g� 1�d/ (and this is established in

Theorem 3.6). Finally, to finish the proof of the lemma we observe that the inclusion
K@
�
.M /p;q ,! K@

�
.M /p;q is a levelwise weak homotopy equivalence. This fact is

proven by employing the same argument used in the proof of [4, Corollary 5.8]. We
then apply [18, Proposition A.1] (or [2, Theorem 2.2]) which implies that any levelwise
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weak homotopy equivalence between semisimplicial spaces geometrically realizes to
a weak homotopy equivalence between the geometric realizations. It follows that the
induced map jK@

�
.M /p;qj ,! jK

@
�
.M /p;qj is a weak homotopy equivalence and thus

completes the proof of the lemma.

High-connectivity of the space jK@
�
.M /p;qj is the main ingredient needed for the

proof of Theorem 2.7, which we carry out in Section 7. The main ingredient in
proving Corollary 3.8 was Theorem 3.6. The next three sections then are geared toward
developing all of the technical tools needed to prove Theorem 3.6.

4 The algebraic invariants

4.1 Invariants of manifold pairs

For what follows, let M be a compact, oriented manifold of dimension m with
nonempty boundary. Let A � @M be an oriented submanifold of dimension m� 1.
We will keep M and A fixed throughout the entire section. Let p and q be positive
integers with pC qC 1Dm and suppose further that

(9) jq�pj<minfp� 2; q� 3g; jq�pj<minf�.A/� 1; �.M;A/� 2g;

where recall �.A/ and �.M;A/ denote the degrees of connectivity of A and .M;A/,
respectively. We will need to work with the homotopy groups �q.A/ and �pC1.M;A/.
The above inequalities imply that A and .M;A/ are both at least 1–connected and
thus the groups �q.A/ and �pC1.M;A/ do not depend on a choice of basepoint
(and thus we are justified in excluding a basepoint from the notation). Furthermore,
(9) also implies that p C 1 > 2, and thus the group �pC1.M;A/ is abelian. Now,
we will need to be able to represent elements of these homotopy groups �q.A/ and
�pC1.M;A/ by smooth embeddings. The next lemma follows by assembling several
results from [10; 19].

Lemma 4.1 Let M be a manifold of dimension m with nonempty boundary and let
A � @M be a submanifold of dimension m� 1. Let p and q be positive integers
such that pC qC 1Dm and suppose that (9) holds. We may then draw the following
conclusions about the homotopy groups �pC1.M;A/ and �q.A/:

(i) Any element of �pC1.M;A/ can be represented by an embedding

.DpC1;Sp/! .M;A/;

unique up to isotopy.
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(ii) Any element of �q.A/ can be represented by an embedding Sq!A, which is
unique up to regular homotopy.

Proof As mentioned above, this lemma follows by applying results from [10; 19].
Our proof consists of showing how to apply these results and verifying that all of
the necessary dimensional and connectivity conditions are satisfied. Let us start with
statement (i). The key result to apply here is [10, Corollaries 1.1 and 2.1]. The
combination of these results from [10] implies the following:

� Let X be an m–dimensional manifold and Y � @X be an .m�1/–dimensional
submanifold. Then every element of �k.X;Y / can be represented by an embed-
ding, .Dk ; @Dk/! .X;Y /, uniquely up to isotopy, if the following conditions
are satisfied:

(a) .X;Y / is .2k�mC2/–connected.

(b) k �m� 3.

To apply this to our situation we set .M;A/D .X;Y /, mD pCqC1 and k D pC1.
The inequality jp� qj< �.M;A/� 2 implies that

�.M;A/� 2.pC 1/� .pC qC 1/C 2D 2k �mC 2:

The inequality jq�pj< q� 3 implies that

pC 1D k � .pC qC 1/� 3Dm� 3:

Thus, conditions (a) and (b) are satisfied, and [10, Corollaries 1.1 and 2.1] implies
that any element of �pC1.M;A/ can be represented by an embedding, uniquely up to
isotopy.

For statement (ii) of the lemma we use [19, Proposition 1 and Lemma 1]. The combi-
nation of these results implies the following:

� Let X be an m–dimensional manifold. All elements of �k.X / are represented
by an embedding, uniquely up to regular homotopy, if the following conditions
are satisfied:

(a) X is .2k�mC2/–connected.

(b) 2m� 3kC 3.

To apply this to our situation we set X DA, mD pC q , and k D q . The inequality
jq �pj < �.A/� 1 implies condition (a) and the inequality jq �pj < p� 2 implies
condition (b). This establishes statement (ii) of the lemma.
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Remark 4.2 The statement from part (i) of Lemma 4.1 actually holds true with a
weakened version of condition (9). Indeed, to apply [10, Corollaries 1.1 and 2.1] in
our situation, it is only required that dim.M /� .pC 1/� 3 (and thus q � 3) and that
the connectivity condition from (9) hold as well. However, the full strength of (9) will
be needed later on in the paper. We will have to assume (9) (exactly as it is written) in
order apply Theorem 4.10, which is based on the work carried out in the appendix.

We now proceed to define some invariants associated to the pair .M;A/. We first
define a bilinear map

(10) �@p;qW �pC1.M;A/˝�q.S
p/! �q.A/; .Œf �; Œ��/ 7! Œ.f j@DpC1/ ı��;

where f W .DpC1; @DpC1/! .M;A/ represents a class in �pC1.M;A/ and �W Sq!

Sp represents a class in �q.S
p/. By the inequalities of (9), it follows from the Freuden-

thal suspension theorem that the suspension homomorphism †W �q�1.S
p�1/ !

�q.S
p/ is surjective. For this reason the formula in (10) is indeed bilinear and thus

�@p;q is well defined.

We have a bilinear intersection pairing

(11) �@p;qW �pC1.M;A/˝�q.A/! Z;

which is defined by sending a pair .Œf �; Œg�/ 2 �pC1.M;A/˝�q.A/ to the oriented al-
gebraic intersection number associated to the maps f j@DpC1 W Sp!A and gW Sq!A,
which we may assume are embeddings by Lemma 4.1. Note that this oriented algebraic
intersection number is well defined because the manifold A is assumed to be oriented.

We have a .�1/q –symmetric bilinear pairing

(12) �qW �q.A/˝�q.A/! �q.S
p/

defined in the same way as in [15, Construction 3.1]. We refer the reader there for the
definition.

The next proposition shows how the maps �@p;q , �@p;q and �q are related to each other.
The proof follows from [15, Proposition 3.4].

Proposition 4.3 Let x 2 �p.M;A/, y 2 �q.A/ and z 2 �q.S
p/. Then the equation

�q.�
@
p;q.y; z/;x/D �

@
p;q.y;x/ � z

is satisfied.
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Remark 4.4 The formula in Proposition 4.3 makes sense even in the case when q <p

and thus �q.S
p/D 0.

We will also need to consider a function

(13) ˛qW �q.A/! �q�1.SOp/;

defined by sending x 2�q.A/ to the element in �q�1.SOp/ which classifies the normal
bundle associated to an embedding Sq!A which represents x .

The map ˛q is not in general a homomorphism. As will be seen in Proposition 4.5, the
bilinear form �q measures the failure of ˛q to preserve additivity. In order to describe
the relationship between ˛q and �q , we must define some auxiliary homomorphisms.
Let x�qW �q�1.SOp/! �q.S

p/ be the map given by the composition �q�1.SOp/!

�q�1.S
p�1/ ! �q.S

p/, where the first map is induced by the bundle projection
SOp! SOp=SOp�1 Š Sp�1 and the second is the suspension homomorphism. Let
dqW �q.S

p/! �q�1.SOp/ be the boundary homomorphism associated to the fiber
sequence SOp ! SOpC1 ! Sp . The proposition below follows directly from [19,
Theorem 1].

Proposition 4.5 The following equations are satisfied for all x;y 2 �q.A/:

˛q.xCy/D ˛q.x/C˛q.y/C dq.�q.x;y//; �q.x;x/D x�q.˛q.x//:

Proof The above equations follow from Wall’s theorem [19, Theorem 1]. To apply
Wall’s theorem one simply has to check that the manifold involved satisfies the appro-
priate dimensional and connectivity conditions with respect to the integer q . Wall’s
theorem requires that 2 dim.A/ � 3q C 3, q � 2 and that A be .2q� dim.A/C2/–
connected. These conditions all follow from our initial assumption of (9).

We will also need the following proposition, which describes how ˛q and �@p;q are
related.

Proposition 4.6 For all .x; z/2�pC1.M;A/��q.S
p/, we have ˛q.�

@
p;q.x; z//D 0.

Proof Let @pC1W �pC1.M;A/! �p.A/ denote the boundary map. In [15, page 9] a
bilinear map

Fp;qW �p�1.SOq/˝�q.S
p/! �q�1.SOp/
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is defined. By [15, Proposition 3.8] (combined with the definition of the map �@p;q ), it
follows that

˛q.�
@
p;q.x; z//D Fp;q

�
p̨.@pC1.x//; z

�
for all .x; z/ 2 �pC1.M;A/ � �q.S

p/. Let f W .DpC1; @DpC1/ ! .M;A/ be an
embedding that represents the class x 2 �pC1.M;A/. Notice that the normal bundle
of f .DpC1/ is automatically trivial since the disk is contractible. It follows that
f j@DpC1.@DpC1/ � A has trivial normal bundle as well, and thus it follows that

p̨.@pC1.x//D 0 since f j@DpC1 represents the class @pC1x 2 �p.A/. Since Fp;q is
bilinear, it follows that

˛q.�
@
p;q.x; z//D Fp;q

�
p̨.@pC1.x//; z

�
D Fp;q. p̨.0/; z/D 0

for all x and z . This concludes the proof of the proposition.

Using the maps defined above we will work with the algebraic structure defined by the
6–tuple

(14) .�pC1.M;A/; �q.A/; �
@
p;q; �

@
p;q; �q; ˛q/:

We refer to this structure as the Wall form associated to the pair .M;A/. We summarize
the salient properties of (14) in the following lemma. This lemma should be compared
to [15, Lemma 3.9].

Lemma 4.7 Let .M;A/, p , and q be exactly as above. The maps

� �@p;qW �pC1.M;A/˝�q.S
p/! �q.A/,

� �@p;qW �pC1.M;A/˝�q.A/! Z,

� �qW �q.A/˝�q.A/! �q.S
p/,

� ˛qW �q.A/! �q�1.SOp/,

satisfy the following conditions. For all x;x0 2 �pC1.M;A/, y;y0 2 �q.A/ and
z 2 �q.S

p/ we have

(i) �@p;q.x; �
@
p;q.x

0; z//D 0,

(ii) �q.�
@
p;q.x; z/;y/D �

@
p;q.x;y/ � z ,

(iii) ˛q.yCy0/D ˛q.y/C˛q.y
0/C dq.�q.y;y

0//,

(iv) �q.y;y/D x�q.˛q.y//,

(v) ˛q.�
@
p;q.x; z//D 0.
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4.2 Modifying intersections

We will ultimately need to use �@p;q and �q to study intersections of embedded
submanifolds. Let .M;A/, p and q be exactly as in the previous section. For
embeddings f W .DpC1;Sp/! .M;A/ and gW Sq!A, the integer �p;q.Œf �; Œg�/ is
equal to the signed intersection number of f .Sp/ and g.Sq/ in A. By our assumption
of (9), A is simply connected and p; q � 3, and so, by application of the Whitney trick
[12, Theorem 6.6], one can deform f through a smooth isotopy to a new embedding
f 0W .DpC1;Sp/! .M;A/ such that f 0.Sp/ and g.Sq/ intersect transversally in A

at exactly j�@p;q.x;y/j–many points, all with positive orientation. We now consider
embeddings f;gW Sq ! A whose images intersect transversally. The intersection
f .Sq/\g.Sq/ is generically a .q�p/–dimensional closed manifold. We will need a
higher-dimensional analogue of the Whitney trick that applies to the intersection of
such embeddings. The first proposition below follows from [20; 7].

