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The action of matrix groups on aspherical manifolds

SHENGKUI YE

Let SLn.Z/ for n � 3 be the special linear group and M r be a closed aspheri-
cal manifold. It is proved that when r < n , a group action of SLn.Z/ on M r

by homeomorphisms is trivial if and only if the induced group homomorphism
SLn.Z/! Out.�1.M // is trivial. For (almost) flat manifolds, we prove a similar
result in terms of holonomy groups. In particular, when �1.M / is nilpotent, the
group SLn.Z/ cannot act nontrivially on M when r < n . This confirms a conjecture
related to Zimmer’s program for these manifolds.

57S25, 57S20; 57S17

1 Introduction

Let SLn.Z/ be the special linear group over the integers. The linear transformations
of SLn.Z/ on the Euclidean space Rn induces a natural group action on the torus
T n D Rn=Zn . Note that T n is an aspherical manifold, ie the universal cover is
contractible. It is believed that this action is minimal in the following sense:

Conjecture 1.1 Any group action of SLn.Z/ with n � 3 on a closed aspherical
r –manifold M r by homeomorphisms factors through a finite group if r < n.

This conjecture is related to Zimmer’s program concerning group action of lattices
in Lie groups on manifolds (see the survey articles Fisher [15], Weinberger [29] and
Zimmer and Morris [33] for more details). A relevant conjecture is proposed by Farb
and Shalen [14]: any smooth action of a finite-index subgroup of SLn.Z/ n � 3 on
a compact r –manifold factors through a finite group action if r < n� 1. Compared
with Farb and Shalen’s conjecture, Conjecture 1.1 considers topological actions and the
condition is generalized to r < n, but only for aspherical manifolds. When M D S1 ,
Conjecture 1.1 is already proved by Witte [30]. Weinberger [28] confirms the conjecture
when M is a torus. For C 1Cˇ –group actions of a finite-index subgroup in SLn.Z/, one
of the results proved by Brown, Rodriguez Hertz and Wang [8] confirms Conjecture 1.1
for surfaces when r < n� 1. For C 2 –group actions of cocompact lattices, Brown,

Published: 28 August 2018 DOI: 10.2140/agt.2018.18.2875

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57S25, 57S20, 57S17
http://dx.doi.org/10.2140/agt.2018.18.2875


2876 Shengkui Ye

Fisher and Hurtado [7] confirm Conjecture 1.1 when r < n� 1. Note that the C 0 –
actions could be very different from smooth actions. It seems very few other cases
have been confirmed (for group actions preserving additional structures, many results
have been obtained; see [15; 33]).

For a group G, denote by Out.G/ the outer automorphism group. Our first result is
the following:

Theorem 1.2 Let M r be an aspherical manifold. A group action of SLn.Z/ with
n� 3 on M r with r � n� 1 by homeomorphisms is trivial if and only if the induced
group homomorphism SLn.Z/! Out.�1.M // is trivial. In particular, Conjecture 1.1
holds if the set of group homomorphisms is

Hom
�
SLn.Z/;Out.�1.M //

�
D 1:

An obvious application is the following:

Corollary 1.3 Any group action of SLn.Z/ with n � 3 on an aspherical manifold
M k with k � n� 1 by homotopic-to-the-identity homeomorphisms is trivial.

For aspherical manifolds with finitely generated nilpotent fundamental groups (eg
Nil-manifolds), we confirm Conjecture 1.1 as follows:

Theorem 1.4 Let M r be an aspherical manifold. If the fundamental group �1.M /

is finitely generated nilpotent, any group action of SLn.Z/ with n � 3 on M r with
r � n� 1 by homeomorphisms is trivial.

We now study group actions on (almost) flat manifolds. Recall that a closed manifold M

is almost flat if for any " > 0 there is a Riemannian metric g" on M such that
diam.M;g"/ < 1 and g" is "–flat.

Theorem 1.5 Let M r be a closed almost flat manifold with holonomy group ˆ. A
group action of SLn.Z/ with n � 3 on M r with r � n� 1 by homeomorphisms is
trivial if and only if the induced group homomorphism SLn.Z/! Out.ˆ/ is trivial. In
particular, Conjecture 1.1 holds if the set of group homomorphisms is

Hom.SLn.Z/;Out.ˆ//D 1:

Surprisingly, the proof of Theorem 1.5 will use knowledge in algebraic K–theory
(Steinberg groups Stn.Z/ and K2.Z/, especially). The usual Zimmer’s program is
stated for any lattices in high-rank semisimple Lie groups. However, Theorems 1.2, 1.4
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and 1.5 cannot hold for general lattices. For example, the congruence subgroup �.n;p/,
which is defined as the kernel of SLn.Z/! SLn.Z=p/ for a prime p , has a nontrivial
finite cyclic quotient group (see [22, Theorem 1.1]). The group �.n;p/ could act
on S1 through the cyclic group by rotations.

In order to confirm Conjecture 1.1, it’s enough to show that every group homomorphism
from SLn.Z/ to the outer automorphism group of the fundamental (or holonomy) group
is trivial, by Theorems 1.2 and 1.5. Actually, Conjecture 1.1 could be confirmed in
this way for many other manifolds in addition to manifolds with nilpotent fundamental
groups proved in Theorem 1.4. These include the following:

� Flat manifolds with abelian holonomy group (see Corollary 6.4 for a more
general result).

� Almost flat manifolds with dihedral, symmetric or alternating holonomy group
(see Lemma 6.5).

� Flat manifolds of dimension r � 5 (see Corollary 6.6).

