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Encoding equivariant commutativity via operads

JAVIER J GUTIÉRREZ

DAVID WHITE

We prove a conjecture of Blumberg and Hill regarding the existence of N1–operads
associated to given sequences F D .Fn/n2N of families of subgroups of G �†n .
For every such sequence, we construct a model structure on the category of G –
operads, and we use these model structures to define EF

1–operads, generalizing
the notion of an N1–operad, and to prove the Blumberg–Hill conjecture. We then
explore questions of admissibility, rectification, and preservation under left Bousfield
localization for these EF

1–operads, obtaining some new results as well for N1–
operads.
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1 Introduction

The work of Hill, Hopkins, and Ravenel on the Kervaire invariant one problem in [14]
conclusively demonstrates the value of equivariant spectra to modern stable homotopy
theory, and in particular of equivariant commutative ring spectra. The computations
used in [14] rely on the slice spectral sequence and the existence of multiplicative
norm functors on the category of equivariant commutative ring spectra. For a compact
Lie group G , a genuinely commutative ring G–spectrum has multiplicative norm
functors parametrized by closed subgroups H < G , by natural numbers n, and by
homomorphisms �W H !†n to the symmetric group on n letters.

Blumberg and Hill [5] introduced N1–operads to encode equivariant algebraic struc-
ture, including multiplicative norm maps. These operads interpolate between the
E1–operad in spaces (which encodes no multiplicative norms) and E1–G –operads
(which encode all possible norms). An N1–operad is a G –operad P such that P .0/

is G –contractible, the action of †n on P .n/ is free, and P .n/ is the universal space
for a family Nn.P / of subgroups of G �†n containing all subgroups of the form
H � 1. The condition that †n acts freely on P .n/ implies that � \ .1�†n/Š 1� 1

for every � 2Nn.P /.
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Blumberg and Hill give several examples of N1–operads, but do not prove that for
every sequence N D .Nn/n2N of families of subgroups there is an associated N1–
operad. Indeed, this is not true in general, because the operad composition maps
place certain restrictions on the families. Blumberg and Hill conjectured that these
restrictions are the only obstacle to the existence of an N1–operad associated to a
given sequence N . The main result of this paper is a proof of this conjecture (see
Section 4) by identifying the precise relationships between the Nn in order for an
N1–operad P , with P .n/ a universal space for the family Nn , to exist. In a 2017
preprint [30], Rubin also verifies this conjecture using different methods (related to
indexing systems). Bonventre and Pereira [6] have an alternative approach, based on
equivariant trees.

After a review of model categories, operads, and equivariant operads in Section 2, we
develop F–fixed-point model structures on the category of G–operads in Section 3,
and then we realize each operad EF

1 as a cofibrant replacement for the commutative
operad Com in the F–fixed-point model structure on G–operads. In Section 4, we
introduce the notion of a realizable sequence F as a sequence satisfying a condition
relating the families Fn for different n. We then resolve the Blumberg–Hill conjecture,
by proving that this condition is equivalent to the existence of an N1–operad P whose
spaces P .n/ are universal spaces for the families Fn .

In Section 5, we prove that for certain sequences F there is a transferred model structure
on algebras over an EF

1–operad (in G–spaces and, for finite G , in G–spectra). In
Section 6, we address the question of rectification between algebras over different
EF
1–operads, and we prove that in an appropriate model structure on G–spectra

there is a Quillen equivalence between certain EF
1–algebras and strictly commutative

ring spectra. In Section 7 we discuss two examples that demonstrates that Bousfield
localization can reduce EF

1–structures to E1–structures (ie with no multiplicative
norm maps) or even less structure. We then characterize the localizations that preserve
EF
1–structures, and in doing so generalize the example to demonstrate localizations

which reduce structure to EF
1 for all F . In the appendix, we verify the model categorical

conditions required so that left Bousfield localizations of G –spectra exist.

In this paper, we generalize the notion of an N1–operad to what we call EF
1–operads,

where F D .Fn/ is a sequence of families of subgroups of G �†n , not necessarily
satisfying the requirement of the families Nn.P / above. For each sequence F , we
construct a model structure on the category of G–operads, and we use these model
structures to construct our EF

1–operads. Using these model structures, we then prove a
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conjecture of Blumberg and Hill regarding the existence of N1–operads. We also work
out questions of admissibility, rectification, and strictification for these EF

1–operads,
generalizing results from [5]. Throughout the paper, G is taken to be a compact Lie
group, except in Sections 5 and 6, where we restrict to finite groups G in order to use
the techniques from [14] to transfer model structures to categories of algebras over
N1–operads.
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2 Preliminaries

In this section we give a review of model categories, operads, and equivariant operads.

2.1 Model categories

We will assume the reader is familiar with the language of model structures. Excellent
treatments are given in [15] and [16].
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All of our model categories M will be cofibrantly generated; that is, there exist a set I

of generating cofibrations and a set J of generating trivial cofibrations that one can use
to perform the small object argument (for a precise definition see [15, Definition 11.1.2]
or [16, Definition 2.1.17]). An object X is small relative to a class of maps K if there
is a large enough cardinal � such that the functor M.X;�/ commutes with �–filtered
colimits of maps in K .

If M is a model category and X is an object in M then QX will denote the (functorial)
cofibrant replacement of X , and RX will denote the (functorial) fibrant replacement.
Thus, there is a canonical trivial fibration qX W QX ! X and a canonical trivial
cofibration rX W X !RX .

We recall that a monoidal model category M is a model category with a monoidal
product ˝ and monoidal unit S such that the following two conditions are satisfied:

� Pushout product axiom If f W A! B and gW X ! Y are cofibrations, then
the pushout product

f �gWA˝Y qA˝X B˝X ! B˝Y

is also a cofibration. Furthermore, f �g is a trivial cofibration if either f or g

is a trivial cofibration.

� Unit axiom If X is cofibrant, then the map

qS ˝ idX W QS ˝X ! S ˝X ŠX

is a weak equivalence.

An additional axiom on a monoidal model category which we will have cause to consider
is the monoid axiom, which first appeared in [32, Definition 3.3] and guarantees that
the categories of monoids in a monoidal model category inherit a model structure with
weak equivalences and fibrations created by the forgetful functor. Recall that given
a class of maps I, the saturated class generated by I, also denoted by I–cell, is the
smallest class of maps that contains I which is closed under pushouts and transfinite
compositions. An object is an I–cell complex if the map from the initial object to it is
in I–cell.

� Monoid axiom For all objects X , the saturated class generated by the maps
X ˝ f where f runs through all trivial cofibrations is contained in the weak
equivalences.

Algebraic & Geometric Topology, Volume 18 (2018)



Encoding equivariant commutativity via operads 2923

2.2 Spaces

Let Top denote the category of compactly generated weak-Hausdorff spaces. This is a
monoidal model category [16, Proposition 4.2.11]. Let G be a compact Lie group, and
let TopG denote the category of spaces with a G–action, and with equivariant maps.
When working in the pointed setting, the G –action is assumed to fix the distinguished
basepoint.

A map f in TopG is a weak equivalence (resp. fibration) if the H –fixed-points map f H

is a weak equivalence (resp. fibration) in Top for all closed subgroups H � G . We
need H to be closed so that the quotient topology on G=H is weak Hausdorff. For this
reason, whenever we consider subgroups in this paper, we will always assume they are
closed. The fixed-points functor .�/H has a left adjoint G=H �.�/W Top!TopG , and
the generating (trivial) cofibrations have the form G=H � i for all subgroups H �G ,
where i is a generating (trivial) cofibration in Top. The pointed analogue works the
same way.