Theorem 4.8 (Wells [20]) Let f;gW Sq ! A be embeddings. Then there exists
an isotopy ‰t W S

q ! A with ‰0 D g and ‰1.S
q/ \ f .Sq/ D ∅ if and only if

�q.Œg�; Œf �/D 0.

Remark 4.9 The above theorem follows directly from the main theorem of [20]. To
apply this result from [20] one has to verify that our dimensional/connectivity conditions
from (9) imply the dimensional/connectivity conditions assumed in [20]. This verifica-
tion is simple arithmetic, which we leave to the reader. One also has to verify that our
invariant �q.Œg�; Œf �/ agrees with the invariant ˛.M;N IX /, defined by Wells in [20,
page 390]. This follows by comparing Wells’s construction of ˛.M;N IX / with our
construction of ˛q.Œf �; Œg�/ carried out in [15, Construction 3.1]. It is straightforward
to verify that the two constructions agree in the case that N and M are both spheres
of the same dimension.

We will also need a technique for manipulating the intersections of embeddings
.DpC1; @DpC1/! .M;A/. The following theorem is a special case of Theorem A.1
from the appendix.

Theorem 4.10 Let f;gW .DpC1;Sp/! .M;A/ be embeddings. Then there is an
isotopy of embeddings

‰t W .D
pC1;Sp/! .M;A/

such that ‰0 D f and ‰1.D
pC1/\g.DpC1/D∅.
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Remark 4.11 The above theorem follows directly from Theorem A.1. One just has to
verify that our dimensional/connectivity conditions (9) imply the dimensional/connect-
ivity conditions in the statement of Theorem A.1. This is arithmetic, which is left to
the reader.

Remark 4.12 We emphasize that in Theorem 4.10 the embeddings f and g are
completely arbitrary; the theorem holds for any two such embeddings so long as
.M;A/, p and q satisfy (9). Furthermore, we emphasize that the restriction ‰t jSp is
not in general the constant isotopy. The theorem would not be true if we insisted on
keeping the restriction ‰t jSp fixed for all t .

We will need to apply the above theorems inductively. For the statement of the next
two results, let .M;A/ and p and q be exactly as in the statements of the previous two
theorems. The following corollary is proven in a way similar to [16, Corollary 7.5].

Corollary 4.13 Let f0; : : : ; fnW S
q!A be a collection of embeddings such that:

(i) �q.f0; fi/D 0 for all i D 1; : : : ; n.

(ii) The collection of embeddings f1; : : : ; fn is pairwise transverse.

Then there exists an isotopy ‰t W S
q ! A with t 2 Œ0; 1� and ‰0 D f0 such that

‰1.S
q/\fi.S

q/D∅ for i D 1; : : : ; n.

Proof Recall that dim.A/D pCq , where p and q satisfy (9). In the case that p > q

the statement of this corollary is trivial: the invariant �q.�;�/ is identically zero and
the result follows by general position. So let us assume that q � p . We prove the
corollary by induction on the integer n. The base case where n D 1 follows from
Theorem 4.8. For the inductive step let the embeddings f0; : : : ; fnW S

q!A be given.
By the inductive assumption we may assume that

f0.S
q/\fi.S

q/D∅ for i D 1; : : : ; n� 1:

To complete the proof we need to find an isotopy of f0 to a new embedding whose
image is disjoint from fi.S

q/ for all i D 1; : : : ; n.

First we observe that since the embeddings f1; : : : ; fn were assumed to be pairwise
transverse, it follows that for each i D 1; : : : ; n� 1, the intersection fi.S

q/\ fn.S
q/

is a submanifold of dimension

2q� dim.A/D 2q� .pC q/D q�p:
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Let U � A be an open regular neighborhood of
Sn�1

iD1 fi.S
q/ � A that is disjoint

from f0.S
q/. Let X denote the complement AnU and let V denote the complement

fn.S
q/ nU. Defined in this way, X is a .pCq/–dimensional compact manifold, V is

a q–dimensional compact manifold and .V; @V /� .X; @X / is a neatly embedded sub-
manifold. Since U was chosen to be disjoint from f0.S

q/ we have f0.S
q/� Int.X /.

We wish to apply Wells’s theorem from [20] to the submanifolds f0.S
q/;V �X to

obtain an isotopy of f0.S
q/ � X (through embeddings in X ) that makes f0.S

q/

disjoint from V . The assumption that �q.Œf0�; Œfn�/D 0 implies that Wells’s invariant
˛.f0.S

q/;V IX / (see Remark 4.9 and [20, Section 2]) vanishes as well. To apply [20]
we need to verify that the manifolds V and X satisfy the connectivity conditions from
the statement of Wells’s theorem. For this we need to use the transversality assumption
about the embeddings fi . We make the following claim about the connectivity of X

and V :

Claim 4.14 The manifolds X and V satisfy the following connectivity conditions:

(i) V is .q�p/–connected.

(ii) X is .q�pC1/–connected.

Proof Let us first prove part (i). Let gW Sq�p ! V be a map. Since Sq is
.q�1/–connected, the composite map Sq�p ˛

�! V ,! fn.S
q/ extends to a map

ygW Dq�pC1! fn.S
q/. Condition (9) implies p � q < p�2, and from this it follows

that

dim.Dp�qC1/C dim.fi.S
q/\fn.S

q// < q for all i D 1; : : : ; n� 1:

By general position the map yg may be deformed by a homotopy, relative @DpCqC1 ,
to a new map zg with image disjoint from fi.S

q/ for all i D 1; : : : ; n� 1. Since U is
a regular neighborhood of

Sn�1
iD1 fi.S

q/, the map may be deformed further so that its
image is disjoint from U and thus is contained in V . This proves that �q�p.V /D 0.
The proof that �k.V /D 0 for all k � q�p is similar.

Part (ii) follows by a similar general position argument. Let gW Sq�pC1!X be a map.
Condition (9) implies that A is at least .q�pC1/–connected and so Sq�pC1 g

�!X ,!

A extends to a map ygW Dq�pC2!A. Since

pC q > dim.Dq�pC2/C dim.Sq/D 2q�pC 2;

by general position there exists a homotopy of yg , relative @Dq�pC2 , to a new map
whose image is disjoint from

Sn�1
iD1 fi.S

q/. Since U is a regular neighborhood of
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Sn�1
iD1 fi.S

q/, the map may be deformed further so that its image is disjoint from U

and thus is contained in X. This proves that �q�pC1.X / D 0. The argument that
�k.X /D 0 for all k � q�pC 1 is similar.

By the above claim, it follows that the connectivity and dimensional conditions from
the statement of the main theorem of [20] are satisfied. This together with the fact that
˛.f0.S

q/;V IX / D 0 implies that there is an isotopy ‰t W S
q ! X, t 2 Œ0; 1�, with

‰0 D f0 and ‰1.S
q/\V D∅. This concludes the proof of the corollary.

The next corollary is proven in the same way as Corollary 4.13 but using Theorem 4.10
instead of Theorem 4.8. Since the argument is the same we omit the proof.

Corollary 4.15 Let g0; : : : ;gk W .D
pC1; @DpC1/! .M;A/ be a collection of em-

beddings such that the collection of submanifolds g1.D
pC1/; : : : ;gk.D

pC1/�M is
pairwise transverse. Then there exists an isotopy

‰t W .D
pC1; @DpC1/! .M;A/; t 2 Œ0; 1�;

with ‰0 D g0 , such that ‰1.D
pC1/\gi.D

pC1/D∅ for i D 1; : : : ; k .

5 Wall forms

We now formalize the algebraic structure studied in Section 4. Much of this section is
a recollection of definitions and results from [15, Section 5]. We begin by introducing
the category underlying our main construction.

Definition 5.1 Fix a finitely generated abelian group H. An object M in the cat-
egory Ab2

H is defined to be a pair of abelian groups .M�;MC/ equipped with a
bilinear map � W M�˝H !MC . Objects of Ab2

H are referred to as H –pairs. A
morphism f W M !N of H –pairs is defined to be a pair of group homomorphisms
f�W M�!N� and fCW MC!NC that satisfy fC ı �M D �N ı .f�˝ IdM /. We
will refer to morphisms in Ab2

H as H –maps.

We build on the above definition as follows. Fix once and for all a finitely generated
abelian group H. All of our constructions will take place in the category Ab2

H . Let G

be an abelian H –pair, equipped with homomorphisms @W H !GC and � W GC!H.
Then, let � D ˙1. We call such a 4–tuple .G ; @; �; �/ a form-parameter. Fix a
form-parameter .G ; @; �; �/ and let M be a finitely generated H –pair. Consider the
following data:
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� A bilinear map �W M�˝MC! Z.

� An �–symmetric bilinear form �W MC˝MC!H.

� Functions ˛˙W M˙!G˙ .

Our main definition is given below:

Definition 5.2 The 5–tuple .M ; �; �; ˛/ is said to be a Wall form with parameters
.G ; @; �; �/ if the following conditions are satisfied for all x;x0 2M� , y;y0 2MC

and h 2H :

(i) �.x; �M .x0; h//D 0.

(ii) �.�M .x; h/;y/D �.x;y/ � h.

(iii) ˛�.xCx0/D ˛�.x/C˛�.x
0/.

(iv) ˛C.yCy0/D ˛C.y/C˛C.y
0/C @.�.y;y0//.

(v) �.y;y/D �.˛C.y//.

(vi) ˛C.�M .x; h//D �G .˛�.x/; h/.

The Wall form .M ; �; �; ˛/ is said to be reduced if ˛� is identically zero. In the case
of a reduced Wall form, condition (vi) then translates to ˛C.�M .x; h// D 0 for all
x 2M� and h 2H. A morphism between Wall forms (with the same form-parameter)
is an H –map f W M !N that preserves all values of �, � and ˛ .

We will often denote a Wall form by its underlying H –pair, ie M WD .M ; �; �; ˛/.
We will need notation for orthogonal complements.

Definition 5.3 Let N �M be Wall forms. We define a new sub-Wall form N?�M

by setting

N?� WD fx 2M� j �.x; w/D 0 for all w 2NCg;

N?C WD fy 2MC j �.v;y/D 0 and �.y; w/D 0 for all v 2N�; w 2NCg:

It can be easily checked that �.N?� ˝H /�N?C and thus N? actually is a sub-H –pair
of M. We call N? the orthogonal complement to N in M. Two sub-Wall forms
N ;N 0 �M are said to be orthogonal if N \N 0 D 0, N � .N 0/? and N 0 �N? .