The article is organized as follows. In Section 2, we study the group action of a
Steinberg group on spheres and acyclic manifolds. In Section 3, we give a proof of
Theorem 1.2. Theorem 1.4 is proved in Section 4. In Section 5, we study group
actions on flat manifolds and Theorem 1.5 is proved. In the last section, we give some
applications to flat manifolds with special holonomy groups.

2 The action of Steinberg groups on spheres and acyclic
manifolds

2.1 Steinberg group

For a unitary associative ring R, the Steinberg group Stn.R/ with n� 3 is generated
by xij .r/ for 1� i; j � n and r 2R subject to the relations

(i) xij .r1/ �xij .r2/D xij .r1C r2/;

(ii) Œxij .r1/;xjk.r2/�D xik.r1r2/;

(iii) Œxij .r1/;xpq.r2/�D 1 if i ¤ p and j ¤ q .

Let RDZ, the integers. There is a natural group homomorphism f W Stn.Z/!SLn.Z/

mapping xij .r/ to the matrix eij .r/, which is a matrix with ones along the diagonal,
r in the .i; j /th position and zeros elsewhere. Let !ij .�1/D xij .�1/xji.1/xij .�1/,
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hij D !ij .�1/!ij .�1/ and a D h2
12

. We call a a Steinberg symbol, denoted by
f�1;�1g usually.

Lemma 2.1 (Milnor [24, Theorem 10.1]) For n� 3, the group Stn.Z/ is a central
extension

1!K! Stn.Z/! SLn.Z/! 1;

where K is the cyclic group of order 2 generated by aD .x12.�1/x21.1/x12.�1//4 .

Lemma 2.2 For distinct integers i , j , s and t , we have the following:

(i) Œhij ; hst �D 1.

(ii) Œhij ; his �D a.

(iii) The subgroup hhij ; hisi is isomorphic to the quaternion group Q8 .

Proof (i) follows from the third Steinberg relation easily. (ii) is Milnor [24, Lemma 9.7,
page 74]. A direct computation shows that hij , his and hij his are all elements of
order 4. Considering (ii), hhij ; hisi is isomorphic to the quaternion group.

Denote by qW SLn.Z/ ! SLn.Z=n/ or Stn.Z/ ! Stn.Z=n/ the group homomor-
phism induced by the ring homomorphism Z ! Z=n for some integer n. Let
SLn.Z; nZ/Dker.SLn.Z/!SLn.Z=n// and Stn.Z; nZ/Dker.Stn.Z/!Stn.Z=n//

be the congruence subgroups.

Lemma 2.3 Let N be a normal subgroup of Stn.Z/. If f .N / contains SLn.Z; 2Z/,
then N contains the element a. In particular, the normal subgroup generated by hij

with n � 3 or hij hst with n � 5 contains the element a for distinct integers i , j , s

and t .

Proof Recall that eij .r/ is a matrix with ones along the diagonal, r in the .i; j /th

position and zeros elsewhere. Since f .N / contains SLn.Z; 2Z/, we have xpq.2/ or
a � xpq.2/ 2 N for any integers p ¤ q 2 Œ1; n� (the interval). Note that Stn.Z; 2Z/

is normally generated by xpq.2/ (see Magurn [23, 13.18, page 448]). Therefore,
Stn.Z; 2Z/ or a � Stn.Z; 2Z/ � N. However, it is known that the Steinberg symbol
q.a/ 2 Stn.Z=2/ is trivial (see Milnor [24, Corollary 9.9, page 75]). Thus, a 2

a�Stn.Z; 2Z/DStn.Z; 2Z/�N . The image f .hij /D diag.1; : : : ;�1; : : : ;�1; : : : ; 1/

(or f .hij hst /) normally generates the congruence subgroup SLn.Z; 2Z/ (see Ye [32]).
The proof is finished.
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2.2 Homology manifolds

The generalized manifolds studied in this section are following Bredon’s book [5].
Let LD Z or Z=p . All homology groups in this section are Borel–Moore homology
with compact supports and coefficients in a sheaf A of modules over a principal ideal
domain L. The homology groups of X are denoted by H c

�.X IA/ and the Alexander–
Spanier cohomology groups (with coefficients in L and compact supports) are denoted
by H�c .X IL/. We define dimL X Dminfn jH nC1

c .U IL/D 0 for all open U �X g.
If LD Z=p , we write dimp X for dimL X. For an integer k � 0, let Ok denote the
sheaf associated to the presheaf U 7!H c

k
.X;XnU IL/.

Definition 2.4 An n–dimensional homology manifold over L (denoted by n–hmL )
is a locally compact Hausdorff space X with dimL X <C1 and Ok.X IL/D 0 for
p ¤ n and On.X IL/ locally constant with stalks isomorphic to L. The sheaf On is
called the orientation sheaf.

There is a similar notion of cohomology manifold over L, denoted by n–cmL (see
[5, page 373]). For a prime p , denote by dimp X the cohomological dimension of X.

Definition 2.5 If X is a compact m–hmL and H c
�.X IL/ŠH c

�.S
mIL/, then X is

called a generalized m–sphere over L. Similarly, if H c
0
.X IL/DL and H c

k
.X IL/D0

for k > 0, then X is said to be L–acyclic.

We will need the following lemmas. The first is a combination of [5, Corollaries 19.8
and 19.9, page 144] (see also [6, Theorem 4.5]).

Lemma 2.6 Let p be a prime and X be a locally compact Hausdorff space of finite
dimension over Zp . Suppose that Zp acts on X with fixed-point set F.

(i) If H c
�.X IZp/ Š H c

�.S
mIZp/, then H c

�.F IZp/ Š H c
�.S

r IZp/ for some r

with �1� r �m. If p is odd, then r �m is even.

(ii) If X is Zp –acyclic, then F is Zp –acyclic (in particular, nonempty and con-
nected).