Turning now to monoidal structures, recall that TopG is closed symmetric monoidal with
the Cartesian product, where we use the diagonal action of G on X �Y , and the conju-
gation action of G on the equivariant mapping space MapG.X;Y /, that is, .g �f /.x/D
g �f .g�1 �x/. For pointed spaces, the smash product is used. The category TopG is
enriched, tensored, and cotensored over Top. Recall that TopG is a proper, monoidal
model category and a topological model category in the sense of [16, Definition 4.2.18],
meaning that for every cofibration f W A!B in Top and every cofibration gW X ! Y

in TopG , the colimit map f �gW A˝Y qA˝X B˝X !B˝Y is also a cofibration
(where ˝ denotes the tensoring over Top), and is a trivial cofibration if either f or
g is a trivial cofibration (this is explained in [9, Section 2.3] and [23, Theorem IV.6.5],
among other places). Any topological model category is automatically a simplicial
model category, by applying the Sing functor to the topological mapping spaces.

There are also variants of this model structure relative to a family of subgroups of G .
Families of subgroups are crucial to the study of equivariant homotopy theory; they are
necessary for the definition of the geometric fixed-points functor, they come up several
times in constructions of free spectra [20], and they are related to the Baum–Connes
and Farrell–Jones conjectures. We refer the reader to the excellent survey article [21]
for more information on the importance of families. Fixed-point model structures allow
for the homotopical study of the information which can be “seen” by a family, and we
will exploit this point of view throughout the paper.
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For any set F of subgroups of G which contains the trivial subgroup, there is a
cofibrantly generated model structure on TopG in which a map f is a weak equivalence
(resp. fibration) if and only if f H is a weak equivalence (resp. fibration) in Top for all
H 2 F ; see for instance [34, Section 3] for a general approach to equivariant model
structures. We will denote this model structure by TopF . The generating (trivial)
cofibrations are given by the set of maps of the form G=H �g , where g is a generating
(trivial) cofibration of topological spaces, and H 2 F . We will assume that F contains
the trivial subgroup feg in order to ensure compatibility with the model structure
on Top.

If K is conjugate to H , then G=K is isomorphic as a G–space to G=H , so nothing
is lost by assuming F is closed under conjugation. Without a further hypothesis
on F , however, we will not know this model structure is monoidal, even when G is a
finite group. In particular, the pushout product axiom requires G=H �G=K with the
diagonal action to be cofibrant. We will additionally assume that the set F is closed
under subgroups, in particular, closed under intersections.

Definition 2.1 A collection F of subgroups of G is called a family if it is closed under
subgroups and conjugation.

Note that some other authors require F to be closed under subconjugacy, that is, if
H 2 F and g�1Kg �H then K 2 F . However, for our purposes — the existence of a
monoidal model structure relative to F on G –spaces and G –spectra, and the existence
of universal classifying spaces [21, Section 1.2] — it is sufficient to assume F is closed
under subgroups.

In the case where G is a compact Lie group rather than a finite group, additional care
must be taken to ensure the model structure on TopF satisfies the pushout product
axiom. As observed in [9, Lemma 2.9], the key condition to assume on F is that it
forms an Illman collection. This means that .G=H�G=K/C is an FI –cell complex for
any H;K 2 F [19, Theorem 5.5]. Justin Noel has pointed out (private correspondence)
that any family of closed subgroups of a compact Lie group satisfies Illman’s condition,
since G=K is a compact H –manifold and hence admits an H –equivariant triangulation,
making it into an H–CW–complex. It follows that IndG

H resG
H

G=K Š G=H �G=K

is a G–CW–complex.

We summarize these considerations as:
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Proposition 2.2 If G is a finite group and F is a family of subgroups of G , or if G is
a compact Lie group and F is an Illman collection, then TopF is a proper, topological,
closed symmetric monoidal model category. The weak equivalences (resp. fibrations)
are the maps f W X ! Y such that f H W X H ! Y H is a weak equivalence (resp.
fibration) in Top for every H in F . The generating (trivial) cofibrations are maps of
the form G=H � i , where i is a generating (trivial) cofibration in Top and H 2 F .

Of course, there is also a pointed analogue for TopG
� .

Remark 2.3 The category of compactly generated spaces is not a combinatorial model
category, because not all spaces are small; see [16, Section 2.4]. One could work in a
combinatorial model for TopG by using Jeff Smith’s �–generated spaces. Alternatively,
one could work with simplicial sets, but then one would need to either consider actions
of Sing.G/ or restrict to discrete groups G .

Lastly, we review universal spaces of families of subgroups, as these will be required
in Section 4. For any group G and any family of subgroups F , the universal space
of principal G–bundles for the family F is a space EFG characterized (up to G–
equivariant weak equivalence) by the following properties (see [21, Section 1.2]):

� All isotropy groups of EFG belong to F , or equivalently, .EFG/H D ¿ if
H 62 F , where .�/H denotes H –fixed-points.

� .EFG/H ' � for all H 2 F .

The existence of CW–models for these spaces EFG is verified in [22] for all groups
and families considered in this paper (ie for G a compact Lie group). Existence can
also be deduced from [27, Remark 6.5].

Now, let † be another group and consider the product G �†. Given a family of
subgroups F of G � †, let EF.G � †/ be the corresponding universal space for
principal .G �†/–bundles. If F is the family of all subgroups K � G �† such
that K \ .feg �†/D feg, then EF.G �†/D EG.†/ is the universal space for G–
equivariant principal †–bundles. Observe that a subgroup K � G �† satisfies the
condition K\ .feg �†/D feg if and only if K is of the form

�.�/D f.h; �.h// j h 2H; �W H !†g;

where H is a subgroup of G .
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As explained in [8, Section 2.6], a CW–model for EHG is a cofibrant replacement of
the one-point space � in the H–model structure of spaces, for any family H . Similarly
EG.†/ is a cofibrant replacement of the one-point space � in the F–model structure
on TopG�† corresponding to the family F described above.

2.3 Operads

Given n � 0, let †n denote the symmetric group on n letters, where by convention
†0 D†1 is the trivial group. Let .M;S;˝/ be a symmetric monoidal category and
let M†n the category of objects of M which have a right †n –action.

An operad in M is a symmetric sequence P D .P .n//n2N of objects (that is, each
P .n/ is an object in M†n ) equipped with an identity map S!P .1/ and composition
product maps

P .n/˝P .k1/˝ � � �˝P .kn/! P .k1C � � �C kn/

satisfying associativity, identity, and equivariance axioms (with respect to †n ); see for
instance [25]. A morphism of operads is a morphism of the underlying collections that
is compatible with the unit maps and the composition product maps. We denote by
Oper.M/ the category of operads in M.

A P –algebra is an object X of M together with an action of P on X given by maps
P .n/˝X˝n!X , for every n� 0, compatible with the symmetric group action, the
unit of P , and subject to the usual associativity relations. We denote by AlgP .M/ the
category of P –algebras in M.