We will need to use the simplicial complex from [15, Definition 4.13]. For this we
must recall the definition of the standard Wall form. This requires a few steps. Fix a
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finitely generated abelian group H. We define an H –pair W 2 Ob.Ab2
H / by setting

W� D Z and WC D Z˚H. The map � W W�˝H !WC is defined by the formula

�.t ˝ h/D .0; t � h/ 2 Z˚H DWC:

For g 2 N, we denote by W g the g–fold direct sum W ˚g . We let W denote the
H –pair W 1 , and W 0 is understood to be the trivial H –pair. Fix elements a 2W�

and b 2WC which correspond to 1 2 Z and .1; 0/ 2 Z˚H, respectively. For g 2N,
we denote by ai 2W g

� and bi 2W
g
C for i D 1; : : : ;g the elements that correspond to

the elements a and b coming from the i th direct summand of W in W g . Now fix a
form-parameter .G ; @; �; �/. We endow W g with the structure of a Wall form with
parameter .G ; @; �; �/ by setting

(15) �.ai ;bj /Dıi;j ; �.bi ;bj /D0; ˛C.bi/D0; ˛�.ai/D0 for i;j D 1; : : :g .

These values together with the conditions imposed from Definition 5.2 determine the
maps �;� and ˛ completely. The vanishing of ˛�.ai/ for all i implies that ˛� is
identically zero, thus .W g; �; �; ˛/ is a reduced Wall form with parameter .G ; @; �; �/
(the fact that ˛C.bi/D 0 for all i does not imply that ˛C D 0, however). We call this
the standard Wall form of rank g with parameter .G ; �; @; �/.

We will use the standard Wall form W to probe other Wall forms. The simplicial
complex defined in the next definition is an algebraic analogue of the simplicial complex
defined in Section 3.

Definition 5.4 For a Wall form M let L.M / be the simplicial complex whose vertices
are given by morphisms f W W !M. A set of vertices ff0; : : : ; flg is an l –simplex
if the sub-Wall forms f0.W /; : : : ; fl.W /�M are pairwise orthogonal.

To state the main theorem regarding the simplicial complex L.M / we need to introduce
a notion of rank for a Wall form. The definition below is analogous to the rank rp;q.�/

associated to a manifold triad .M I @0M; @1M /, defined back in Section 2.

Definition 5.5 For a Wall form M, the rank of M is defined to be the nonnegative
integer

r.M / WDmaxfg 2N j there exists a morphism W g
!M g:

One of the key technical results proven in [15] (see [15, Theorem 5.1]) is the theorem
stated below. For this, let d denote the generating set rank d.H /, which recall is the
quantity d.H /Dminfk 2N j there exists an epimorphism Z˚k !H g.
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Theorem 5.6 Suppose that r.M / � g . Then lCM.L.M // � 1
2
.g� 1� d/ and the

geometric realization jL.M /j is 1
2
.g� 4� d/ connected.

We now show how to use the constructions from Section 4 to associate a Wall form
to a pair of manifolds. Let M be a compact, oriented manifold of dimension m with
nonempty boundary. Let A � @M be a submanifold of dimension m � 1. Let p

and q be positive integers with pC q C 1 D m. Suppose that p and q satisfy the
inequalities from (9). We set H D �q.S

p/ and denote by W@
p;q.M;A/ the H –pair

given by setting

W@
p;q.M;A/� WD �pC1.M;A/; W@

p;q.M;A/C WD �q.A/;

and then by setting � equal to the bilinear map

� WD �@p;qW �pC1.M;A/˝�q.S
p/! �q.A/

from (10). We need to define a suitable form-parameter. Let Gp;q denote the abelian
group �p�1.SOq/. The group Gp;q together with the maps from Proposition 4.5,
dqW �q.S

p/! �q�1.SOp/ and x�qW �q�1.SOp/! �q.S
p/, make the 4–tuple

.Gp;q; dq; �q; .�1/q/

into a form parameter. It follows then directly from Lemma 4.7 that the 4–tuple

(16) .W@
p;q.M;A/; �@p;q; �q; ˛q/

is a reduced Wall form with form-parameter .Gp;q; dq; �q; .�1/q/. We call the Wall
form of (16) the Wall form of degree .p; q/ associated to .M;A/. This construction
should be compared to [15, Section 4.3].

We now state a basic proposition, which follows directly from the definitions of �@p;q ,
�@p;q , �q and ˛q .

Proposition 5.7 Let M and N be m–dimensional manifolds with nonempty bound-
ary. Let A� @M and B � @N be submanifolds of dimension m� 1. Let p; q 2 Z�0

be chosen with pC qC 1Dm so that the Wall forms W@
p;q.N;B/ and W@

p;q.M;A/

are defined. Then any embedding 'W .N;B/! .M;A/ induces a unique morphism of
Wall forms '�W W@

p;q.N;B/!W@
p;q.M;A/.
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6 High connectivity of K @.M /p;q

Let .M I @0M; @1M / be an m–dimensional manifold triad with @0M ¤∅. Let p and
q be positive integers with pC qC 1Dm and suppose that the inequalities of (9) are
satisfied. In this section we will prove Theorem 3.6, which asserts that jK@.M /p;qj is
1
2
.rp;q.M /�4�d/–connected and that lCM.K@.M /p;q/�

1
2
.rp;q.M /�1�d/, where

d D d.�q.S
p// is the generating set rank. Our strategy is to compare K@.M /p;q

to the complex L.W@
p;q.M; @1M // from Definition 5.4 associated to the Wall form

W@
p;q.M; @1M /. In view of Theorem 5.6 we will need to construct a simplicial map

K@.M /p;q ! L.W@
p;q.M; @1M // and then prove that it is highly connected. The

construction of this map and proof of its high-connectivity is carried out over the course
of this section, which contains the technical core of the paper.

6.1 A simplicial map

Let .M I @0M; @1M / be an m–dimensional manifold triad with @0M ¤∅ and let p

and q be positive integers with pC qC 1Dm. We will construct a simplicial map

(17) Hp;qW K
@.M /p;q!L.W@

p;q.M; @1M //:

Recall the pair . yVp;q; �Wp;q/. Recall from Construction 3.2 the core, .Bp;q;Cp;q/
',�!

. yVp;q; �Wp;q/. Let .a0; b0/ 2 Sp � Sq be the basepoint used in the construction of

.Bp;q;Cp;q/ from Construction 3.2. Let � 2�pC1. yVp;q; �Wp;q/ be the class represented
by the embedding

.DpC1
� fb0g;S

p
� fb0g/ ,! .Bp;q;Cp;q/ ,! . yVp;q; �Wp;q/

and let � 2 �q. �Wp;q/ be the class represented by the embedding

fa0g �Sq ,! Cp;q ,! �Wp;q:

It follows directly from the construction of yVp;q that �p;q.�; �/D 1 and ˛q.�/D 0.
Using this observation we may define a morphism of Wall forms,

(18) Tp;qW W !W@
p;q.
yVp;q; �Wp;q/; a 7! �; b 7! �;

where a 2W� and b 2WC are the standard generators used in the construction of W .
We are now ready to define the simplicial map Hp;q from (17). Let � 2K@.M /p;q be
a vertex. We define

Hp;q.�/ 2L.W@
p;q.M; @1M //
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to be the morphism of Wall forms given by the composite

W
Tp;q
��!W@

p;q.
yVp;q; �Wp;q/

��
�!W@

p;q.M; @1M /;

where the second map �� is the morphism of Wall forms induced by the embedding � .
It easy to see that this map Hp;q is a simplicial map. Indeed, if

�1; �2W . yVp;q; �Wp;q/! .M; @1M /

are embeddings with disjoint images, then the sub-Wall forms of W@
p;q.
yVp;q; �Wp;q/

given by the images of .�1/� and .�2/� , respectively, are orthogonal. This follows
immediately from the definitions of �@p;q and �q .

Later on we will need to use the following proposition:

Proposition 6.1 Let .M I @0M; @1M / be an m–dimensional manifold triad with
@0M ¤∅ and let p and q be positive integers with pC qC 1Dm. Then

r.W@
p;q.M; @1M //� rp;q.M /:

Proof Let g denote the rank rp;q.M /. By the definition of rp;q.�/ there exists an
embedding

f W .V g
p;q;W

g
p;q/! .M; @1M /:

For i D 1; : : : ;g , let �i W .Vp;q;Wp;q/ ,! .V
g

p;q;W
g

p;q/ be the inclusion of Vp;q into the
i th boundary connect-sum factor. Let

j W W@
p;q.Vp;q;Wp;q/!W@

p;q.
yVp;q; �Wp;q/

be the morphism of Wall forms induced by the inclusion .Vp;q;Wp;q/ ,! . yVp;q; �Wp;q/.
Since this inclusion is a homotopy equivalence it follows that j is an isomorphism of
Wall forms. Summing the maps .�i/� yields the morphism of Wall-forms

W g
.Tp;qıj

�1/˚g

// ŒW@
p;q.Vp;q;Wp;q/�

˚g

Lg

iD1
.�i /�

// W@
p;q.V

g
p;q;W

g
p;q/

f�
��

W@
p;q.M; @1M /:

The existence of this morphism implies that r.W@
p;q.M; @1M //� g . This concludes

the proof of the proposition.
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6.2 Cohen–Macaulay complexes and the link lifting property

Our next step is to prove that the simplicial map Hp;q from (17) is highly connected. Let
us first introduce some terminology and notation. Recall that for any set K , a symmetric
relation is a subset R �K �K that is invariant under the “coordinate permutation”
map .x;y/ 7! .y;x/. A subset C � K is said to be R–related if .x;y/ 2 R for
any two elements x;y 2 C. We will need to consider symmetric relations defined on
the set of vertices of a simplicial complex. Let X be a simplicial complex and let
R�X �X be a symmetric relation on the vertices of X. The relation R is said to be
edge-compatible if for any 1–simplex fx;yg<X, the pair .x;y/ is an element of R.
For any simplex � <X we let lkX .�/ denote the link of the simplex � .

Definition 6.2 Let f W X ! Y be a simplicial map between two simplicial complexes.
Let R � X � X be a symmetric relation on the set of vertices of the complex X.
The map f is said to have the link lifting property with respect to R if the following
condition holds:

� Let y 2 Y be any vertex and let A � X be a finite R–related set such that
f .a/ 2 lkY .y/ for all a 2A. Then, given another finite set of vertices B �X

(not necessarily R–related), there exists a vertex x 2 X with f .x/D y such
that a 2 lkX .x/ for all a 2A and .b;x/ 2R for all b 2 B .

The following lemma below is a restatement of [16, Lemma 2.3]. Its proof in [16]
abstracts and formalizes the argument used in the proof of [4, Lemma 5.4].

Lemma 6.3 Let X and Y be simplicial complexes and let f W X!Y be a simplicial
map. Let R � X �X be an edge-compatible symmetric relation. Suppose that the
following conditions are satisfied:

(i) f has the link lifting property with respect to R;

(ii) lCM.Y /� n.

Then the induced map jf j�W �j .jX j/! �j .jY j/ is injective for all j � n� 1. Further-
more, suppose that in addition to properties (i) and (ii) the map f satisfies:

(iii) f .lkX .�//� lkY .f .�// for all simplices � <X.

Then it follows that lCM.X /� n.
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6.3 Proof of Theorem 3.6

We now give the proof of Theorem 3.6. We do this by applying Lemma 6.3 to the
simplicial map Hp;qW K

@.M /p;q!L.Wp;q.M; @1M //. In order to apply this lemma
to Hp;q , we will need to define a suitable symmetric relation on the vertices of the
complex K@.M /p;q .

Definition 6.4 We define T �K@.M /p;q �K@.M /p;q to be the subset consisting of
those pairs .�1; �2/ such that �1.Bp;q/ and �2.Bp;q/ are transverse in M.