The following is a relation between dimensions of the fixed-point set and the whole
space (see Borel [3, Theorem 4.3, page 182]):

Lemma 2.7 Let G be an elementary p–group operating on a first-countable coho-
mology n–manifold X mod p . Let x 2X be a fixed point of G on X and let n.H /
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be the cohomology dimension mod p of the component of x in the fixed-point set of a
subgroup H of G. If r D n.G/, we have

n� r D
X
H

.n.H /� r/;

where H runs through the subgroups of G of index p .

The following lemma is proved by Bredon [4, Theorem 7.1]:

Lemma 2.8 Let G be a group of order 2 operating effectively on an n–cm over Z,
with nonempty fixed points. Let F0 be a connected component of the fixed-point
set of G and r D dim2 F0 . Then n� r is even (respectively odd) if and only if G

preserves (respectively reverses) the local orientation around some point of F0 .

2.3 Steinberg group acting on Rn and S n

Lemma 2.9 Let X be a generalized m–sphere over Z=2 (resp. a Z=2–acyclic
m–hmZ=2 ). Suppose that � is an involution of X and F is a closed � –invariant
submanifold. If F containing Fix.�/ is an .m�1/–sphere (resp. a Z=2–acyclic
.m�1/–hmZ=2 ), then XnF has two Z=2–acyclic components and � interchanges
them.

Proof The proof is exactly the same as that of Bridson and Vogtmann [6, Lemma 4.11],
where F D Fix.�/.

We now study the group action of Steinberg groups Stn.Z/ on spheres and acyclic
manifolds. Compared with the proof of actions of SLn.Z/, there are not enough
involutions in Stn.Z/. Note that the element hij 2 Stn.Z/ corresponding to the
involution diag.1; : : : ;�1; : : : ;�1; : : : ; 1/ 2 SLn.Z/ is of order 4. Moreover, hij

and his do not commute with each other. All these facts make the study of the actions
of Stn.Z/ difficult and the proof for the action of SLn.Z/ presented in [6] could not
be carried to study that of Stn.Z/ easily.

Theorem 2.10 We have the following:

(i) Any group action of Stn.Z/ with n � 4 on a generalized k –sphere M k over
Z=2 with k � n� 2 by homeomorphisms is trivial.

(ii) Any group action of Stn.Z/ with n� 4 on a Z=2–acyclic k–hmZ=2 M k with
k � n� 1 by homeomorphisms is trivial.

Algebraic & Geometric Topology, Volume 18 (2018)



The action of matrix groups on aspherical manifolds 2881

Proof Let aD x12.1/x21.�1/x12.1//
4 as in Lemma 2.1.

Case 1 If a acts trivially on M k , the group action of Stn.Z/ factors through an action
of SLn.Z/. However, it is proved by Bridson and Vogtmann [6] that the group action
of SLn.Z/ is trivial.

Case 2 Suppose now that a acts nontrivially, ie Fix.a/ ¤ ∅ and Fix.a/ ¤ M k .
Since Stn.Z/ with n � 3 is perfect, every element acts by an orientation-preserving
homeomorphism. Bredon’s result (see Lemma 2.8) shows that Fix.a/ is of even
dimension. If dim2 Fix.a/D k , then Fix.a/DM k by invariance of domain. This is a
contradiction to the fact that a acts nontrivially. Therefore,

dim2 Fix.a/� k � 2:

Note that h12h34 is of order 2 and A WD ha; h12h34i is isomorphic to .Z=2/2 . Write
r D dim2.Fix.A// and n.H / D dim2.Fix.H // for each nontrivial cyclic subgroup
H <A. By Borel’s formula (see Lemma 2.7),

(1) k � r D
X

n.H /� r;

where H ranges over the nontrivial subgroups of index 2. Since a is in the center
of Stn.Z/, there is a group action of SLn.Z/ on the acyclic Z=2–manifold or general-
ized sphere Fix.a/ induced by that of Stn.Z/. This group action is trivial by Bridson
and Vogtmann [6]. Thus,

n.hh12h34i/� r D dim2 Fix.a/:

Case 2.1 If n.hh12h34i/ D r , we have n.ha � h12h34i/ D k by (1). By invariance
of domain, a � h12h34 acts trivially on M k . Take ! D h12!12.�1/!34.�1/ and
C D ha; !i. Note that !2 D a � h12h34 and f .!/D f .a �!/ has the form0BB@

1

�1

�1

1

1CCA 2 SL4.Z/:

Therefore, C acts on M k as a group isomorphic to .Z=2/2 . If dim2 Fix.!/ D k

or dim2 Fix.a �!/ D k , ie ! or a �! acts trivially on M k , the normal subgroup in
Stn.Z/ generated by ! or a �! contains a by Lemma 2.3. This is a contradiction to
the fact that Fix.a/¤M k . Therefore, we may assume that dim2 Fix.!/� k � 2 and
dim2 Fix.a �!/ � k � 2, considering Lemma 2.8. According to Borel’s formula (1),
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we have k � 4 and n � 5. By invariance of domain, Fix.h12h34/ D M k . The
normal subgroup in Stn.Z/ generated by h12h34 contains a by Lemma 2.3. Thus,
Fix.a/DM k , which is impossible. Similarly, n.ha � h12h34i/¤ r .