We recall now the method by which cofibrancy is defined for an operad. Let .M;S;˝/
be a cofibrantly generated monoidal model category and consider the category of
collections in M,

Coll.M/D
Y
n�0

M†n :

We can endow Coll.M/ with a model structure via the product model structure. There
are several choices for model structures on M†n which will give different model
structures on Coll.M/. We could use the projective model structure, that is, a map f
is a fibration or a weak equivalence in M†n if when we forget the †n action f is a
fibration or a weak equivalence in M. Another possibility is to take the †n –equivariant
model structure, in which a map f is a fibration or a weak equivalence in M†n
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if f H is a fibration or a weak equivalence in M for every H �†n , where .�/H is
the H –fixed-points functor.

In any case, a map f in Coll.M/ is a weak equivalence, a fibration, or a cofibration if
and only if fn is a weak equivalence, a fibration, or a cofibration in M†n for every n,
respectively. There is a free–forgetful adjunction

F W Coll.M/� Oper.M/ WU;

where U is the forgetful functor, and the left adjoint is the free operad generated by a
collection.

An operad P is said to be underlying cofibrant if it is cofibrant as a collection after
applying the forgetful functor, that is, if P .n/ is cofibrant in M†n for every n � 0.
When the projective model structure on M†n is used, P is called †–cofibrant if
the map I ! P satisfies the left lifting property with respect to all trivial fibrations
of collections, where I denotes the initial object in the category of operads, that is,
I.1/D S and I.n/D¿ if ¤ 1. Observe that if the unit of the monoidal category S

is cofibrant, then every †–cofibrant operad is underlying cofibrant.

Berger and Moerdijk considered the passage of a model structure from the category
of collections to the category of operads via the free–forgetful adjunction [3], where
M†n is equipped with the projective model structure. Under certain hypotheses
on M, this transfer endows the category of operads with a model structure so that the
forgetful functor creates weak equivalences and fibrations; see [3, Theorems 3.1 and 3.2].
Rezk considered in his thesis the same transfer in the case that M is the category
of simplicial sets and M†n is equipped with the equivariant model structure; see
[29, Propositions 3.1.5 and 3.2.11].

The existence of both model structures follows from the following transfer principle [3,
Sections 2.5 and 2.6; 29, Proposition 3.1.5], which is based on Quillen’s path-object
argument [28, II, page 4.9].

Theorem 2.4 Let M be a cofibrantly generated model category with I and J the set
of generating cofibrations and generating trivial cofibrations, respectively. Let N be a
category with small colimits and finite limits, and let F W M�N WU be an adjunction.
Suppose that:

(i) The left adjoint F preserves small objects, and the domains of the maps in F.I/

(resp. F.J /) are small relative to F.I/–cell (resp. F.J /–cell).
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(ii) N has a fibrant replacement functor, ie there is a coaugmented functor .E; �/
on N such that UEX is fibrant in M and U�X is a weak equivalence in M, for
every X in N .

(iii) N has functorial path-objects for every X such that UX is fibrant in M.

Then there is a cofibrantly generated model structure on N , where a map f is a fibration
or a weak equivalence if and only if Uf is a weak equivalence or a fibration in M,
respectively. The set of generating cofibrations and generating trivial cofibrations of N
are FI and FJ , respectively.

Remark 2.5 If M is a simplicial model category, N a category enriched over simplicial
sets and the adjunction is a simplicial adjunction, then condition (iii) is automatically
fulfilled since .�/�Œ1� works as a path-object functor; see [29, Proposition 3.1.5].

Even if we cannot transfer the model structure to the category of operads, we know that
a trivial fibration of operads should be a map which is a trivial fibration when viewed
as a collection. Thus, we may define an operad to be cofibrant if the map of operads
I ! P satisfies the left lifting property (in the category of operads) with respect to all
trivial fibrations of operads. In particular, if P is †–cofibrant, then the map S!P .1/

is a cofibration.

We will make use of the previous results in Sections 3 and 4.

2.4 Equivariant operads

We now restrict attention to the model category of G –spaces, where G is a compact Lie
group. The reason for restricting to compact Lie groups is explained in [20, Preface]:
for larger classes of groups, the connection to representation theory is lost, even though
aspects of the homotopy theory are possible. The definitions in this section first appeared
in [20, Chapter VII].

Definition 2.6 A G–operad in Top is an operad P valued in TopG . Explicitly,
P consists of a sequence .P .n//n2N of G�†n –spaces, with G acting on the left
and †n acting on the right, together with G–equivariant composition product maps.
Furthermore, G must fix the unit in P .1/.

A morphism of G–operads f W P ! Q is a sequence .fnW P .n/ ! Q.n//n2N of
G�†n –equivariant maps which preserves the unit and is compatible with the composi-
tion product of the operads. We denote by Oper.TopG/ the category of G–operads.
The condition that G must fix the unit is needed to ensure good behavior of P –algebras.
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Following [20, Chapter IV, Section 1], we understand a principal .G; †n/–bundle
X !X=†n to be a principal †n –bundle and a G –morphism such that G acts on X

via G –bundle maps.

Definition 2.7 A G –operad P is †–free if all P .n/ are universal spaces of principal
.G; †n/–bundles. It is an E1–G –operad if these bundles are universal. It is cellular
if all P .n/ are G�†n –CW–complexes.

We depart from [20, Chapter VII] in our definition of an algebra over an equivariant
operad. Rather than requiring the twisted half smash product, we let the operad act
in the more modern way, in this case using that G–spaces and G–spectra are both
tensored over G –spaces.

Definition 2.8 Let P be a G –operad. A P –algebra in TopG is a based G –space X

together with G –maps P .n/�X n!X compatible with the †n action and the operad
structure maps.

A map of P –algebras is a map of G –spaces which is compatible with the P –action.
We denote by AlgP .TopG/ the category of P –algebras in TopG .

2.5 Fixed-point model structures for G –spectra

Moving now to fixed-point model structures on G–spectra (which will be required
in Section 5), we follow [18] and define a G –spectrum to be an orthogonal spectrum
with a G–action; that is, a sequence X of pointed G�O.n/–spaces Xn for n � 0,
where O.n/ denotes the orthogonal group of dimension n, with associative and unital
G�O.n/�O.m/–equivariant structure maps Sn ^Xm! XnCm (such X are called
G –orthogonal sequences). When G D feg, a G –spectrum is an orthogonal spectrum.
The category of G –spectra is closed symmetric monoidal, because a G –spectrum X

is an S –module in the category of G–orthogonal sequences (here S is the sphere
spectrum, and a commutative monoid in the usual way). The monoidal product on
G –orthogonal sequences is given by

.X ˝Y /n D
W

pCqDn
O.n/C ^O.p/�O.q/ .Xp ^Yq/

with diagonal G –action. The closed structure is given by

Hom.X;Y /n D
Y

m�n

MapO.m�n/.Xm�n;Ym/;
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where g 2O.n/ acts on a map f by acting on f .x/ 2 Ym using the inclusion

O.n/�O.m� n/�O.n/ �!O.m/:

The enrichment over topological spaces is given by

Map.X;Y /D
Y

n

MapG�O.n/.Xn;Yn/:

Following [18], let U denote a complete G–universe, let V be an n–dimensional
G–representation in U, and let EvV be the functor from G–spectra to TopG

� which
takes a spectrum X to the space

X.V /DO.Rn;V /C ^O.n/Xn:

The left adjoint to EvV is FV , defined as

.FV K/nCk DO.nC k/C ^O.k/�O.n/ .S
k
^ .O.V;Rn/C ^K//:

Proposition 2.9 For any family of subgroups H of G , we may endow the category
of G–spectra with a proper, cellular, monoidal, topological model structure denoted
by SpH , which is the stabilization of the model structure TopH , where weak equiva-
lences (resp. fibrations) are maps f such that f H is a weak equivalence (resp. fibration)
for all H 2H .