Clearly the subset T �K@.M /p;q�K@.M /p;q is a symmetric relation on the vertices.
Furthermore, this relation is edge-compatible, ie if the set f�1; �2g �K@.M /p;q is a
1–simplex then the pair .�1; �2/ is contained in T . Before finally giving the proof of
Theorem 3.6 we make the following remark:

Remark 6.5 The proof of Theorem 3.6 given below is analogous to [15, Proof of
Theorem 2.3, page 26] but with some new technical ingredients added. The above-
mentioned proof in [15] does not make explicit use of the link lifting property with
respect to the relation T , and for this reason the proof of [15, Theorem 2.3] has a gap.
The argument provided below is the corrected version of the proof filling in that gap.

A similar gap exists in the preprint of Galatius and Randal-Williams [3, Proof of
Lemma 4.3, page 11], which was filled by the authors in the published version
[4, Theorem 2.4]. This technical theorem is a generalization of the coloring lemma of
Hatcher and Wahl [8].

The terminology “link lifting property with respect to a relation” is not used by Galatius
and Randal-Williams in their paper. This is terminology of our own and it was introduced
with the purpose of extracting the main idea from the proof of their theorem so as to
break the argument down into steps. Similar terminology and tools are also used in our
other homological stability paper [16].

Proof of Theorem 3.6 Let rp;q.M / � g and let d D d.�q.S
p// be the generating

set rank of �q.S
p/. We will show that jK.M /p;qj is 1

2
.g�4�d/–connected and

lCM.K@.M /p;q/�
1
2
.g� 1� d/. By Proposition 6.1,

r.W@
p;q.M; @1M //� rp;q.M /� g;

and thus Theorem 5.6 implies that the space jL.W@
p;q.M; @1M //j is 1

2
.g�4�d/–

connected and that lCM.L.W@
p;q.M; @1M /// � 1

2
.g � 1 � d/. The proof of the

theorem will follow from Lemma 6.3 once we verify the following two properties:
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(i) The map Hp;q from (17) has the link lifting property with respect to T (see
Definition 6.2).

(ii) Hp;q.lkK @.M /p;q
.�//� lkL.W@

p;q.M;@1M //.Hp;q.�// for any � 2K@.M /p;q .

We begin by verifying property (i). Let f W W !W@
p;q.M; @1M / be a morphism of

Wall forms, which we consider to be a vertex of L.W@
p;q.M; @1M //. Let �1; : : : ; �k 2

K@.M /p;q be a collection of T –related vertices such that

Hp;q.�i/ 2 lkL.W@
p;q.M;@1M //.f /

for i D 1; : : : ; k . Let  1; : : : ;  m 2 K@.M /p;q be another arbitrary collection of
vertices (that is not necessarily T –related). To show that Hp;q has the link lifting
property with respect to T , we will construct a vertex � 2K@.M /p;q with Hp;q.�/Df

such that �i 2 lkK @.M /p;q
.�/ for i D 1; : : : ; k and .�j ; �/ 2 T for j D 1; : : : ;m.

Let �W .DpC1;Sp/! .M; @1M / and �W Sq ! @1M be embeddings that represent
the classes

f�.a/ 2 �pC1.M; @1M / and fC.b/ 2 �q.@1M /;

respectively (it follows from Lemma 4.1 that these classes may be represented by
embeddings). Since the cores �1.Bp;q/; : : : ; �k.Bp;q/ are transverse and Hp;q.�i/ 2

lkK @.M /p;q
.f / for all i D 1; : : : ; k , we may apply Corollaries 4.13 and 4.15 to deform

the embeddings � and � through isotopies to new embeddings �0 and � 0 such that the
images �0.DpC1/ and � 0.Sq/ are disjoint from the cores �i.Bp;q/ for iD1; : : : ; k . Let
@1M 0 denote the complement @1M n

�Sk
iD1 �i.Cp;q/

�
. Since �p;q.f�.a/; fC.b//D1,

we may apply the Whitney trick (see [12, Theorem 6.6]) to deform � 0W Sq ! @1M 0,
through an isotopy of embeddings into @1M 0, to a new embedding � 00W Sq!@1M 0 with
the property that �0.@DpC1/ and � 00.Sq/ intersect transversally at exactly one point
in @1M 0. By Thom’s transversality theorem [9, Theorem 2.1] we may further arrange
�0.DpC1/ and � 00.Sq/ to be transverse to each of the cores  1.Bp;q/; : : : ;  m.Bp;q/

while keeping them disjoint from �1.Bp;q/; : : : ; �k.Bp;q/.

It follows by the above construction that the pair of subspaces

.�0.DpC1/[ � 00.Sq/; �0.@DpC1/[ � 00.Sq//

is homeomorphic to the pair .DpC1 _Sq;Sp _Sq/. Now, both �0.Sp/ and � 00.Sq/

have trivial normal bundles in @1M ; the normal bundle of � 00.Sq/ is trivial because
˛q.fC.b//D 0 and the normal bundle of �0.Sp/ is trivial because it bounds the disk
.�0.DpC1/; �0.Sp// � .M; @1M /, which must have trivial normal bundle since the
disk is contractible. Let U � @1M be a regular neighborhood of �0.Sp/[ � 00.Sq/

Algebraic & Geometric Topology, Volume 18 (2018)



2798 Nathan Perlmutter

(which is a wedge of a p–sphere with a q–sphere). The manifold U is diffeomorphic
to the manifold obtained by forming the push-out of the diagram

Sp
�Dq

ip�IdDq

 �����Dp
�Dq

IdDp �iq

������!Dp
�Sq;

where ipW D
p ,! Sp and iqW D

q ,! Sq are embeddings. It is easily seen that this
push-out is diffeomorphic to Wp;q D Sp �Sq n Int.DpCq/ after smoothing corners,
thus we have a diffeomorphism U ŠWp;q . By shrinking U down arbitrarily close
to its “core” �0.Sp/[ � 0.Sq/ Š Sp _ Sp , we may assume that U is disjoint from
�i.Cp;q/ for all i D 1; : : : ; k .

Let U �M be the submanifold diffeomorphic to U � Œ0; 1� obtained by adding a collar
to U � @1M in M. We extend the embedding �0 to an embedding

x�W .DpC1
�Dq;Sp

�Dq/! .M; @1M /

such that x�.Sp � Dq/ � U and x�jSp�f0g D �0. We let V � M be the subspace
obtained by forming the union of U with x�.DpC1�Dq/. By shrinking x�.DpC1�Dq/

down to x�.DpC1 � f0g/, we may assume that V is again disjoint from �i.Bp;q/

for all i D 1; : : : ; k . By Proposition 6.6 (proven below) there is a diffeomorphism
V Š Vp;q D DpC1 � Sq . Furthermore, the boundary of V has the decomposition
@V D @0V [ @1V , with @1V D @V \ @1M and @0V D @V n Int.@1V /. We have
diffeomorphisms @1V ŠWp;q and @0V ŠDpCq . Using the identifications

V Š Vp;q; @0V ŠDpCq and @1V ŠWp;q;

we obtain an embedding .Vp;q;Wp;q/ ,! .M; @1M / with image equal to .V; @1V /�

.M; @1M /.

We then choose an embedding  W Œ0; 1� ,! @1M, disjoint from �i.Bp;q/ for all i D

1; : : : ; k , and with  .0/ 2 @0;1V and  .1/ 2 @0M. Taking the union of a thickening
of this arc with V yields an embedding . yVp;q; �Wp;q/ ! .M; @1M / that satisfies
condition (i) of Definition 3.3. This in turn yields a vertex � 2 K@.M /p;q with
Hp;q.�/D f such that �.Bp;q/\�i.Bp;q/D∅ for all i D 1; : : : ; k . It follows that �i

is contained in the link of � for i D 1; : : : ; k . By construction, �.Bp;q/ is transverse
to  j .Bp;q/ for all j D 1; : : : ;m. This proves that the map Hp;q has the link lifting
property with respect to T .

By Lemma 6.3 it follows that the induced map

�i.jK
@.M /p;qj/! �i.jL.W@

p;q.M; @1M /j/
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is injective for all i < 1
2
.g� 1� d/ and thus jK@.M /p;qj/ is 1

2
.g�4�d/–connected.

In order to conclude that lCM.K@.M /p;q/ �
1
2
.g � 1 � d/, we need to establish

property (ii). We need to verify that

Hp;q.lkK @.M /p;q
.�//� lkL.W@

p;q.M;@1M //.Hp;q.�//

for any simplex � 2K@.M /p;q . This property follows immediately from the fact that
if �1; �2 2K@.M /p;q are such that �1.Bp;q/\�2.Bp;q/D∅, then the morphisms of
Wall forms Hp;q.�1/ and Hp;q.�2/ are orthogonal. This concludes the proof of the
theorem.

There is one claim in the above proof that still needs verification, namely that the
manifold V that we constructed is diffeomorphic to Vp;q . We now prove that claim.
Pick a basepoint .a; b/ 2 Sp � Sq such that .Sp � fbg/ [ .fag � Sq/ � Wp;q D

Sp �Sq n Int.DpCq/. Let f W Sp !Wp;q be the embedding given by the chain of
inclusions Sp ,!Sp�fbg ,! .Sp�fbg/[.fag�Sq/ ,!Wp;q . This embedding has a
trivial normal bundle. Let f 0W Sp�Dq!Wp;q be an embedding with f 0jSp�f0gDf .
Finally, let

xf W Sp
�Dq

!Wp;q � Œ0; 1�

denote the embedding given by Sp�Dq f 0
�!Wp;q ,!Wp;q�f1g ,!Wp;q� Œ0; 1�. Let

V denote the manifold obtained by attaching the handle DpC1 �Dq to Wp;q � Œ0; 1�

along the embedding xf , ie

V D .Wp;q � Œ0; 1�/[ xf .D
pC1
�Dq/:

The boundary of Wp;q has the decomposition @V D .Wp;q�f0g/[.@Wp;q�Œ0; 1�/[W 0 ,
where W 0 is the manifold obtained from Wp;q by performing surgery along the
embedding xf . Consequently, the manifold W 0 is diffeomorphic to a disk DpCq and
so @V is diffeomorphic to Wp;q . The following proposition was used in the above
proof of Theorem 3.6.

Proposition 6.6 Let p; q 2N satisfy the inequality jq�pj<minfp�2; q�3g. Then
the manifold V constructed above is diffeomorphic to DpC1 �Sq D Vp;q .

Proof Let gW Sq! V be the embedding given by the chain of inclusions

Sq ,! fag �Sq ,!Wp;q ,!Wp;q � f
1
2
g ,!Wp;q � Œ0; 1� ,! V:

This embedding has trivial normal bundle and so extends to an embedding

xgW DpC1
�Sq

! Int.V /:
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Furthermore, xg induces an isomorphism on homology and thus is a homotopy equiva-
lence since V is simply connected. Let X be the complement V n Int.xg.DpC1�Sq//.
The boundary of X decomposes as the disjoint union @X D @V t@xg.DpC1�Sq/. By
excision we have the isomorphism 0DHi.V; xg.D

pC1�Sq//ŠHi.X;@xg.D
pC1�Sq//

for all i 2 Z�0 , and then by Lefschetz duality we obtain

0DHi.X; @xg.D
pC1
�Sq//ŠH i.X; @V /D 0 for all i 2 Z�0 .

Since X and @V are simply connected, it follows that X is an h–cobordism between
@V and the manifold @xg.DpC1 � Sq/. Since p C q C 1 � 6, it follows by the
h–cobordism theorem [12] that X is diffeomorphic to the cylinder @V � Œ0; 1�. By
shrinking down this cylinder, it follows that the embedding xgW DpC1 � Sq ! V

is isotopic to a diffeomorphism DpC1 � Sq Š V . This completes the proof of the
proposition.