Case 2.2 If n.hh12h34i/�r�2 and n.ha�h12h34i/�r�2 (noting that n.hh12h34i/�r

is even), then

(2) k � r D 2.n.hh12h34i/� r/� 4:

(Note that when n� 5, we have h15h12h34h�1
15
D a � h12h34 by Lemma 2.2 and thus

n.hh12h34i/D n.ha � h12h34i/.) When k D 4, we have r D 0 and n.hh12h34i/D 2.
Therefore, Fix.h12h34/ is S2 or R2 (see [5, V.16.32, page 388]). If Fix.h12h34/DR2 ,
the quaternion group hh12; h13i acts on Fix.h12h34/ with a global fixed point in Fix.a/.
Since any finite group of orientation-preserving homeomorphisms of the plane that fix
the origin is cyclic, hh12; h13i cannot act effectively. A nontrivial element in hh12; h13i

will normally generate a group containing a by Lemma 2.3, which is impossible.

If Fix.h12h34/DS2 , we have n� 6. Denote by BDha�h12h34; a�h34h56iŠ .Z=2/
2 .

Note that Fix.a/� Fix.B/. Write r 0D dim2.Fix.B// and n.H /D dim2.Fix.H // for
each nontrivial cyclic subgroup H < B . By Borel’s formula (see Lemma 2.7),

(3) k � r 0 D
X

n.H /� r 0;

where H ranges over the nontrivial subgroup in B of index 2. Since any two nontrivial
elements in B are conjugate (see [23, 12.20, page 418]), we get

(4) k � r 0 D 3.n.hh12h34i/� r 0/

and r 0 D 1. Therefore, Fix.a/ is a submanifold of Fix.B/ of codimension 1. By
Lemma 2.9, a permutes the two components of Fix.B/nFix.a/. However, h2

12
D a

and h12Fix.B/D Fix.B/. This is impossible.

Similar arguments using (2) and (4) prove the following. When k D 5, we have
r D 1; n.hh12h34i/D 3 and r 0 D 2. When k D 6, we have r D 2, n.hh12h34i/D 4

and r 0 D 3. When k D 7, we have r D 3; n.hh12h34i/D 5 and r 0 D 4. In all these
cases, Fix.a/ is still a submanifold in Fix.B/ of codimension 1. By Lemma 2.9, this
is impossible. When k D 8, we have either r D 4, n.hh12h34i/ D 6 and r 0 D 5 or
r D 0, n.hh12h34i/D 4 and r 0 D 2. The former is impossible for the same reason as
k D 7, while the latter is impossible for the same reason as k D 4.

When k � 9, we have n � 10. If k � r 0 � 6, then Stn�6.Z/ generated by all xij .r/

with 7 � i ¤ j � n acts on Fix.B/. By Smith theory (see Lemma 2.6), Fix.B/ is
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still a generalized sphere over Z=2 or a Z=2–acyclic hmZ=2 . An inductive argument
shows that Stn�6.Z/ acts trivially on Fix.B/. Therefore, Fix.B/D Fix.a/. However,
this is impossible considering formulas (2) and (4). If k � r 0 � 5, we have

3.n.hh12h34i/� r 0/� 5:

When n.hh12h34i/�r 0D 0, we have Fix.B/DM k : Then h12h34 acts trivially on M.
The normal subgroup generated by h12h13 contains a (see Lemma 2.3), which means
a acts trivially. This is a contradiction. When n.hh12h34i/�r 0D 1, we have k�r 0D 3,
k �n.hh12h34i/D 2 and k � r D 4. Therefore, Fix.a/ is a submanifold in Fix.B/ of
codimension 1, which is impossible as above by Lemma 2.9.

Case 3 Suppose Fix.a/D ∅. According to the Lefschetz fixed-point theorem, this
can only happen when M is a generalized sphere of odd dimension.

When k D 1, we have M D S1 (see [5, V.16.32, page 388]). The group hh12; h13i,
which is isomorphic to the quaternion group Q8 (see Lemma 2.2), acts freely on S1 .
However, this is impossible since any finite subgroup of HomeoC.S1/ is isomorphic
to a subgroup of SO.2IR/ (see Navas [25, Proposition 1.1.1]).

Assume kD3. Recall that A WDha; h12h34i is isomorphic to .Z=2/2 . By Smith theory,
.Z=2/2 cannot act freely and thus Fix.h12h34/ is not empty. Bredon’s result (see
Lemma 2.8) shows that Fix.h12h34/ is of even dimension. If dim2 Fix.h12h34/D 3,
then h12h34 acts trivially on M. The normal subgroup in Stn.Z/ generated by
h12h34 contains a, which is a contradiction to the fact that Fix.a/D ∅. Therefore,
Fix.h12h34/D S1 . Note that the quaternion group hh12; h13i commutes with h12h34 .
Since a acts freely on Fix.h12h34/, so does hh12; h13i, which is impossible as well.

When k D 5, take B D ha � h12h34; a � h34h56i Š .Z=2/2 . Since Fix.h12h34/ is
a generalized sphere over Z=2, ha; ah34h56i can not act freely on it. Therefore,
Fix.B/¤∅. By (4), we have

k � r 0 D 3.n.hah12h34i/� r 0/:

If n.hah12h34i/D r 0 , we have kD r 0 . Thus, ah12h34 acts trivially on M. The normal
subgroup in Stn.Z/ generated by ah12h34 contains a, a contradiction. Therefore,
r 0 D 2 and n.hah12h34i/� r 0 D 1. By Lemma 2.9, a permutes the two components
of Fix.ah12h34/nFix.B/; which is impossible by noting that h2

12
D a.

When k D 7, we may assume n.hah12h34i/ ¤ r 0 as in the proof of the case when
k D 5. Considering formula (2), we have either r 0 D 4 and n.hah12h34i/ D 5 or

Algebraic & Geometric Topology, Volume 18 (2018)



2884 Shengkui Ye

r 0 D 1 and n.hah12h34i/D 3. For the former, apply Lemma 2.9 to get a contradiction.
For the latter, the quaternion group hh12; h13i acts on Fix.B/D S1 freely, which is
impossible as in the case of k D 3.