Proof The proof proceeds just as in [18, Theorems 3.3 and 4.5], where now the
generating cofibrations are the maps FV i for i a generating cofibration

.G=H �Sn�1/C �! .G=H �Dn/C

of TopH . The generating trivial cofibrations are the maps FV j for j a generating
trivial cofibration

.G=H �Dn/C �! .G=H �Dn
�D1/C

of TopH . This model category SpH is enriched over Top by considering MapSpH.X;Y /

as a subspace of Map.X;Y / consisting of maps of orthogonal spectra.

The proof of cellularity (in the sense of [15, Section 12.1]) is technical, but is necessary
in order for left Bousfield localizations to exist for general sets of maps. We delay it
until Proposition A.1.

Remark 2.10 If a combinatorial model category is used for TopG
C , eg �–generated

spaces or simplicial sets, then the model structure above is also combinatorial. This is
discussed in [35, Section 8].
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3 Family model structures on G –operads

In this section we will use the transfer principle (Theorem 2.4) to produce fixed-point
model structures on the category of G –operads corresponding to sequences FD .Fn/

of families of subgroups of G �†n . Theorem 3.1 generalizes [29, Proposition 3.2.11],
both to the equivariant context and to the context of topological spaces. A similar result,
regarding so-called genuine equivariant operads (built using G–equivariant trees), is
contained in [6]. In Section 4 we will use the model structures of Theorem 3.1 to
discuss the operads EF

1 , the study of which forms the heart of this paper.

Theorem 3.1 Consider F D fFngn�0 where each Fn is a family of subgroups of
G �†n . The category of G –operads inherits a transferred model structure, called the
F–model structure, in which a map of G–operads f W P !Q is a weak equivalence
(resp. fibration) if for every n� 0, the map f .n/W P .n/!Q.n/ is a weak equivalence
(resp. fibration) in TopG�†n with the Fn –model structure. More explicitly, f is a
weak equivalence (resp. fibration) if f .n/H is a weak equivalence (resp. fibration)
in Top for every H 2 Fn .

Our proof of this theorem works with either pointed or unpointed spaces. In order to
apply the transfer principle, we start with the category of G–collections. We define
a G –collection to be a collection of G –spaces, that is, a sequence of spaces .Cn/n2N

where Cn is a G�†n –space. Let CollG D
Q

n�0.TopG/†n denote the category of G –
collections. We have seen that the action of G needed in the definition of a G –operad
may be encoded internally at the level of collections and then passed from CollG to
OperG via the usual free operad functor F ; see [3]. In other words, we do not need to
consider actions of G on the operad trees. The categorical algebra and the construction
of the free operad functor on a collection are independent of the chosen model structure.

We define a model structure on CollG in the usual way, as the product model structure
coming from the Fn model structures on TopG�†n :

CollG D
Y
n�0

.TopG/†n D

Y
n�0

TopG�†n :

We are now prepared to prove the main theorem of this section.

Proof of Theorem 3.1 Let Fn be a family of subgroups of G �†n for every n� 0.
Let CollG be the category of G –collections with the model structure associated to the
families Fn , as described above.
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We now apply Theorem 2.4 to transfer the model structure on CollG to a model structure
on G –operads via the free–forgetful adjunction

F W CollG
//
OperG WU:oo

Since TopG is a simplicial category, we just need to check conditions (i) and (ii) from
Theorem 2.4, thanks to Remark 2.5.

Condition (i) holds because all spaces are small relative to inclusions, the generating
(trivial) cofibrations I (resp. J ) of G–collections are inclusions, and the maps in
F.I/–cell (resp. F.J /–cell) are built from I (resp. J ) via transfinite composition,
pushouts, products with identity maps, and quotients by symmetric group actions (all of
which preserve inclusions). Every object in TopG�†n with the Fn –model structure is
fibrant, so condition (ii) holds trivially if we use the identity functor as the functor E .

Remark 3.2 In the model structure on CollG above, the domains of the generating
(trivial) cofibrations are cofibrant. To see this, note that each TopG�†n has cofibrant
domains of the generating (trivial) cofibrations. It follows that the same is true for the
F–model structure on G –operads.

Remark 3.3 Theorem 3.1 also holds if sSetG is used instead of TopG . Condition (i)
holds automatically, since all simplicial sets are small. If G is a discrete group, then
the Quillen equivalence between topological spaces and simplicial sets given by the
geometric realization j�j and singular functor Sing.�/ induces a Quillen equivalence
between G�†n –topological spaces and G�†n –simplicial sets, both with the Fn –
model structure (which we also denote by j�j and Sing.�/). Moreover, these functors
are lax monoidal, so applying the composite Sing.j�j/ levelwise gives as a functor E

in OperG satisfying condition (ii). Alternatively, the Ex1 functor may be used as a
fibrant replacement.

Using the model structure of Theorem 3.1, we can define the EF
1–operads discussed

in the introduction. To do so, recall that Com is the terminal G–operad, with spaces
Com.n/D � and a trivial G –action for all n.

Definition 3.4 Let FD .Fn/ be a sequence of families Fn of subgroups of G �†n .
An EF

1–operad is a cofibrant replacement of Com in the F–model structure on OperG .

Observe that, by [8, Section 2.6], any G –operad P that is cofibrant as a G –collection
(with the F–model structure) and weakly equivalent to Com will have spaces P .n/
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that are universal classifying spaces of the families Fn . We will use this observation
in Section 4 to prove the Blumberg–Hill conjecture. Note that not every cofibrant
G –operad forgets to a cofibrant G –collection. Recall from Section 2.3 that an operad P

is called †–cofibrant if the map from the initial operad I to P forgets to a cofibration
in the projective model structure on collections. This implies the operad is cofibrant as
a collection (at least if the monoidal unit is cofibrant). In order to distinguish our more
general setting, we make the following definition.

Definition 3.5 Let FD .Fn/ be a sequence of families Fn of subgroups of G �†n .
A G –operad P is called F–cofibrant if the map from the initial operad I to P forgets
to a cofibration in the F–model structure on G –collections.

Example 3.6 If the sequence F has Fn D 1� 1 for all n, then the model structure
of Theorem 3.1 coincides with the model structure on G–operads obtained from
applying [3, Theorem 3.2] to the base model category TopH with the family model
structure corresponding to the trivial family HD 1. The corresponding operad EF

1 is
nonequivariantly contractible (indeed, the G –action is free) and has a free †n –action. If
G is trivial, then Theorem 3.1 recovers the model structure of [3, Section 3.3.2], where
the base is Top. For any family H of subgroups of G , there is an operad EH

1 defined
from the sequence Fn DH � 1 for all H 2H . These operads interpolate between a
trivial G –action (when H is all H <G ) and a free G –action (when H is trivial).