With the above proposition established, the proof of Theorem 3.6 is now complete.
By Corollary 3.8, it now follows that the geometric realization jK@.M /p;qj is
1
2
Œg�4�d.�q.S

p//�–connected whenever rp;q.M /� g .

7 Homological stability

With our main technical result Theorem 3.6 established, in this section we show how
this theorem implies our homological stability theorem, Theorem 2.7. The constructions
and arguments in this section are essentially the same as what was done in [4, Section 6]
and so we merely provide an outline while referring the reader there for details.

7.1 A model for BDiff.M; @0M /

Let .M I @0M; @1M / be a compact manifold triad of dimension m with @0M and
@1M nonempty. We construct a concrete model for BDiff.M; @0M /. Fix once and
for all an embedding � W .@0M; @0;1M /! .R1C ; @R

1
C / and let .S; @S/ denote the

submanifold pair .�.@0M /; �.@0;1M //� .R1C ; @R
1
C /.

Definition 7.1 We define M.M / to be the set of compact m–dimensional sub-
manifold triads

.M 0
I @0M 0; @1M 0/� .Œ0;1/�R1C I f0g �R1C ; Œ0;1/� @R

1
C /

such that:
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(i) .@0M 0; @0;1M 0/D .S; @S/.

(ii) .M 0; @1M 0/ contains .Œ0; �/�S; Œ0; �/� @S/ for some � > 0.

(iii) .M 0I @0M 0; @1M 0/ is diffeomorphic to .M I @0M; @1M /.

Denote by E.M / the space of smooth (neat) embeddings

.M I @0M; @1M /! .Œ0;1/�R1C I f0g �R1C ; Œ0;1/� @R
1
C /;

topologized in the C1–topology. The space M.M / is topologized as a quotient of
the space E.M /, where two embeddings are identified if they have the same image.

It follows from Definition 7.1 that M.M / equals the orbit space E.M /=Diff.M; @0M /.
By [14, Lemma A.1], it follows that the quotient map E.M /!E.M /=Diff.M; @0M /D

M.M / is a locally trivial fiber bundle. In [5] it is proven that the space E.M / is
weakly contractible. These two facts together imply that there is a weak homotopy
equivalence M.M /' BDiff.M; @0M /, and thus we may take the space M.M / to
be a model for the classifying space of the diffeomorphism group Diff.M; @0M /.

Now let p and q be positive integers with pC qC 1Dm. Recall from Section 2 the
relative cobordism

.Kp;q; @1Kp;q/W .@0M � f0g; @0;1M � f0g/ .@0M � f1g; @0;1M � f1g/:

Choose an embedding

˛W .Kp;qI @0Kp;q; @1Kp;q/! .Œ0; 1��R1C I f0; 1g �R1C ; Œ0; 1�� @R
1
C /

that satisfies ˛.i;x/ D .i; �.x// for all .i;x/ 2 f0; 1g � @0M D @0Kp;q . For a sub-
manifold M 0 � Œ0;1/�R1C , denote by M 0C e1 � Œ1;1/�R1C the submanifold
obtained by translating M 0 over 1–unit in the first coordinate. For M 0 2M.M /,
the submanifold ˛.Kp;q/ [ .M

0 [ e1/ � Œ0;1/ � R1C is an element of the space
M.M [@0

Kp;q/, and thus we have a continuous map

(19) sp;qWM.M /!M.M [@0
Kp;q/; M 0

7! ˛.Kp;q/[ .M
0
C e1/:

The construction of sp;q depends on the choice of embedding ˛ . Any two such
embeddings are isotopic and thus it follows that the homotopy class of sp;q does not
depend on any such choice.
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7.2 A semisimplicial resolution

Let .M I @0M; @1M / be an m–dimensional manifold triad as in Section 7.1. Fix
p; q 2 N such that p C q C 1 D m. We now construct a semisimplicial reso-
lution of the moduli space M.M /. Choose once and for all a coordinate patch
cW .Rm�1

C ; @Rm�1
C / ,! .S; @S/. Such a coordinate patch induces for each M 02M.M /

a germ of an embedding Œ0; 1/�Rm�1
C !M 0 as in the definition of K@

�
.M 0/p;q (see

Definition 3.7). For each nonnegative integer l , we define X @
l
.M /p;q to be the set of

pairs .M 0; �/ where M 0 2M.M / and � 2K@
l
.M 0/p;q . We topologize X @

l
.M /p;q

by identifying it with the quotient space

(20) .E.M /�K@
l .M /p;q/=Diff.M; @0M /;

where Diff.M; @0M / acts on E.M /�K@
l
.M /p;q by the diagonal action. The identifi-

cation of X @
l
.M /p;q with (20) is given by the map

X @
l .M /p;q! .E.M /�K@

l .M /p;q/=Diff.M; @0M /; .M 0; �/ 7! Œ‰; ��;

where ‰ 2 E.M / is some choice of embedding with ‰.M /DM 0.

The assignments Œl � 7!X @
l
.M /p;q make X @

�
.M /p;q into a semisimplicial space, where

the face maps are induced by the face maps in K@
�
.M /p;q . The forgetful maps

X @
l
.M /p;q!M.M /, .M 0; �/ 7!M 0, assemble to yield the augmented semisimplicial

space X @
�
.M /p;q!X @

�1
.M /p;q , where the space X @

�1
.M /p;q is set equal to M.M /.

We have the following proposition:

Proposition 7.2 The augmentation map

jX @
�
.M /p;qj !X @

�1.M /p;q

is 1
2
.rp;q.M /�2�d/–connected, where d D d.�p.S

q// is the generating set length.

Proof For each l 2 Z�0 the forgetful map X @
l
.M /p;q!M.M / is a locally trivial

fiber bundle with fiber given by the space K@
l
.M /p;q . By [2, Lemma 2.14] it follows

that the sequence

jK@
�
.M /p;qj ! jX

@
�
.M /p;qj !X @

�1.M /p;q

is a homotopy fiber sequence. The proposition then follows from Corollary 3.8 using
the long exact sequence on homotopy groups associated to a fiber sequence.
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7.3 Proof of Theorem 2.7

We now will show how to use the augmented semisimplicial space X @
�
.M /p;q !

X @
�1
.M /p;q to complete the proof of Theorem 2.7. First, we fix some new nota-

tion which will make the steps of the proof easier to state. For what follows let
.M I @0M; @1M / be a compact m–dimensional manifold triad with nonempty boundary.
As in the previous sections, choose positive integers p and q with pCqC1Dm that
satisfy the inequalities (7) with respect to .M; @1M /. We work with the same choice
of p and q for the rest of the section. For each g 2N we denote by Mg the manifold
obtained by forming the boundary connected sum of M with .DpC1 �Sq/#g along
the face @1M. Clearly we have rp;q.Mg/� g . We consider the spaces M.Mg/. For
each g 2 N we have the stabilization map sp;qWM.Mg/!M.MgC1/. Using the
weak homotopy equivalences M.Mg/' BDiff.Mg; @0Mg/, Theorem 2.7 translates
to the following statement:

Theorem 7.3 The induced map .sp;q/�W Hk.M.Mg/IZ/! Hk.M.MgC1/IZ/ is
an isomorphism when k � 1

2
.g� 3� d/ and an epimorphism when k � 1

2
.g� 1� d/.

Since rp;q.Mg/�g , Proposition 7.2 implies that the map jX @
�
.Mg/p;qj!X @

�1
.Mg/p;q

is 1
2
.g�2�d/–connected. For each pair of integers g; k 2 Z�0 with k < g , there is a

map

(21) F
g

k
WM.Mg�k�1/!X @

k .Mg/p;q

defined as follows. Let Kk
p;q � Œ0; kC 1��R1C denote the .kC1/–fold concatenation

of the submanifold ˛.Kp;q/ � Œ0; 1��R1C used in the construction of stabilization
map (19), ie

Kk
p;q D ˛.Kp;q/[ Œ˛.Kp;q/C e1�[ � � � [ Œ˛.Kp;q/C k � e1�:

For each k 2 Z�0 we fix a k –simplex .�0; : : : ; �k/ 2 K@.Kk
p;q/p;q . The map F

g

k

from (21) is defined by the formula F
g

k
.M 0/D ..�0; : : : ; �k/;K

k
p;q[Œ.kC1/�e1CM 0�/.

It follows directly from the definition of F
g

k
that for each pair k < g , the diagram

(22)

M.Mg�k�1/

F
g

k
��

Sp;q
// M.Mg�k/

F
g

k
��

X @
k
.Mg/p;q

dk
// X @

k�1
.Mg/p;q
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is commutative. The following proposition is proven in the same way as [3, Propositions
5.3 and 5.5]. For this reason we omit the proof and refer the reader to these analogous
results from [3; 4] for details.

Proposition 7.4 Let g � 4C d . We have the following:

(i) For each k < g , the map F
g

k
WM.Mg�k�1/!X @

k
.Mg/p;q is a weak homotopy

equivalence.

(ii) The face maps di W X
@
k
.Mg/p;q!X @

k�1
.Mg/p;q are weakly homotopic.

To finish the proof of Theorem 7.3, consider the spectral sequence associated to the
augmented semisimplicial space X @

�
.Mg/p;q ! X @

�1
.Mg/p;q with E1 –term given

by E1
j ;l
D Hj .X

@
l
.Mg/p;qIZ/ for l � �1 and j � 0. The differential is given by

d1D
P
.�1/i.di/� , where .di/� is the map on homology induced by the i th face map

in X @
�
.Mg/p;q . The group E1

j ;l
is a subquotient of the relative homology group

HjClC1.X
@
�1.Mg/p;q; jX

@
�
.Mg/p;qjIZ/:

Proposition 7.4 together with Proposition 7.2 and commutativity of diagram (22) imply
the following facts:

(a) For g � 4C d , there are isomorphisms E1
j ;l
ŠHl.M.Mg�j�1/IZ/.

(b) The differential

d1
W Hl.M.Mg�j�1/IZ/ŠE1

j ;l !E1
j�1;l ŠHl.M.Mg�j /IZ/

is equal to .sp;q/� when j is even and is equal to zero when j is odd.

(c) The term E1
j ;l

is equal to 0 when j C l � 1
2
.g� 2� d/.

To complete the proof one uses (c) to prove that the differential d1W E1
2j ;l
!E1

2j�1;l

is an isomorphism when 0 < j � 1
2
.g� 3� d/ and an epimorphism when 0 < j �

1
2
.g� 1� d/. This is done by carrying out the exact same inductive argument given

in [3, Section 5.2, Proof of Theorem 1.2]. This establishes Theorem 7.3 and the main
result of this paper, Theorem 2.7.

8 Tangential structures

In this section we prove an analogue of Theorem 1.1 for the moduli spaces of manifolds
equipped with tangential structures. Recall that a tangential structure is a map � W B!
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BO.d/. A � –structure on a d –dimensional manifold M is a bundle map (fiberwise
linear isomorphism) `W TM ! �� d . More generally, if M is an l –dimensional
manifold with l � d , then a � –structure on M is a bundle map TM ˚ �d�l ! �� d .