Suppose that k � 9. If k � r 0 � 6, the subgroup Stn�6.Z/ generating by all xij .r/

with 7 � i ¤ j � n acts trivially on Fix.B/ by an inductive argument. This is a
contradiction to the fact that Fix.a/D∅. If k�r 0� 5, then n.hh12h34i/�r 0D 0 or 1.
If n.hh12h34i/D r 0 , then k D r 0 and thus Fix.B/DM k . Then h12h34 acts trivially
on M. The normal subgroup generated by h12h13 contains a (see Lemma 2.3),
which is a contradiction to the fact that Fix.a/ D ∅. If n.hh12h34i/ � r 0 D 1, the
element a permutes Fix.h12h34/nFix.B/ by Lemma 2.9. This is impossible by noting
that h2

12
D a. The whole proof is finished.

Corollary 2.11 Any group homomorphism f W Stn.Z/! GLk.Z/ with n � 3 and
k � n� 1 is trivial.

Proof When k D 1, GLk.Z/ is abelian. Since Stn.Z/ is perfect, f is trivial. When
k D 2, f has its image in SL2.Z/. Note that the projective linear group factors as
PSL2.Z/DZ=2�Z=3, a free product. Thus, SL2.Z/ does not have nontrivial perfect
subgroup (see [2, 5.8, page 48]). This means that f is trivial. The group GLk.Z/

acts naturally on the Euclidean space Rk by linear transformations. When k � 3,
Theorem 2.10 implies that the image Imf acts trivially on Rk . Therefore, Imf D1.

3 Proof of Theorem 1.2

We need the following lemma:

Lemma 3.1 Denote by Q a quotient group of SLn.Z/. Let � be a torsion-free
abelian group. For any n� 3, the second cohomology group is

H 2.QI�/D 0:

Proof By van der Kallen [19], the second homology group is H2.SLn.Z/IZ/DZ=2

when n� 5 and

H2.SL3.Z/IZ/DH2.SL4.Z/IZ/D Z=2˚Z=2:

Since SLn.Z/ is perfect, H1.SLn.Z/IZ/D0 for any n�3. By the universal coefficient
theorem, H 2.SLn.Z/I�/D 0 for any n� 3. Dennis and Stein proved that

H2.SLn.Z=k/IZ/D Z=2 for k � 0 mod 4;
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while H2.SLn.Z=k/IZ/D 0 otherwise (see [13, Corollary 10.2]). By the universal
coefficient theorem again, H 2.SLn.Z=k/I�/D 0 for any k . Let f W SLn.Z/!Q be
a surjective homomorphism. By Margulis’s normal subgroup theorem, every quotient
Q is either PSLn.Z/ or a finite group. If kerf is trivial, Q D SLn.Z/ and thus
H 2.QI�/D 0. If kerf is nontrivial, the congruence subgroup property [1] implies
that Q is a quotient of SLn.Z=k/ by a central subgroup K for some nonzero integer k .
From the Serre spectral sequence

H p.QIH q.KI�//)H pCq.SLnC1.Z=k/I�/;

we have the exact sequence

0!H 1.QI�/!H 1.SLn.Z=k/I�/!H 0.QIH 1.KI�//

!H 2.QI�/!H 2.SLn.Z=k/I�/:

This implies H 2.QI�/D 0.

Proof of Theorem 1.2 If SLn.Z/ acts trivially on M r , it is obvious that the induced
homomorphism SLn.Z/! Out.�1.M // is trivial. It is enough to prove the other
direction. Denote by Homeo.M r / the group of homeomorphisms of M r . Suppose
that f W SLn.Z/ ! Homeo.M k/ is the group homomorphism. We have a group
extension

(�) 1! �1.M /!G0! Imf ! 1;

where �M is the universal cover of M and G0 is a subgroup of Homeo. �M /. Note that
there is a one-to-one correspondence between the equivalence classes of extensions and
the second cohomology group H 2.Imf IC.�//, where C.�/ is the center of �1.M /

(see [10, Theorem 6.6, page 105]). By the assumption that the group homomorphism
SLn.Z/! Out.�1.M // is trivial, Imf acts trivially on the center C.�/. Since M

is aspherical, � D �1.M / is torsion-free and the center C.�/ is torsion-free as well.
By Lemma 3.1, H 2.Imf IC.�//D 0, which implies that the exact sequence (�) is
split. Therefore, Imf is isomorphic to a subgroup of G0 , which implies that the
group SLn.Z/ and thus Stn.Z/ could act on the acyclic manifold �M through Imf .
However, Bridson and Vogtmann [6] prove that any action SLn.Z/ on �M is trivial.
(for self-containedness, we may apply Theorem 2.10 to get that any group action of
Stn.Z/ with n� 4 on the acyclic manifold �M is trivial. When nD 3, for each integer
2 � i � n, denote by Ai the diagonal matrix diag.�1; : : : ;�1; : : : ; 1/, where the
second �1 is the i th entry. The subgroup G WD hA2;A3i < SL3.Z/ is isomorphic
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to .Z=2/2 . By Smith theory (see Lemma 2.6), the group action of G on �M has a
global fixed point. The Borel formula (see Lemma 2.7) implies that the action of G

on �M is trivial. Therefore, the group action of SL3.Z/ on �M factors through the
projective linear group PSL3.Z=2/. Using Smith theory and the Borel formula once
again for the subgroup .Z=2/2Šhe12.1/; e13.1/i< PSL3.Z=2/, we see that the group
action of PSL3.Z=2/ and thus SL3.Z/ on �M is trivial.) This implies Imf is trivial,
ie the group action of SLn.Z/ on M is trivial.