Example 3.7 If the sequence F has FnDfH�1 jH <Gg, ie we take the family H of
all subgroups of G in Example 3.6, then the model structure of Theorem 3.1 coincides
with the model structure on G –operads obtained from applying [3, Theorem 3.2] to the
base model category TopG , with its usual fixed-point model structure. We denote the
corresponding operad EF

1 as EG
1 . Observe that EG

1.n/ is equivariantly contractible
and has a free †n –action. This operad can act in any G –topological model category,
via the enrichment in TopG . In G –spectra, its algebras are equivalent to algebras over
an E1–operad as in Example 3.6, because an equivariant map from E†n (with a
trivial G –action) into the G –space HomTopG .X n;X / must land in the G –fixed points,
ie in the topological enrichment HomTop.X

n;X /.

Example 3.8 If, for all n, the family Fn consists of all graph subgroups �� where
�W H!†n for H <G , then the corresponding EF

1–operad is an E1–G –operad; see
[20, Definition VII.1.2]. Its nth space is EG.†n/, the universal space of the universal
G–equivariant principal †n –bundle. If G is finite, then EF

1–algebras in G–spectra
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are Quillen equivalent to strictly commutative G –ring spectra (this is a consequence of
Theorem 6.3 below), ie EF

1–algebras have all multiplicative norms.

Example 3.9 If G is the trivial group and the sequence is Fn D f1�K jK <†ng,
then the model structure of Theorem 3.1 recovers the Rezk model structure on operads
(see [29, Proposition 3.2.11]) using Remark 3.3, and extends it to compactly generated
spaces. We see that working with families of subgroups that intersect †n nontrivially
is the same as allowing nonfree †n –actions. When we work simplicially, and when F

is the sequence Fn of families consisting of all subgroups of G �†n , then all objects
of CollG are cofibrant with respect to the F–model structure [29, Proposition 3.1.9]. It
follows that our theory recovers the Com operad in this case.

Our last example discusses certain “partial multiplications” encoded on algebras over
EF
1–operads that do not contain the subgroup G � 1. This example is based on an

observation Mike Hill made to the second author in 2014.

Example 3.10 Let H be a family of subgroups of G . If a sequence Fn contains
all subgroups of the form H � 1 for H 2 H , then any EF

1–algebra X will have
multiplications on resH .X / for all H 2H . To see this, we first recall why X has a
multiplication, when G � 1 2 F . Rewrite X^n as

.†n/C ^†n
X^n

Š .G �†n/=.G � 1/C ^†n
X^n:

From here, the universal property of EF
1 guarantees a G�†n –equivariant map

.G �†n/=.G � 1/! .EF
1.n//C;

since the isotropy group of .G �†n/=.G � 1/ is in F ; see [21, Definition 1.8]. Com-
posing with the operad-algebra structure map .EF

1.n//C ^†n
X^n ! X provides

the desired multiplication X^n! X . However, if G � 1 is not in Fn , then we will
only have maps .G �†n/=.H � 1/! EH

1.n/ for H 2 H . This corresponds to a
multiplication resH .X /

^n! resH .X /. From this point of view, the theory of EF
1–

operads can be viewed as an enlargement of the theory of N1–operads to allow for
restricted multiplications and nonfree †n –actions.

4 Proving N1–operads exist

In this section we prove a conjecture of Blumberg and Hill. Specifically, for any
sequence FD .Fn/ of families of subgroups of G �†n satisfying a certain condition
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relating the families as n varies (a condition required in order to have operad composi-
tion maps), we prove that there is an associated N1–operad P realizing the family,
ie such that P .n/ is a universal classifying space for the family Fn . Throughout this
section we will restrict to the types of sequences of families of subgroups considered
by Blumberg and Hill, ie all Fn will contain all subgroups of the form H � 1 (for
all closed H <G ) and will consist of graph subgroups �� D f.h; �.h//g for various
�W H ! †n . Throughout the section, G is a compact Lie group. The notion of
equivariant N1–operad was introduced in [5, Definition 3.3].

Definition 4.1 A G–operad P is called N1 if the action of †n on P .n/ is free,
and if P .n/ is a universal space for a family Nn of subgroups of G �†n such that
H � 1 2Nn for all closed subgroups H <G and for all n.

Recall from Section 2 that this means

P .n/K '

�
¿ if K 62Nn.P /;

� if K 2Nn.P /:

Remark 4.2 Blumberg and Hill originally required P .0/ to be G–contractible, but
this follows from the condition of being a universal classifying space for a family N0

of subgroups of G�†0ŠG containing all closed H <G . Similarly, all of the spaces
P .n/ are contractible in TopG , since Nn contains all H � 1.

Remark 4.3 Requiring the †n –action on P .n/ to be free is the same as requiring the
fixed points to satisfy P .n/1�K Š¿ for all nontrivial K <†n , ie the subgroup 1�K

cannot be in the family Nn . Furthermore, � \ .1�†n/ D f1� 1g for any � 2 Nn ,
because any element in � must fix something in P .n/, since P .n/� ' �, but any
element in 1�†n , other than the identity, cannot fix anything in P .n/. This implies
that the only subgroups that can occur in Nn are graphs of group homomorphisms
�W H !†n , where H <G , ie � must have the form

�H ;� D f.h; �.h// j h 2H <G; �W H !†ng:

Based on this remark, we see that the only variable distinguishing N1–operads is which
� are allowed (since N1–operads require that all subgroups H <G be considered). If
the only � allowed is �.h/D e for all h, then we denote the resulting operad by EG

1 .
Its algebras do not have any nontrivial norm maps.
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If all group homomorphisms � are allowed, then the resulting operad is an E1–G–
operad [20, Definition VII.1.2], since the spaces P .n/ are universal spaces for principal
.G; †n/–bundles. Algebras over these operads have all possible norm maps, and
there is a Quillen equivalence between such algebras (in G–spectra, when the P .n/

are assumed to be G�†n –CW–complexes) and strictly commutative G –spectra; see
Theorem 6.3. Blumberg and Hill call these G –operads complete. As the word “genuine”
is already overused in equivariant homotopy theory, we think of these as “strong” E1–
operads, and we think of EG

1 as a “weak” E1–operad, but we will stick to the
terminology of [5]. The notion of complete N1–operad appears in [5, Section 3.1].

Definition 4.4 An N1–operad P is called complete if the family Nn corresponding
to P .n/ is precisely the set of graph subgroups

�H ;� D f.h; �.h// j h 2H <G; �W H !†ng;

where H is any subgroup of G and �W H !†n is any group homomorphism.

Since every N1–operad gives rise to an associated sequence ND .Nn/ of families
of subgroups, it is natural to ask if every sequence of families has an associated
N1–operad. The following example shows that this is not the case.

Example 4.5 Consider a sequence of families FD .Fi/ and a fixed n, such that:

� For each k < n, the family Fk D f�H ;�g is the family of all graph subgroups
�H ;� <G �†k for each H <G and each �W H !†k .

� For k � n, the family Fk D fH � 1g consists only of graph subgroups of the
trivial � .

Then there cannot be a G–operad P whose spaces P .m/ are universal spaces for
these Fm , because any operad composition map must be G–equivariant, and taking
fixed points will result in a map from a contractible (but nonempty) space to the empty
set. For concreteness, suppose nD n1C n2 , and consider


 W P .2/�P .n1/�P .n2/! P .n/:

This map is G � .feg �†n1
�†n2

/–equivariant. Let H < G and let �i W H ! †ni

for i D 1; 2 be group homomorphisms. Let �i < G �†ni
be the graph subgroups

of �i . Define �W H !†n to be �1q �2 , using the block inclusions of †ni
into †n ,

and let � < G �†n be the graph subgroup of � . Then the domain of 
� will be
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P .2/�P .n1/
�1 �P .n2/

�2 Š �, but the codomain is P .n/� Š¿, contradicting the
existence of the composition map 
 .