Fix a tangential structure � W B! BO.d/. Let M be a d –dimensional manifold with
boundary. Let P � @M be a codimension-0 submanifold and let `P W TP˚�1! �� d

be a � –structure. We define

Bun.TM; �� d
I `P /� Bun.TM; �� d /

to be the subspace consisting of those � –structures on M that agree with `P when re-
stricted to P. The formula Bun.TM; �� d I `P /�Diff.M;P /!Bun.TM; �� d I `P /,
.`; f / 7! ` ıDf , defines a continuous action of the topological group Diff.M;P /

on the space Bun.TM; �� d I `P /. We define BDiff� .M; `P / to be the homotopy
quotient Bun.TM; �� d I `P /==Diff.M;P /.

We proceed to construct stabilization maps analogous to those defined in Section 2.
This will require us to make some choices. Let p; q 2 Z�0 be integers such that
pC qC 1D d .

Definition 8.1 Fix once and for all a bundle map � W Rd ! �� d . This choice
determines a canonical � –structure on any framed d –dimensional manifold. If X is
any such framed d –dimensional manifold, we denote this canonical � –structure on X

by `�
X

.

Notice that since the manifold V 1
p;q ŠDpC1�Sq admits an embedding into RpCqC1 ,

V 1
p;q is parallelizable. Choose once and for all a framing, TV 1

p;q Š V 1
p;q �RpCqC1 ,

and consider the canonical � –structure `�V 1
p;q

induced by this chosen framing. We call
an arbitrary � –structure `WTV 1

p;q!�� d standard if it is homotopic to the canonical
� –structure `�

V 1
p;q

defined above.

Let .M I @0M; @1M / be a d –dimensional manifold triad with @0M and @1M non-
empty. Let .Kp;qI @1Kp;q/ be the relative cobordism between

.@0M � f0g; @0;1M � f0g/ and .@0M � f1g; @0;1M � f1g/

introduced in Section 2. Let us write P WD @0M and fix a � –structure `P W TP˚�1!

�� d . Choose a � –structure `Kp;q
W TKp;q ! �� d that agrees with `P on both

components of
@0Kp;q D @0M � f0; 1g;
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and that is standard (in the sense of Definition 8.1) when restricted to V 1
p;q (where V 1

p;q

is considered as a submanifold of Kp;q D .@0M � Œ0; 1�/\V 1
p;q/. With this choice of

� –structure we obtain a map

Bun.TM; �� d
I `P /! Bun.T .M [P Kp;q/; �

� d
I `P /; ` 7! `[ `Kp;q

:

This map is Diff.M;P /–equivariant, and thus it induces a map

(23) s�p;qW BDiff� .M; `P /! BDiff� .M [Kp;q; `P /:

In addition to the inequalities imposed on p and q in the statement of Theorem 2.7,
the following theorem will require us to also impose the further condition q � p , and
to assume that � W B! BO.d/ is such that the space B is q–connected.

Theorem 8.2 Let p and q be positive integers with pC qC 1D d D dim.M / and
suppose that the inequalities of (7) are satisfied. Suppose further that q � p and that
� W B! BO.d/ is such that B is q–connected. Suppose that rp;q.M /� g . Then the
homomorphism

.s�p;q/�W Hk.BDiff� .M; `P /IZ/!Hk.BDiff� .M [P Kp;q; `P /IZ/

is an isomorphism when k � 1
2
.g� 4/ and an epimorphism when k � 1

2
.g� 2/.

The proof of the above theorem is similar to Theorem 2.7 and requires only slight mod-
ifications. The main ingredient of the proof is to show that the tangentially structured
analogue of the simplicial complex K@.M /p;q (see Definition 8.3 below) is highly
connected relative to the rank rp;q.M /. With this high-connectivity established, the
proof of Theorem 8.2 follows in exactly the same way as the proof of Theorem 2.7,
as outlined in Section 7. We will show explicitly how to prove high-connectivity of
the complex (Proposition 8.5), and refer the reader to [4, Section 7] for the rest of the
argument, which by this point is standard.

We proceed to construct a simplicial complex (and related semisimplicial spaces)
analogous to the one constructed in Section 3. Let P and `P W TP ˚ �1! �� d be as
in the statement of Theorem 8.2. Let .M I @0M; @1M / be a d –dimensional compact
manifold triad, with @0M D P. Choose a � –structure `M 2 Bun.TM; �� d I `P /.
The definition below should be compared to [4, Definition 7.10].

Definition 8.3 Let aW Œ0; 1/ � Rd�1
C ! M be an embedding with a�1.@0M / D

f0g �Rd�1
C and a�1.@1M / D Œ0; 1/� @Rd�1

C . For each pair of positive integers p
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and q with p C q C 1 D d , we define a simplicial complex K@.M; `M ; a/p;q as
follows:

(i) A vertex in K@.M; `M ; a/p;q is defined to be a triple .t; �;  /, where .t; �/
is an element of K@.M; a/p;q and  is a path in Bun. yVp;q; �

� d /, starting
at ��`M , ending at ` yVp;q

and constant on the subset D
pCq
C � f0g � yVp;q .

(ii) A set of vertices f.t0; �0; 0/; : : : ; .tl ; �l ; l/g forms an l –simplex if ti ¤ tj and
�i.Bp;q/\�j .Bp;q/D∅ whenever i ¤ j , just as in Definition 3.3.

As in Section 3 we will also need to work with a semisimplicial space K@
�
.M; `M ; a/p;q

analogous to the simplicial complex defined above.

(i) The space of 0–simplices K@
0
.M; `M ; a/p;q is defined to have the same under-

lying set as the set of vertices of the simplicial complex K@.M; `M ; a/p;q .

(ii) The space of l –simplices K@
l
.M; `M ; a/� .K@

0
.M; `M ; a//lC1 consists of the

ordered .lC1/–tuples

..t0; �0; 0/; : : : ; .tl ; �l ; l//

such that t0 < � � �< tl and �i.Bp;q/\�j .Bp;q/D∅ when i ¤ j .

The spaces K@
l
.M; `M ; a/� .R�Emb. yVp;q;M /�Bun.T yVp;q; �

� d //lC1 are topol-
ogized using the C1–topology on the space of embeddings and the compact–open
topology on the space of bundle maps. The assignments Œl � 7!K@

l
.M; `M ; a/ define a

semisimplicial space, denoted by K@
�
.M; `M ; a/p;q , with face maps defined the same

way as in Definition 3.7.

Finally, the subsemisimplicial space K@
�
.M; `M ; a/p;q �K@

�
.M; `M ; a/p;q is defined

to be the subsemisimplicial space consisting of all simplices

..t0; �0; 0/; : : : ; .tl ; �l ; l// 2K@
l .M; `M ; a/

such that �i. yVp;q/\�j . yVp;q/D∅ whenever i ¤ j .

The key technical result that we will need is the lemma stated below. This lemma is
the source of the requirement that q � p and that the space B be q–connected. Fix a
� –structure `D on the disk Dd�1 and fix an embedding Dd�1 ,! @Vp;q . We consider
the space Bun.TVp;q; �

� d I `D/.

Lemma 8.4 Suppose that q � p and that � W B ! BO.d/ is chosen so that B is
q–connected. Then, given any two elements `1; `2 2 Bun.TVp;q; �

� d I `D/, there
exists a diffeomorphism f 2 Diff.Vp;q;D

pCq/ such that `1 is homotopic to `2 ıDf .
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Proof Since the space B is q–connected and Vp;q is homotopy equivalent to Sq ,
it follows that the underlying map Vp;q ! B of any � –structure on Vp;q is null-
homotopic. It follows that every � –structure on Vp;q is homotopic to one that is
induced by a framing of the tangent bundle. That is, every ` 2 Bun.TVp;q; �

� d I `D/

is homotopic to a � –structure of the form

TVp;q
Š
�!Vp;q �Rd pr

�!Rd �
�! �� d ;

where the first arrow is a framing of the tangent bundle. Fix a framing

�D W TDd�1
˚ �1 Š

�!Dd�1
�Rd :

Let Fr.TVp;q; �D/ denote the space of framings of TVp;q that agree with `D when
restricted to the disk Dd�1 � @Vp;q . From the observation made above, to prove
the lemma it will suffice to prove the following statement: given any two framings
'1; '22Fr.TVp;q; �D/, there exists f 2Diff.Vp;q;D

d / such that '1ıDf is homotopic
(through framings) to '2 . Let '1; '2 2 Fr.TVp;q; �D/. The tangent bundle TVp;q has
a natural splitting E ˚N Š TVp;q . The bundle E is the pull-back of the tangent
bundle TSq over the projection Vp;q ! Sq and N is the pull-back of the normal
bundle of Sq ,! Vp;q over the projection Vp;q! Sq . The bundle N ! Vp;q is trivial
and has fibers of dimension pC 1. Pick once and for all a standard framing

�W TVp;q
Š
�!Vp;q �Rd :

Since p � q by assumption, the stabilization map �q.SOpC1/! �q.SO/ is surjective.
From this it follows that 'i (for i D 1; 2) is homotopic to a framing of the form

(24) TVp;q
Š
�!E˚N

IdE˚y'i
����!E˚N Š

�!TVp;q
�
�!Vp;q �Rd

for some bundle isomorphism y'i W N
Š
�!N . So, let us assume that '1 and '2 are of

this form, with y'1; y'2W N
Š
�!N defined as in the above composition. Choose once

and for all a trivialization
 W N Š

�!Vp;q �RpC1

of the bundle N. There exists some map gW Sq ! SO.pC 1/ such that the bundle
map

 ı y'�1
2 ı y'1 ı 

�1
W Vp;q �RpC1 Š

�!Vp;q �RpC1

is given by the formula

.x;y/ 7! .x;g.x/ �y/ for all .x;y/ 2 Vp;q �RpC1:
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We may assume that the map g is smooth and that g.x/D IdRpC1 for all x 2D�Vp;q .
Let

GW Sq
�DpC1

! Sq
�DpC1

be the diffeomorphism given by the formula

.v; w/ 7! .v;g.v/ �w/ for all .v; w/ 2 Sq
�DpC1:

With G constructed in this way, it follows that '1 ıDG D '2 . This completes the
proof of the lemma.

The main technical ingredient in the proof of Theorem 8.2 is the following proposition:

Proposition 8.5 Let .M I @0M; @1M / and pC qC 1D d satisfy the inequalities (2).
Suppose further that q�p and that � W B!BO.d/ is chosen so that B is q–connected.
Let rp;q.M /� g . Then, for any `M 2 Bun.TM; �� d I `P /, the geometric realization
jK@
�
.M; `M ; a/p;qj is 1

2
.g�4/–connected.

Proof As before, the degree of connectivity of jK@
�
.M; `M ; a/p;qj is bounded below

by the degree of connectivity of jK@.M; `M ; a/p;qj. To prove the theorem it will
suffice to show that jK@.M; `M ; a/p;qj is 1

2
.g�4/–connected. Let

T �K@.M; `M ; a/p;q �K@.M; `M ; a/p;q

be the symmetric relation from Definition 6.4. As in Section 6 we have a simplicial
map

Hp;qW K
@.M; `M ; a/p;q!L.W@

p;q.M; @1M //;

defined by sending .t; �;  / to the morphism of Wall forms Wp;q!W@
p;q.M; @1M /

induced by � . We will need to show that the map Hp;q has the following properties:

(i) The map Hp;q has the link lifting property with respect to T (see Definition 6.2).

(ii) Hp;q.lkK @.M;`M ;a/p;q
.�// � lkL.W@

p;q.M;@1M //.Hp;q.�// for any simplex � 2
K@.M; `M ; a/p;q .