4 Aspherical manifolds with nilpotent fundamental groups

Let G be a group. Denote by Z1 DZ.G/ the center. Inductively, define ZiC1.G/D

p�1
i Z.G=Zi�1.G//, where pi W G!G=Zi.G/ is the quotient group homomorphism.

We have the upper central sequence

1�Z1 �Z2 � � � � �Zi � � � � :

If Zi DG for some i , we call G a nilpotent group. For two groups G and H, denote
by Hom.G;H / the set of group homomorphisms from G to H.

Lemma 4.1 Let
1!N ! �

q
�!Q! 1

be a central extension, ie an exact sequence with N < Z.�/. Suppose that G is a
group with the second cohomology group H 2.GIN /D 0, where G acts on N trivially.
Then

Hom.G; �/ q�
�! Hom.G;Q/

is surjective.

Proof This is an easy exercise in homological algebra. For completeness, we give a
proof here. The central extension gives a principal fibration BN ! B� ! BQ and
thus a fibration

B�! BQ h
�!K.N; 2/;

where B.�/ is a classifying space and K.N; 2/ is a simply connected CW complex
with the second homotopy group N and all other homotopy groups trivial (see [2, 8.2,
page 64]). Let ˛W G!Q be any group homomorphism. The composite

BG B˛
�! BQ h

�!K.N; 2/
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is null-homotopic, by the assumption that H 2.GIN /D 0. Therefore, ˛ could be lifted
to a group homomorphism ˛0W G! � .

Lemma 4.2 Let � be a group with center Z D Z.�/. Suppose that one of the
following holds:

(i) G is a perfect group with H2.GIZ/ finite, and � and �=Z are torsion-free; or

(ii) G is a perfect group with H2.GIZ/D 0.

If the sets of group homomorphisms are

Hom.G;Aut.Z//D 1 and Hom.G;Out.�=Z//D 1;

then
Hom.G;Out.�//D 1:

(Here 1 denotes the trivial group homomorphism.)

Proof Considering the quotient group homomorphism �! �=Z , we have the com-
mutative diagram

1 // Inn.�/

��

// Aut.�/

f

��

// Out.�/

g

��

// 1

1 // Inn.�=Z/ // Aut.�=Z/ // Out.�=Z/ // 1

Note that Inn.�/D �=Z . By the snake lemma for groups (see [23, 11.8, page 363]),
the following sequence is exact:

(5) 1!Z.�=Z/! kerf ! ker g! 1:

By diagram chase, the action of ker g on the center Z.�=Z/ is by inner automorphisms
of �=Z and thus trivial. This proves that the previous exact sequence (5) is a central
extension. Since

Hom.G;Out.�=Z//D 1

by assumption, it suffices to prove Hom.G; ker g/ D 1. Let ˛W G ! ker g be any
group homomorphism. In case (i), when �=Z is torsion-free, the center Z.G=Z/ is
torsion-free. Since G is perfect and H2.GIZ/ is finite, we have H 2.GIZ.�=Z//D 0

by the universal coefficient theorem. In case (ii), we also have H 2.GIZ.�=Z//D 0

using the universal coefficient theorem. Lemma 4.1 implies that ˛ could be lifted to a
group homomorphism ˛0W G! kerf .
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Let F W Aut.�/! Aut.Z/ be the restriction of automorphisms of � to those of the
center Z . Since the image F.kerf / is a subgroup of Aut.Z/ and

Hom.G;Aut.Z//D 1

by assumption, the map ˛0 has its image in ker F \ kerf . It is well known that
ker F \ kerf is isomorphic to H 1.�=ZIZ/ (see [17, Proposition 5, page 45]).
Since G is perfect, ˛0 has a trivial image. This proves that ˛ is trivial and thus
Hom.G;Out.�//D 1.

Recall that a group G has cohomological dimension k (denoted by cd.G/D k ) if the
cohomological groups satisfy H i.GIA/D 0 for any i > k and ZG–module A, but
H n.GIM / ¤ 0 for some ZG–module M. The Hirsch number or Hirsch length of
a polycyclic group G is the number of infinite factors in its subnormal series. The
following lemma is well known (see Gruenberg [17, page 152]).

Lemma 4.3 If G is a finitely generated, torsion-free nilpotent group, then cd.G/D
h.G/, where cd.G/ is the cohomological dimension and h.G/ is the Hirsch number.

Lemma 4.4 Let 1! Z ! G !Q! be a central extension with Z D Z.G/ the
center and G a torsion-free nilpotent group. Then Q is torsion-free.

Proof It’s known that all the quotients Zi=Zi�1 are torsion-free. Suppose that the
nilpotency class of G is n, ie Zn DG. Then G=Zn�1 is (torsion-free) abelian and we
have an exact sequence

1!Zn�1=Zn�2!G=Zn�2!G=Zn�1! 1:

Since both G=Zn�1 and Zn�1=Zn�2 are finitely generated (note that every subgroup
of a finitely generated nilpotent group is finitely generated) and of finite cohomology
dimension, G=Zn�2 is of finite cohomological dimension and thus torsion-free. Induc-
tively, we prove the lemma.

Lemma 4.5 Let G be a finitely generated torsion-free nilpotent group of cohomologi-
cal dimension k . When k < n, the set of group homomorphisms is

Hom.Stn.Z/;Out.G//D 1;

and thus Hom.SLn.Z/;Out.G//D 1.
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Proof Let Z be the center of G. Note that cd.G/D h.G/ and cd.G=Z/D h.G=Z/

and h.G=Z/ � h.G/� 1. When G=Z is abelian, h.G=Z/ � k and Out.G=Z/ D
GLh.G=Z/.Z/. Noting that

Hom.Stn.Z/;GLk.Z//D 1

for any k � n� 1 by Corollary 2.11, we have Hom.Stn.Z/;Out.G=Z// D 1. Simi-
larly, we get Hom.SLn.Z/;Aut.Z//D 1 by noting that Z is torsion-free abelian and
h.Z/� k . Using Lemma 4.2 repeatedly, we have Hom.Stn.Z/;Out.G//D 1.