With this example in mind, we now state the key condition relating the Fn that will
guarantee operad composition maps can exist. We then prove this condition is necessary
and sufficient for the existence of N1–operads relative to such F . The bulk of the
work consists of showing that, for realizable sequences F , cofibrant operads in the
F–model structure on G–operads (eg EF

1 ) forget to cofibrant collections in the F–
model structure on CollG (meaning, the spaces of the operad are universal spaces for
the families Fn ). It is important to note that the cofibrant replacement of Com exists
in any F–model structure on G–operads, even in situations like Example 4.5 where
there is no operad P whose spaces are universal classifying spaces for the families Fn .
This demonstrates that Proposition 4.10 is false without the realizability hypothesis,
ie the property of cofibrant operads forgetting to cofibrant sequences does not come
for free. One cannot sidestep this failure by taking the F–cofibrant replacement of
Com in CollG , because a cofibrant replacement in the category of G –collections need
not be an operad.

Definition 4.6 A sequence FD .Fn/ of families of subgroups of G�†n is realizable
if for each decomposition nD n1C � � �C nk , the following containment is satisfied:

Fk o .Fn1
� � � � �Fnk

/� Fn;

where the symbol on the left denotes a set of subgroups of G�†n defined as follows. For
every H <G and every �ni

W H !†ni
allowed by the family Fni

, consider all block
homomorphisms of the form �n1

q� � �q�nk
W H !†n . Then, for every �k W H !†k

allowed by the family Fk , consider all group homomorphisms �W H!†n of the form
�n1
q� � �q �nk

twisted by �k.H /. Then, Fk o .Fn1
� � � � �Fnk

/ is defined as the set
of graph subgroups �� of the resulting � .

Theorem 4.7 A sequence FD .Fn/ is realizable if and only if there is an N1–operad
P such that P .n/ is a universal classifying space for the family Fn .

We will prove this theorem in a moment. First, to help the reader make sense of
realizable sequences, we include a remark showing that realizable sequences satisfy
the three closure properties of indexing systems discussed in [5]. This can of course be
deduced from Theorem 4.7, but in this remark we demonstrate it directly.
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Remark 4.8 (1) The coefficient system associated to a realizable sequence via
Definition 4.5 of [5] (which does not require that the sequence underlies an operad)
is closed under coproduct. Given �n1

W H !†n1
and �n2

W H !†n2
, the coproduct

graph subgroup is given by �W H !†n1Cn2
taking h to �n1

.h/q �n2
.h/. This � is

an example of the sort considered in Definition 4.6, where we take the trivial action
�2W H !†2 . That this coproduct graph is in the coefficient system can be verified just
as in the proof of [5, Lemma 4.10], where ��–fixed points are decomposed into ��n1

–
and ��n2

–fixed points. The containment required by Definition 4.6 implies that ��–fixed
points are contractible as required.

(2) The coefficient system associated to a realizable sequence is closed under products.
Let S be an admissible H –set of cardinality k (meaning, ��k

2Fk , where �k encodes
the H –action on S ), and let T be an admissible H –set of cardinality q . Here, one
mimics [5, Lemma 4.11], taking n1 D � � � D nk in Definition 4.6, and taking all �ni

to be the homomorphism associated to the H –set T . Then, the subgroup �SxT of [5,
Lemma 4.11] is precisely the same as �� from Definition 4.6.

(3) The coefficient system associated to a realizable sequence is closed under self-
induction [5, Definition 3.14]. Let K <H <G , and assume H=K is an admissible
H –set. Fix an admissible K–set T given by �qW K ! †q . In order to show that
H�K T is an admissible H –set, Lemma 4.12 of [5] defines k homomorphisms H!K

via a complete set of coset representatives of H=K (here k D jH=Kj). Blumberg
and Hill then build a subgroup Ind.g/ from �k W H ! †k (using that H=K is an
admissible H –set) and from the compositions �i

qW H !K!†q for 1� i � k . This
Ind.g/ is precisely the subgroup �� of Definition 4.6, where we take n1D� � �Dnk D q

and each �ni
D �i

q . Thus, the admissibility of Ind.g/ follows from the containment in
Definition 4.6, once the ��–fixed points are decomposed as in [5, Lemma 4.12].

Now we are ready to prove Theorem 4.7. Our proof relies on Proposition 4.10, to be
proven below.

Proof of Theorem 4.7 Suppose F is realizable. We construct P as the cofibrant
replacement of the Com operad in the F–model structure on G–operads. The G–
operad Com has Com.n/D� with a trivial action for all n. Then, using the realizability
hypothesis on F , Proposition 4.10 proves that P is F–cofibrant, which implies P .n/ is
cofibrant in the Fn –model structure on TopG�†n . As explained in [8, Section 2.6] and
[9, Section 2], EFn

G is a cofibrant replacement of the one-point space � in this model
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structure, so P .n/ is weakly equivalent to the G�†n –CW–complex EFG discussed
in Section 2, and has the same fixed-point property, as required.

Conversely, suppose P is an N1–operad and let �� 2 Fk o .Fn1
� � � � �Fnk

/. The
composition map


 W P .k/�P .n1/� � � � �P .nk/! P .n/

is G� .�k.H /�†n1
�� � ��†nk

/–equivariant, since �k.H / acts by permuting blocks
of the same size. Upon taking fixed points we obtain


�� W P .k/��k � .P .n1/
�n1 � � � � �P .nk/

�nk /�k.H /
! P .n/�� ;

following the model of the proof of [5, Lemmas 4.10 and 4.12]. By construction, the
left-hand side is contractible: since taking �k.H /–fixed points identifies certain copies
of the P .ni/

�ni , the left-hand side is a product of P .k/��k with various products
of P .ni/

�ni , which are all contractible. Hence, the right-hand side cannot be empty,
or it would contradict the existence of 
 . It follows that �� 2 Fn .

Our proof of Proposition 4.10 follows the model of [3, Section 5], with the correction
from [4, Lemma 3.1]. We encourage the reader to proceed with a copy of [3] on hand.
The proof is based on a careful analysis of the free operad functor

F W
Y

n

TopG�†n ! Oper.TopG/:

This is precisely the same functor as in [3], so the categorical algebra in [3, Section 5.8]
(with the correction from [4]) works in precisely the same way in our setting (the only
difference is the model category structure, which does not enter until [3, Lemma 5.9]).
As in [3, Corollary 5.2], it is completely formal to reduce the problem of a cofibration
of operads forgetting to a cofibration of collections to the situation of a single cellular
extension. Thus, we must only prove the analogue of [3, Proposition 5.1] in our setting,
namely: if P is an F–cofibrant G–operad and u is a cofibration in the F–model
structure on G –collections, then a cellular extension P!P Œu�, defined as the pushout
of F.u/ in G –operads, is an F–cofibration of operads.

Recall from Definition 3.5 that a G –operad P is F–cofibrant if the map from the initial
operad I forgets to a cofibration in the F–model structure on G –collections. Similarly,
we call a map of operads an F–cofibration if it forgets to a cofibration in the F–model
structure. Note that I.n/ is the initial object in TopG�†n for all n¤ 1 and I.1/ is the
unit of TopG�†1 Š TopG . Hence, each I.n/ is cofibrant in the Fn –model structure
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on TopG�†n . It follows that, if P is F–cofibrant, then every space P .n/ is cofibrant
in the Fn –model structure on TopG�†n . This observation is used in Theorem 4.7, to
deduce that P .n/ is a universal classifying space for the family Fn , for the operads P

constructed in the theorem.