Condition (ii) is proven in the same way as in the proof of Theorem 3.6. The proof
of condition (i) is similar to the proof of Theorem 3.6 but requires one extra step,
which we describe below. This step will rely on Lemma 8.4 and thus requires the
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conditions that q � p and B is q–connected. Let f W W !W@
p;q.M; @1M / be a mor-

phism of Wall forms, ie a vertex of L.W@
p;q.M; @1M //. Let .�1; 1; /; : : : ; .�k ; k/ 2

K@.M; `M ; a/p;q be a collection of T –related vertices such that

Hp;q.i ; �i/ 2 lk.f / for i D 1; : : : ; k

(we have dropped the numbers t1; : : : ; tk from the notation to save space). Let
.�0

1
;  0

1
/; : : : ; .�0m; 

0
m/ 2K@.M; `M ; a/p;q be another arbitrary collection of vertices

(that is not necessarily T –related). To show that Hp;q has the link lifting property
with respect to T , we need to construct a vertex .�;  / 2 K@.M; `M ; a/p;q with
Hp;q.�;  /D f such that

.�i ; i/ 2 lk.�;  / and .. j ; j /; .�;  // 2 T

for all i D 1; : : : ; k and j D 1; : : : ;m. By using the same procedure employed in
the proof of Theorem 3.6, we may construct the embedding �W yVp;q ! M in the
same way that was done there. However, in order to obtain the path  W Œ0; 1� !

Bun.T yVp;q; �
� d /, we need to use Lemma 8.4. Since q � p and the space B is

q–connected, by Lemma 8.4 we may find a diffeomorphism 'W yVp;q!
yVp;q that is the

identity on the half-disk D
pCq
C � @ yVp;q such that the � –structure '���`M given by

(25) T yVp;q
D'
�!T yVp;q

D�
�!TM

`M
�! �� d

is on the same path component of Bun.T yVp;q;�
� d / as the canonical � –structure `�

yVp;q

.
Letting  W Œ0; 1�! Bun.T yVp;q; �

� d / be a path from '���`M to `�
yVp;q

it follows
that the pair .� ı';  / is a vertex in the complex K@.M; `M ; a/p;q that satisfies all of
the desired conditions.

The construction of this vertex concludes our verification of the link lifting property.
It follows from Lemma 6.3 that the degree of connectivity of jK@.M; `M ; a/p;qj is
bounded below by the degree of connectivity of jL.W@

p;q.M; @1M //j. Since q � p ,
�q.S

p/ is either isomorphic to Z or is zero, thus the generating set length d.�q.S
p//

is either equal to 1 or zero. It follows from Theorem 5.6 that jL.W@
p;q.M; @1M //j is at

least 1
2
.g�4/–connected. By what was proven above it follows that jK@

�
.M; `M ; a/p;qj

is 1
2
.g�4/–connected as well. This concludes the proof of the proposition.

With the above proposition established, the proof of Theorem 8.2 is obtained by
implementing the same constructions from Section 7. We omit the rest of the proof
and refer the reader to [4, Section 7] for details.
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Appendix: Embeddings and disjunction

In this section we prove a disjunction result for embeddings of manifolds with boundary.
This result implies Theorem 4.10, which is one of the main technical ingredients used
to prove that the complex K.M /p;q is highly connected.

Theorem A.1 Let .M; @M / be a manifold pair of dimension m. Let .P; @P / and
.Q; @Q/ be manifold pairs of dimensions p and q , respectively, with @P ¤∅¤ @Q.
Let f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M / be smooth embeddings and
suppose that the following conditions are met:

(i) m> pC 1
2
qC 1 and m> qC 1

2
pC 1.

(ii) .P; @P /, .Q; @Q/, P and Q are .pCq�m/–connected.

(iii) .M; @M / and M are .pCq�mC1/–connected.

Then there exists an isotopy  sW .P; @P /! .M; @M / for s 2 Œ0; 1� such that  0 D f

and  1.P /\g.Q/D∅.

The proof of the above theorem is based on a technique developed by Hatcher and
Quinn [7]. We recall the results of Hatcher and Quinn in the following section, develop
some new techniques in the sections that follow and then finish the proof of Theorem A.1
in Section A.4.

Remark A.2 In view of the remarks in [7, page 333] we believe that a result similar
to the one stated above may have been known to Hatcher and Quinn at time of writing
their paper. However, to our knowledge no proof of this result exists in [7] (or in the
literature) and so we provide the proof here in this appendix.

A.1 The Hatcher–Quinn invariant

We now review the construction of Hatcher and Quinn [7]. This construction involves
the framed bordism groups of a space, twisted by a stable vector bundle.

Definition A.3 Let X be a space and let � be a stable vector bundle over X. For an
integer n, �fr

n.X I �/ is defined to be the set of bordism classes of triples .M; f;F /,
where M is a closed n–dimensional smooth manifold, f W M ! X is a map and
F W �M ! f �.�/ is an isomorphism of stable vector bundles covering the identity map
on M, where �M denotes the stable normal bundle of M.
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Let M, P and Q be smooth manifolds of dimensions m, p and q , respectively. Let t

denote the integer pCq�m. Let f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M /

be smooth maps. We denote by E.f;g/ the homotopy pull-back of the maps f and g .
Explicitly, E.f;g/ is the space defined by

E.f;g/D f.x;y;  / 2 P �Q�Path.M / j f .x/D  .0/; g.y/D  .1/g;

where Path.M / is the space of continuous maps Œ0; 1� ! M, topologized in the
compact–open topology. Consider the diagram

(26)

E.f;g/
�P

//

�Q

��

ys

''

P

f

��

Q
g

// M

where �P and �Q are the projections and ys is the map defined by ys.x;y;  /D 
�

1
2

�
.

Let �P and �Q denote the stable normal bundles associated to the manifolds P and Q,
respectively. We denote by �.f;g/ the stable vector bundle over E.f;g/ given by the
Whitney sum ��

P
�P ˚�

�
Q
�Q˚ys

�.TM /. We will need to consider the bordism group
�fr

t .E.f;g/I �.f;g//.

Suppose now that the maps f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M / are
transverse and that f .@P /\g.@Q/D∅ (by f and g being transverse we mean that
f � gW P �Q!M �M is transverse to the diagonal �M �M �M ). It follows
that the pull-back f t g WD .f � g/�1.�M / � P �Q is a closed submanifold of
dimension pCq�m. Let �W f t g!E.f;g/ denote the canonical embedding given
by the formula .x;y/ 7! .x;y; cf .x//, where cf .x/ 2 Path.M / is the constant path at
the point f .x/ 2M. The lemma below follows from [7, Proposition 2.1].

Lemma A.4 Let f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M / be transver-
sal smooth maps such that f .@P / \ g.@Q/ D ∅. Then there is a natural bundle
isomorphism O�W �ftg

Š
�! ��.�.f;g// such that the triple .f t g; �; O�/ determines a

well-defined element of the bordism group �fr
t .E.f;g/I �.f;g//.

Definition A.5 For transversal maps f and g with f .@P /\ g.@Q/ D ∅ as in the
previous lemma, we will denote by ˛t .f;g;M / 2�fr

t .E.f;g/I �.f;g// the element
determined by the triple .f t g; �; O�/ given in Lemma A.4.

The main result from [7] is the following theorem:

Algebraic & Geometric Topology, Volume 18 (2018)



Homological stability for diffeomorphism groups of high-dimensional handlebodies 2813

Theorem A.6 Let f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M / be smooth
embeddings such that f .@P /\g.@Q/D∅. Suppose further that

m>max
˚
pC 1

2
qC 1; 1

2
pC qC 1

	
:

If the class ˛t .f;g;M / is equal to the zero element in �fr
t .E.f;g/I �.f;g//, then

there exists an isotopy  sW .P; @P /! .M; @M / such that  0D f and  sj@P D f j@P

for all s 2 Œ0; 1�, and  1.P /\g.Q/D∅.

The bordism group �fr
t .E.f;g/I �.f;g// in general can be quite difficult to compute.

However, in the case where P, Q and M are all highly connected, the group reduces
to a far simpler object.

Proposition A.7 Let

f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M /

be smooth embeddings such that f .@P /\ g.@Q/D ∅. Suppose that P and Q are
both t –connected and that M is .tC1/–connected. Then the natural map �fr

t .pt/!
�fr

t .E.f;g/; �.f;g// is an isomorphism.

Proof Let P and Q be t –connected and let M be .tC1/–connected. There is a fiber
sequence �M !E.f;g/! P �Q. The long exact sequence on homotopy groups
implies that the space E.f;g/ is t –connected. The proof then follows by application
of the Atiyah–Hirzebruch spectral sequence.

Suppose that P and Q are t –connected and that M is .tC1/–connected. If

f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M /

are smooth embeddings, as a consequence of the above proposition we may consider
˛t .f;gIM / to be an element of the framed bordism group �fr

t .pt/.

Remark A.8 The element ˛t .f;gIM / is the obstruction to finding an isotopy, relative
to the boundary @P, that pushes f .P / off of g.Q/. This element ˛t .f;gIM / very
well may be nonzero for arbitrary f , g and M, and thus it may appear that Theorem A.1
is false. However, Theorem A.1 does not assert the existence of an isotopy that fixes
the boundary of P. Indeed, as will be seen in the following sections, ˛t .f;gIM / is
not an obstruction to the existence of an isotopy that is nonconstant on the boundary
of P.

Algebraic & Geometric Topology, Volume 18 (2018)



2814 Nathan Perlmutter

A.2 Relative Hatcher–Quinn invariant

We will have to consider relative framed bordism groups.

Definition A.9 Let .X;A/ be an excisive pair of spaces and let � be a stable vector
bundle over X. For an integer n, �fr

n..X;A/; �/ is defined to be the abelian group of
bordism classes of triples .M; f;F /, where .M; @M / is an n–dimensional manifold
pair, f W .M; @M /! .X;A/ is a map and F W �M ! f �.�/ is an equivalence class of
stable bundle isomorphisms as before.

For any excisive space pair .X;A/ and stable vector bundle � over X, there is a long
exact sequence of bordism groups,

(27) � � � !�fr
n.AI �jA/!�fr

n.X I �/!�fr
n..X;A/I �/!�fr

n�1.AI �jA/! � � � :

Remark A.10 This exact sequence follows as a consequence of [11, Theorem 3.1.5].
Indeed, this theorem identifies the bordism group �fr

n..X;A/I �/ with the relative stable
homotopy group �n.X

� ;A�/, where X � and A� are the Thom spectra associated to
the stable vector bundles �!X and �jA!A, respectively. From this isomorphism
�fr

n..X;A/I �/ Š �n.X
� ;A�/, the long exact sequence (27) follows from the long

exact sequence of homotopy groups associated to the pair .X � ;A�/. Alternatively, the
exact sequence can be verified directly by hand. This is a simple exercise that we leave
for the reader.

Using these relative bordism groups, we define a relative version of the Hatcher–Quinn
invariant. Let f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M / be embeddings.
Unlike the case in the previous section, we now include the possibility that the intersec-
tion f .@P /\g.@Q/ be nonempty. If f and g are transversal (and by this we mean that
both f and g and f j@P and gj@Q are transversal in the ordinary sense), then the pull-
back f tg is a manifold with boundary given by @.f tg/Df j@P tgj@Q� @P�@Q.
We will need to construct a relative version of the bordism invariant that was defined
in the previous section.

Let @E.f;g/ denote the homotopy pull-back E.f j@P ;gj@Q/. The space @E.f;g/
embeds naturally as a subspace of E.f;g/.