Let M be an aspherical manifold with a finitely generated nilpotent fundamental
group �1.M /. Any group action of SLn.Z/ with n� 3 on M k with k < n is trivial,
as follows:

Proof of Theorem 1.4 Since M is aspherical, M is a classifying space for �1.M /

and thus the cohomological dimension cd.�1.M // � r . By Lemma 4.5, any group
homomorphism SLn.Z/! Out.�1.M // is trivial. By Theorem 1.2, any group action
of SLn.Z/ on M is trivial.

5 Flat and almost flat manifolds

A closed manifold M is almost flat if for any " > 0 there is a Riemannian metric g"

on M such that diam.M;g"/ < 1 and g" is "–flat. Let G be a simply connected
nilpotent Lie group. Choose a maximal compact subgroup C of Aut.G/. If � is a
torsion-free uniform discrete subgroup of the semidirect product G ÌC, the orbit space
M D �nG is called an infra-nilmanifold and � is called a generalized Bieberbach
group. The group F WD�=.�\G/ is called the holonomy group of M. When GDRn ,
the abelian Lie group, M is called a flat manifold. By Gromov and Ruh [16; 26],
every almost flat is diffeomorphic to an infra-nilmanifold. Note that N WD � \G is
the unique maximal nilpotent normal subgroup of � .

The automorphism of � is studied by Igodt and Malfait [18], generalizing the corre-
sponding result for flat manifolds obtained by Charlap and Vasquez [11]. Let’s recall the
relevant results as follows. Let  W F !Out.N / be an injective group homomorphism
and

1!N ! �! F ! 1

be a group extension compatible with  . The extension determines a cohomology
class a 2 H 2.F IN / (the set of 2–cohomology classes compatible with  ). Let
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pW Aut.N /!Out.N / be the natural quotient map and M D p�1.NOut.N /.F //, the
preimage of the normalizer of  .F / in Out.N /. Denote by M ;a the stabilizer of a

under the action of M on H 2.F IN / by conjugations. Let AW Aut.�/! Aut.N /

be the group homomorphisms of restrictions. For an element n 2 N, write �.n/ 2
Aut.N / for the inner automorphism determined by n, ie �.n/.x/D nxn�1 . Denote
by �WM ! Aut.F / the group homomorphism given by �.v/D  ı�.p.v// ı �1

(see [18, Lemma 3.3]).

We will need the following result (see [18, Theorem 4.6, Theorem 4.8 and its proof]):

Lemma 5.1 The following sequences are exact:

1!Z1.F IZ.N //! Aut.�/ A
�!M ;a! 1

and
1!H 1.F IZ.N //! Out.�/ A

�!Q! 1:

The quotient Q equals .M ;a=Inn.N //=F and fits into an exact sequence

(6) 1!Q2 D
�
.ker.�/\M ;a/=Inn.N /

�
=Z.F /

!Q!Q1 D Im.�jM ;a
/=Inn.F /! 1;

where .ker.�/\M ;a/=Inn.N / is contained in the centralizer COut.N /.F /.

Proof of Theorem 1.5 If SLn.Z/ acts trivially on M r , it is obvious that the induced
homomorphism SLn.Z/ ! Out.F / is trivial. In order to prove the converse, it’s
enough to prove SLn.Z/!Out.�/ is trivial for a given group action of SLn.Z/ on M,
considering Theorem 1.2. We will use the exact sequence (6) in Lemma 5.1. Note
that Q1 is a subgroup of Out.F /. By the assumption that the group homomorphism
SLn.Z/! Out.F / is trivial, the composite

SLn.Z/! Out.�/!Q!Q1

has to be trivial. Therefore, the map SLn.Z/! Out.�/! Q has its image in Q2 .
Denote by KD .ker.�/\M ;a/=Inn.N / and ZDZ.F / to fit into an exact sequence

(7) 1!Z!K!Q2! 1:

Since K is a subgroup of COut.N /.F / by Lemma 5.1, the center Z.F / lies in the
center of K . Therefore, the exact sequence (7) is a central extension. Let Stn.Z/ be
the Steinberg group and denote the composite by

˛W Stn.Z/! SLn.Z/! Out.�/!Q2:
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Since H2.Stn.Z/IZ/D 0, we have H 2.Stn.Z/IZ/D 0 by the universal coefficient
theorem. Therefore, ˛ could be lifted to be a group homomorphism ˛0W Stn.Z/!K

by Lemma 4.1. Note that K is a subgroup of Out.N / and the cohomological dimension
of N is at most r . By Lemma 4.5, ˛0 is trivial and thus ˛ is trivial. This implies
the group homomorphism SLn.Z/! Out.�/ has its image in H 1.F IZ.N //. Since
H 1.F IZ.N // is abelian and SLn.Z/ is perfect, the map SLn.Z/! Out.�/ has to
be trivial. The proof is finished.

Remark 5.2 In the proof of Theorem 1.5, we use an essential property of the Steinberg
group that H 2.Stn.Z/IA/D 0 for any abelian group A. This does not hold for SLn.Z/

for n� 3 since H2.SLn.Z/IZ/D Z=2. If the abelian group A is torsion-free (as in
the proofs of Theorems 1.2 and 1.4), we still have H 2.SLn.Z/IA/D 0 and it is thus
not essential to use Stn.Z/.