The proof by Berger and Moerdijk hinges on [3, Lemma 5.9], and so most of our work
will be to establish the F–model-structure version of this lemma. However, since we
work with family model structures, rather than projective model structures, we will need
to prove that the latching maps are cofibrations in a model structure on TopG�Aut.T;c/

for all trees T with colored vertices c . We now define this model structure, induced
from the family model structure TopFn , where n is the number of leaves of T .

For every tree T with colored vertices c , let ˛T;c W Aut.T; c/!†n be induced by the
action of Aut.T; c/ on the leaves, and let FT;c

n WD .1� ˛T;c/
�1.Fn/ be a family of

subgroups of G �Aut.T; c/. It is easy to verify that this family contains the identity
subgroup, is closed under conjugation, and is closed under subgroups (or satisfies the
Illman condition in the case of compact Lie G ). Hence, there is a family model structure
on TopG�Aut.T;c/ , and it satisfies the pushout product axiom. We need the following
lemma, which will be applied to the map 1� ˛W G �Aut.T; c/! G �†n , to prove
that .�/˝Aut.T;c/ S Œ†n� is a left Quillen functor from TopG�Aut.T;c/ to TopG�†n .

Lemma 4.9 Let ˛W G0 ! G1 be a group homomorphism, and let F0 and F1 be
families of subgroups of G0 and G1 , respectively, such that for every H0 2 F0 we
have that ˛.H0/ 2F1 . Let C be a model category such that the family model structures
C

G0

F0
and C

G1

F1
exist. Then the adjunction ˛!W C

G0

F0
� C

G1

F1
W˛� is a Quillen pair.

Proof For every H0 2 F0 , we have X ˛.H0/ Š .˛�.X //H0 for every X 2 CG1 . It is
enough to see that ˛� preserves weak equivalences and fibrations. Let f be a weak
equivalence or fibration in CG1 . Then ˛�.f /H0Šf ˛.H0/ , which is a weak equivalence
or fibration in C since ˛.H0/ 2 F1 by assumption. The conclusion follows.

We are finally ready to prove Proposition 4.10. A similar result appears in [6], where
F is required to be a “weak indexing system” (a condition related to the behavior of
automorphisms of G –equivariant trees), rather than a realizable sequence.

Proposition 4.10 Assume F is a realizable sequence. Then any G –operad P that is
cofibrant in the F–model structure on G –operads is F–cofibrant.
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Proof The discussion above reduces us to proving, for every F–cofibrant G –operad P ,
every generating cofibration uW K!L in the F–model structure on G–collections,
and every attaching map K! U.P /, that the cellular extension P ! P Œu�, defined
by the following pushout in the category of G –operads, is an F–cofibration:

F.K/ //

��

F.L/

��

P // P Œu�

We proceed as in [3]. First, the categorical algebra in [3] is independent of the choice
of model structure, and of the base category where operads are taken (TopG in our
case). Thus, the filtration of P ! P Œu� from [3, Section 5.11] still holds, with the
correction from [4, Lemma 3.1]. This means P !P Œu� is a sequential colimit of maps
of operads Fk�1! Fk where, for all n, level n is defined by the following pushout
(whose notation will be defined below) in the category of G�†n –spaces:`

.T;c/2Ak.n/
u�.T; c/˝Aut.T;c/ S Œ†n� //

��

`
.T;c/2Ak.n/

u.T; c/˝Aut.T;c/ S Œ†n�

��

Fk�1.n/ // Fk.n/

We must prove that the maps Fk�1.n/! Fk.n/ are cofibrations in the Fn –model
structure for all k . To do so, we prove that the maps

u�.T; c/˝Aut.T;c/ S Œ†n�! u.T; c/˝Aut.T;c/ S Œ†n�

are cofibrations in the Fn –model structure.

We now define the notation, following [3]. Let Ak.n/ denote the isomorphism classes
of admissible colored trees with n inputs and k vertices, which are either colored or
unitary. Every tree .T; c/ in Ak.n/ with a root of valence v is a grafting tv.T1; : : : ;Tv/

of trees Ti with ni leaves, and colors induced from .T; c/. We write

v�.T; c/D

v[
iD1

u.T1; c1/˝ � � �˝u�.Ti ; ci/˝ � � �˝u.Tv; cv/;

and inductively define u.T; c/ as follows:
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� If the root of T is uncolored and not unitary,

u.T; c/DK.n/˝ v�.T; c/:

� If the root of T is uncolored and unitary,

u.T; c/DK.1/˝ v�.T; c/[ I ˝ .u.T1; c1/˝ � � �˝u.Tv; cv//:

� If the root of T is colored,

u.T; c/DL.n/˝ v�.T; c/[K.n/˝u.T1; c1/˝ � � �˝u.Tv; cv/:

Let
u�.T; c/ WD colim

c0¨c
u.T; c0/:

The map u�.T; c/! u.T; c/ in the pushout above is the colimit (latching) map.

By Lemma 4.9, we must only show that the latching map is a cofibration in the
family F

T;c
n . This will proceed by induction, using the decomposition

Aut.T; c/Š .Aut.T1; c1/
m1 � � � � � .Aut.Tr ; cr /

mr /Ì .†m1
� � � � �†mr

/

from [3, Lemma 5.9], where T is the grafting of T 1
1
; : : : ;T

j
i ; : : : ;T

mr
r (with i D

1; : : : r and j D 1; : : : ;mi ), v D m1 C � � � Cmr is the degree of the root, and the
action of †m1

� � � � �†mr
permutes isomorphic trees. Recall that ˛W Aut.T; c/!†n

is the induced action on the leaves of T . The realizability hypothesis on F implies
that ˛�1.Fv o .Fn1

� � � � �Fnv // � ˛
�1.Fn/, ie all of the cells that the latching map

builds in (induced up from the various TopG�Aut.Ti ;ci / model structures) are contained
in the cells used in the generating cofibrations of TopG�Aut.T;c/ .

We now carry out the induction in each of the cases from [4, Lemma 3.1]. If the
root is uncolored and not unitary, the latching map is K.n/ ˝ .A ! B/, where
B D u.T1; c1/˝ � � � ˝ u.Tv; cv/ and A is a colimit of the latching diagram. We
will focus first on the map A! B , which we denote by f T;c

n . Let us observe that
f

T;c
n D f

T1;c1
n1

� � � �� f Tv;cv
nv , where ni denotes the number of inputs to tree Ti .

The inductive hypothesis tells us each fni
is a cofibration in F

Ti ;ci
ni

. The realizability
hypothesis and a simple cellular induction guarantee that f T;c

n is a cofibration in F
T;c
n ,

since each fni
is a cellular extension using cells in F

Ti ;ci
ni

.

We now deal with the presence of K.n/. Every family model structure on TopG

is a topological model category by [34, Proposition 3.11]. Furthermore, if K.n/ is
cofibrant in Fn then it is cofibrant in Top, since it is a cell complex built from cells
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of the form .G �†n/=H � i , where i W Sd�1!Dd . This observation is used in the
proof of [34, Proposition 3.11]. Hence, K.n/˝ .�/ preserves F

T;c
n –cofibrations.