Lemma A.11 The pair .E.f;g/; @E.f;g// is excisive, ie @E.f;g/ ,!E.f;g/ is a
cofibration.
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Proof It will suffice to show that there exists an open neighborhood U � E.f;g/

that contains the subspace @E.f;g/ as a deformation retract. Let VP � P, VQ �Q

and VM � M be open collar neighborhoods of the boundaries @P, @Q and @M,
respectively, and let

�P W VP ! @P; �QW VQ! @Q; �M W VM ! @M

denote the standard deformation retractions. We define U �E.f;g/ to be the space of
triples .x;y;  /2VP�VQ�Path.VM / such that  .0/Df .x/ and  .1/Dg.x/. Since
VP ;VQ and VM are open collar neighborhoods of the boundaries @P, @Q and @M,
respectively, it follows that U is an open neighborhood of @E.f;g/ (this uses the fact
that Path.VM / is an open subset of Path.M / when topologized in the compact–open
topology). A deformation retraction � W U ! @E.f;g/ is then defined by the formula
.x;y;  / 7! .�P .x/; �Q.y/; �M ı  /. The fact that � is a deformation retraction
follows from the fact that �P , �Q and �M are all deformation retractions.

We have a map of pairs

�W .f t g; @.f t g//! .E.f;g/; @E.f;g//; .x;y/ 7! .x;y; cf .x//:

The restriction of �.f;g/ to @E.f;g/ is equal to the stable bundle �.f j@P ;gj@Q/. To
save space we will let yE.f;g/ denote the pair .E.f;g/; @E.f;g//. We will need to
consider the relative bordism group �fr

t .
yE.f;g/; �.f;g//. Let

(28) y@W �fr
t .
yE.f;g/; �.f;g//!�fr

t�1.@E.f;g/; �.f;g/j@E.f;g//

be the boundary homomorphism in the long exact sequence associated to the pair
yE.f;g/. Since the pair yE.f;g/D .E.f;g/; @E.f;g// is excisive it follows that the

above map y@ fits into a long exact sequence as in (27). Using the same construction
from Lemma A.4 we obtain:

Lemma A.12 Let f W .P; @P /! .M; @M / and gW .Q; @Q/! .M; @M / be transver-
sal maps. Then the pullback manifold f t g determines a class ˛@t .f;g;M / 2

�fr
t .
yE.f;g/; �.f;g//. Furthermore, we have

y@.˛@t .f;g;M //D ˛t�1.f j@P ;gj@Q; @M /:

Lemma A.12 will be useful to us in order to prove the following result:
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Proposition A.13 Let f W .P; @P / ! .M; @M / and gW .Q; @Q/ ! .M; @M / be
embeddings. Suppose that .P; @P / and .Q; @Q/ are .pCq�m/–connected and that
.M; @M / is .pCq�mC1/–connected. Then there exists an isotopy ‰sW P !M for
s 2 Œ0; 1� such that ‰0 D f and ‰1.@P /\g.@Q/D∅.

Proof Let t denote the integer p C q � m. The connectivity conditions in the
statement of the proposition implies that the pair .E.f;g/; @E.f;g// is t –connected
and, thus, the bordism group �fr

t .
yE.f;g/; �.f;g// is trivial. It follows from this that

y@.y̨t .f;g;M //D ˛t�1.f j@P ;gj@Q; @M /D 0. We may then apply Theorem A.6 to
obtain an isotopy  sW @P!@M with  0Df j@P such that  1.@P /\g.@Q/D∅. The
proof of the proposition then follows by application of the isotopy extension theorem
[9, Theorem 1.3].

A.3 Creating intersections

In this section we develop a technique for creating intersections with prescribed Hatcher–
Quinn obstructions. Let M and Q be oriented, connected, compact manifolds of
dimension m and q , respectively, and let gW .Q; @Q/! .M; @M / be an embedding.
Let r Dm� q and let f W .Dr ; @Dr /! .M; @M / be a smooth embedding transverse
to g such that f .@Dr /\g.@Q/D∅. Let j � 0 be an integer strictly less than r . With
j chosen in this way it follows that �rCj .S

r / is in the stable range and thus we have
an isomorphism �rCj .D

r ; @Dr /Š �rCj .S
r /. Let 'W .DrCj ; @DrCj /! .Dr ; @Dr /

be a smooth map. Denote by

(29) Pj W �rCj .D
r ; @Dr /Š �rCj .S

r / Š�!�fr
j .pt/

the Pontryagin–Thom isomorphism for framed bordism (see [13]). The following
lemma shows how to express j̨ .f ı';g;M / in terms of ˛0.f;g;M / and the element
Pj .Œ'�/ 2�

fr
j .pt/.

Lemma A.14 Let g , f and ' be as above and suppose that f .@Dr /\g.@Q/D∅.
Then

j̨ .f ı';g;M /D ˛0.f;g;M / �Pj .Œ'�/;

where the product on the right-hand side is the product in the graded bordism ring
�fr
�.pt/.
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Proof Let ` 2 Z denote the oriented, algebraic intersection number associated to the
intersection of f .Dr / and g.Q/. By application of the Whitney trick, we may deform
f so that f .Dr / is transverse to g.Q/ and

(30) f .Dr /\g.Q/D fx1; : : : ;x`g;

where the points xi for i D 1; : : : ; ` all have the same sign. It follows that

.f ı'/�1.g.Q//D
G̀
iD1

'�1.xi/:

For each i 2 f1; : : : ; `g, the normal framing at xi (induced by the orientations of
f .Dr /, g.Q/ and M ) induces a framing on '�1.xi/. We denote the element of
�fr

j .pt/ given by '�1.xi/ with this induced framing by Œ'�1.xi/�. By definition of the
Pontryagin–Thom map Pj , the element Œ'�1.xi/� is equal to Pj .Œ'�/ for i D 1; : : : ; `.
Using the equality (30), it follows that j̨ .f ı';g;M /D ` �Pj .Œ'�/. The proof then
follows from the fact that ˛0.f;g;M / is identified with the algebraic intersection
number associated to f .Dr / and g.Q/.

We apply the above lemma to the following proposition:

Proposition A.15 Let Q and M have nonempty boundary and let gW .Q; @Q/!

.M; @M / be a smooth embedding. Let r denote the integer m� q . There exists an
embedding f W .Dr ; @Dr /! .M; @M / that satisfies the following conditions:

� f .@Dr /\g.@Q/D∅.

� f .Dr /\g.Q/ consists of a single point with positive orientation.

� f represents the trivial element in �r .M; @M /.

Proof We will prove the proposition by carrying out an explicit construction as follows:

(i) Choose a collar embedding hW @Q� Œ0;1/!Q such that h�1.@Q/D @Q�f0g.

(ii) Choose a point y 2 @Q, then define an embedding

 W Œ0; 1�! g.Q/;  .t/D g.h.y; t//:

We then let x 2 g.Q/ denote the point  .1/.

(iii) Choose an embedding ˛W .D2
C; @0D2

C/! .M; @M / that satisfies the following
conditions:

(a) ˛.D2
C/\g.Q/D  .Œ0; 1�/.
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(b) ˛.@1D2
C/\g.Q/D fxg.

(c) ˛.D2
C/ intersects g.Q/ orthogonally (with respect to some metric on M ).

(iv) Let r denote the integer m� q . Choose an .r�1/–frame of orthogonal vector
fields .v1; : : : ; vr�1/ over the embedded half-disk ˛.D2

C/�M with the property
that vi is orthogonal to ˛.D2

C/ and orthogonal to g.Q/ over the intersection
˛.D2

C/\g.Q/ for i D 1; : : : ; r � 1. Since the disk is contractible, there is no
obstruction to the existence of such a frame.

The orthogonal .r�1/–frame chosen in step (iv) induces an embedding

xf W .DrC1
C ; @0DrC1

C /! .M; @M /:

The orthogonality condition (condition (c)) in step (iii) of the above construction,
together with the orthogonality condition on the frame chosen in step (iv), implies that
xf .DrC1
C / is transverse to g.Q/. Furthermore, by choosing the vectors of the frame in

step (iv) to have sufficiently small magnitude, condition (b) from step (iii) implies that
f .@1DrC1/\ g.Int.Q//D fxg. We then set the map f W .Dr ; @Dr�1/! .M; @M /

equal to the embedding obtained by restricting xf to .@1DrC1; @0;1DrC1/. This
concludes the proof of the proposition.

A.4 Proof of Theorem A.1

Let f W .P; @P / ! .M; @M / and gW .Q; @Q/ ! .M; @M / be smooth embeddings
exactly as in the statement of Theorem A.1. Suppose that conditions (i), (ii) and (iii)
from the statement of Theorem A.1 are satisfied. We now have all of the necessary
tools available to prove the theorem.

Proof of Theorem A.1 By Proposition A.13 we may assume that f .@P /\g.@Q/D∅.
Consider the element ˛t .f;g;M / 2 �fr

t .pt/, where as before t D pC q �m. Let
'W .Dp; @Dp/! .Dm�q; @Dm�q/ be a map such that Pt .Œ'�/ D �˛t .f;g;M / as
elements of �fr

t .pt/. By Proposition A.15 there exists a null-homotopic embedding
�W .Dm�q; @Dm�q/! .M; @M / such that �.Dm�q/ intersects the interior of g.Q/

at exactly one point. Furthermore, by general position we may assume that �.@Dm�q/

is disjoint from g.@Q/. It follows from Lemma A.14 that

(31) ˛t .� ı';g;M /D Pt .Œ'�/ �˛0.�;g;M /D�˛t .f;g;M /:

Now, the map � ı ' has image disjoint from g.@Q/ � @M. Let M 0 denote the
complement M n g.@Q/. By the connectivity and dimensional conditions from the
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statement of Theorem A.1, we may apply Lemma 4.1 (see also [10, Theorem 1]) to
obtain a homotopy

(32) y'sW .D
p; @Dp/! .M 0; @M 0/; s 2 Œ0; 1�;

with y'0 D � ı' and such that y'1 is an embedding. Let us denote

y' WD iM 0 ı y'1W .D
p; @Dp/! .M; @M /;

where iM 0 W .M
0; @M 0/ ,! .M; @M / is the inclusion. Since the homotopy in (32) was

through maps with image in .M 0; @M 0/, it follows that ˛t .y';g;M /D˛t .�ı';g;M /,
and then by the above calculation (31) we have ˛t .y';g;M /D�˛t .f;g;M /. Now,
let Of W .P; @P / ! .M; @M / be the embedding obtained by forming the boundary
connected sum of the submanifolds

.f .P /; f .@P //; .y'.Dp/; y'.@Dp//� .M; @M /

along an arc in @M that is disjoint from g.@Q/. Clearly this embedding is homotopic
(as a map) to f . We emphasize that the homotopy taking Of to f will not be constant
on the boundary of P. We then have

˛t . Of ;g;M /D ˛t .f;g;M /C˛t .y';g;M /D ˛t .f;g;M /�˛t .f;g;M /D 0:

By Theorem A.6 there is a diffeotopy (relative the boundary of M ) that pushes Of .P /
off of g.Q/. Now since f is homotopic to Of , it follows that f is homotopic (through
maps sending @P to @M ) to an embedding with image disjoint from g.@Q/. We then
apply [7, Theorem 1.1] to conclude that the embedding f is actually isotopic (rather
than just homotopic) to such an embedding with image disjoint from g.Q/. Then
Theorem A.1 follows by isotopy extension.
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