6 Examples

In this section, we give further applications of Theorems 1.2 and 1.5.

The proof of the following lemma is similar to that of the corresponding result
for SLn.Z/, proved by Kielak [20, Theorem 2.27].

Lemma 6.1 Let p be a prime. Then Hom.Stn.Z/;GLk.Z=p// D 1, ie any group
homomorphism gW Stn.Z/! GLk.Z=p/ is trivial, for k < n� 1.

Proof Let N D ker g . Since the image of N in SLn.Z/ is of finite index, the
map g factors through g0W Stn.Z=N /! GLk.Z=p/ for some integer N. Note that
Stn.R1 �R2/D Stn.R1/�Stn.R2/ for rings R1 and R2 . Without loss of generality,
we assume that N is a power of a prime number. Let Z be the center of Stn.Z=N /.
Suppose that GLk.Z=p/ acts on .Z=p/k naturally. We could assume that the action of
Im g0 on .Z=p/k is irreducible. Note that .Z=p/k is the intersection of eigenspaces
of g0.v/ for v 2 Z (if necessary, we may consider the algebraic closure of Z=p ).
After change of basis in .Z=p/k , we get that g0.N / lies in the center of GLk.Z=p/.
Therefore, g0 induces a map g00W PSLn.Z=N /! PGLk.Z=p/. However, it’s known
that g00 has to be trivial by Landazuri and Seitz [21].

Let A be a finite abelian group. For a prime p , define the p–rank rankp.A/ as the
dimension of A

N
Z=p Z=p , as a vector space over Z=p .
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Lemma 6.2 Let A be a finite abelian group with rankp.A/ < n�1 for every prime p .
Then every group homomorphism Stn.Z/! Aut.A/ is trivial for n� 3.

Proof Since a group homomorphism preserves p–Sylow subgroups of A, it’s enough
to prove the theorem for a p–group A. If A is an elementary p–group, Aut.A/D
GLk.Z=p/, with k D rankp.A/. Thus Hom.Stn.Z/;Aut.A// is trivial by Lemma 6.1.
If A is not elementary, the subgroup A1 consisting of elements of order p is a
characteristic subgroup of A. Inductively, we assume that Hom.Stn.Z/;Aut.A=A1//

and Hom.Stn.Z/;Aut.A1// are both trivial. Let

B D ff 2 Aut.A/ W f jA1
D idA1

g:

The group ker.Aut.A/ ! Aut.A=A1// \ B D H 1.A=A1IA1/ is abelian (see [17,
Proposition 5, page 45]). Since Stn.Z/ for n� 3 is perfect, Hom.Stn.Z/;Aut.A// is
trivial.

Lemma 6.3 Let � be a finite nilpotent group with the upper central series 1DZ0 <

Z1< � � �<Zk D� . Suppose that rankp.Zi=Zi�1/ < n�1 for each prime p and each
i D 1; : : : ; k . Then the set of group homomorphisms is Hom.Stn.Z/;Out.�//D 1.

Proof When k D 1, this is proved in Lemma 6.2. Considering the central extension

1!Zi=Zi�1! �=Zi�1! �=Zi! 1

the statement could be proved inductively using Lemmas 6.2 and 4.2.

Corollary 6.4 Let M r be a closed almost flat manifold with the holonomy group ˆ
nilpotent satisfying the condition in Lemma 6.3. Then Conjecture 1.1 holds for M. In
particular, when M is a closed flat manifold with abelian holonomy group, Conjecture
1.1 holds.

Proof By Lemma 6.3, Hom.Stn.Z/;Out.ˆ//D 1 and so Hom.SLn.Z/;Out.ˆ//D 1.
Theorem 1.5 implies that Conjecture 1.1 is true. When M is flat, ˆ is a subgroup
of GLr .Z/. If ˆ is abelian, elements in ˆ could be simultaneously diagonalizable
in GLr .C/. Therefore, rankp.ˆ/� r � 1< n� 1 for each prime p .

Lemma 6.5 Let ˆ be a dihedral group D2k , symmetric group Sk or alternating
group Ak . Then Hom.SLn.Z/;Out.ˆ//D 1 for n� 3.
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Proof It’s well known that Aut.D2k/DZ=k Ì Aut.Z=k/, which is a solvable group.
Therefore, Out.D2k/ is solvable. When ˆ is Sk or Ak , we have that Out.ˆ/ is
abelian. However, SLn.Z/ is perfect and thus Hom.SLn.Z/;Out.ˆ//D 1.

For flat manifolds of low dimensions, we obtain the following:

Corollary 6.6 Conjecture 1.1 holds for closed flat manifolds M r of dimension r � 5.

Proof The proof depends on the classification of low-dimensional holonomy groups ˆ.
When r � 3, ˆD f1g, Z=2, Z=3, Z=4, Z=6 or Z=2�Z=2 (see [31, Corollary 3.5.6,
page 118]). They are all abelian. By Corollary 6.4, Conjecture 1.1 is true. When r D 4,
the nonabelian ˆ is D6 , D8 , D12 or A4 (see [9]). By Lemma 6.5 and Theorem 1.5,
Conjecture 1.1 is true. When r D 5, the nonabelian ˆ is D6 , D8 , D12 , D8 �Z=2,
D6�Z=3, D12�Z=2, A4 , A4�Z=2, A4�Z=2�Z=2, S4 or .Z=2�Z=2/Ì Z=4

(see [27, Theorem 1] or [12, Theorem 4.2]). By Lemma 6.5, it’s enough to consider
the ˆ with two factors. By Lemmas 6.3 and 4.2, Hom.SLn.Z/;Out.ˆ//D 1 and thus
Conjecture 1.1 holds by Theorem 1.5.
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