The same proof works in the other cases from [4, Lemma 3.1]. If the root of T is
uncolored and unitary, the latching map is a union of K.1/�.A!B/ with ��.X!Y /.
When the root of T is colored, the latching map is a union of L.n/� .A! B/ with
K.n/� .X ! Y /. Although we have abused the notation A! B and X ! Y to
refer to several maps, all of these maps A! B and X ! Y are induced by pushout
products of fni

as before, so the realizability hypothesis shows that they are cofibrations
in the F

T;c
n model structure. Using that the F

T;c
n model structure is topological, and

K.n/, L.n/ and � are all cofibrant spaces, all latching maps are F
T;c
n –cofibrations, so

Lemma 4.9 guarantees that P .n/! P Œu�.n/ is an F–cofibration as required.

This completes the proof of the Blumberg–Hill conjecture, and also provides us with a
wealth of examples of N1–operads.

Example 4.11 Taking only the trivial � in each family Fn recovers the result of
[3, Proposition 5.1] on the operad EG

1 when the base model category is TopG . Taking
G trivial recovers the result of [3, Proposition 5.1] on E1–operads when the base
model category is Top.

Remark 4.12 In this section we restricted attention to families of graph subgroups (so
that we could assemble a graph subgroup of Fn from graph subgroups Fn1

; : : : ;Fnk

of Fk ), but we could have worked more generally. For any sequence F D .Fn/, we
can combine families Fa and Fb to obtain families of subgroups of G �†a �†b

of the form fT j �a.T / 2 Fa; �b.T / 2 Fbg, where � denotes the natural projection.
Such subgroups have the property that .X �Y /T ŠX�a.T / �Y �b.T / , and one could
attempt to generalize Definition 4.6 so that families of subgroups built in this way
satisfy the requisite containment in order for operad composition maps to exist (thereby
characterizing the spaces of an EF

1–operad as universal classifying spaces). While
we have not pursued this line of inquiry here, there are some simple cases where such
containments are trivially satisfied. If the families Fn D 1� 1 for all n are used, then
the requisite compatibility between P .n/ for different n is automatically satisfied. The
same is true if Fn is the family of all subgroups of G �†n for every n. Lastly, if the
families Fn are all subgroups of the form 1�K where K <†n , then this approach
recovers results of Rezk in the simplicial setting, eg [29, Proposition 3.5.1].
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5 Admissibility of family operads

In this section we provide model structures on categories of algebras over EF
1–operads,

in G–spaces and G–spectra. The G–spectra results generalize results stated in
[5, Appendix A]. As the proofs for G–spectra use results from [14, Appendix B],
our results about G–spectra will require G to be finite. We begin by recalling some
terminology.

Suppose M is a V–model category and V is a monoidal model category. For every
operad P in V, there is a category of P –algebras in M, and the usual free–forgetful
adjunction .P;U /.

Definition 5.1 A map of P –algebras f is a weak equivalence (resp. fibration) if
U.f / is a weak equivalence (resp. fibration) in M. We say there is a transferred model
structure on P –algebras if these two classes of maps (with cofibrations defined via
lifting) satisfy the model category axioms. In this case, we call P admissible.

Proposition 5.2 Let G be a compact Lie group. For any G–operad P , the category
of P –algebras in TopG has a transferred model structure.

Proof The category TopG is Cartesian and has the same interval object as Top, so the
conclusion follows from [3, Proposition 4.1]. While it is not true that all objects are
small, it is true that the domains of the generating (trivial) cofibrations of P –algebras
are small relative to the class of maps P .I/–cell (resp. P .J /–cell), where P .�/ is
the free P –algebra functor. This is because such maps are inclusions, by an argument
similar to the proof of Theorem 3.1.

Remark 5.3 The proof also works for the H–model structure on TopG for any
family H . An alternative proof of Proposition 5.2 can be obtained by using [31,
Propostion 2.3] and the results of [3] applied to Top.

We now consider G –spectra, and we determine which operads EF
1 have a transferred

model structure on their algebras. In order to use the results from [14], we must now
restrict to finite G for the remainder of the section. First, Theorem A.1][5] states that
there is a transferred model structure on algebras over any N1–operad in SpG whose
spaces have the homotopy type of a G�†n –CW–complex. We now extend this result
to certain operads EF

1 , and en route we record a number of observations to allow the
reader to work with either the positive model structure (see [23, Theorem III.5.3]) or
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the positive complete model structure on SpG . The positive complete model structure
was introduced in [14, Section B.4.1], to fix a gap in [23], as pointed out in [14,
Remark B.119]. Note that admissibility results for N1–operads are false in general
for nonpositive model structures on SpG .

We begin with commutative monoids, to sketch the main ideas of [14, Appendix B],
and because we will need transferred model structures on commutative monoids in
Section 6. In [36], the second author introduced the commutative monoid axiom,
and proved that it implies that there is a transferred model structure on commutative
monoids. Later, in [38], the second author and Donald Yau generalized and improved
this axiom, to prove admissibility results for general colored operads. With that work
in mind, we make the following definition.

Definition 5.4 A model category is said to satisfy the generalized commutative monoid
axiom if, for all trivial cofibrations f , maps of the form f �n=†n are contained in a
class that is closed under transfinite composition, pushout, and smashing with arbitrary
objects, and which is contained in the weak equivalences.

Lemma B.108 of [14] proves that the positive complete model structure on SpG

satisfies this generalization of the commutative monoid axiom (the maps f �n=†n

are trivial h–cofibrations), and [14, Proposition B.131] uses this to transfer a model
structure to commutative monoids. The proof of [14, Lemma B.108] requires what
is called the rectification axiom (for SpG ) in [36], ie for all cofibrant X , the map
.EG†n/C ^X^n!X^n=†n is a weak equivalence.

Proving the rectification axiom involves proving that the functors .EG†n/C ^ .�/
�n

preserve trivial cofibrations between cofibrant objects. To prove this requires writing
the G�†n –CW–complex EG†n as a homotopy colimit of transitive G�†n –sets
which are †n –free; see [14, Lemma B.114]. While the verification of the rectification
axiom in [14] is set in the positive complete model structure, it is a consequence that
the rectification axiom, and hence the generalized commutative monoid axiom, also
hold for the positive stable model structure [23, Theorem III.5.3], as we now show
(following the phrasing of [14]). This statement is also required in [5, Equation A.5] in
order to transfer a model structure to algebras over an N1–operad.

Proposition 5.5 For all positive cofibrant G–spectra X , all indexing sets I and all †
acting on I , the map .EG†/C^†X^I!X^I=† is a positive stable weak equivalence.
In particular, the map .EG†n/C ^†n

X^n!X^n=†n is a weak equivalence.
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Proof Every generating cofibration in the positive model structure on SpG is a positive
complete cofibration, since the consideration of all H –representations V for every
H <G includes the consideration of all G –representations (and the positivity condition
for G –representations matches the complete positivity condition for H –representations
when H D G ). Thus, any positive cofibrant X must be positive complete cofibrant,
because it’s built from a subcollection of the generating cells corresponding only to those
where H D G . Next, these two model categories have the same weak equivalences,
namely the genuine stable equivalences. Thus, for any positive cofibrant X , the
map .EG†/C ^† X^I ! X^I=† is a positive complete stable weak equivalence
[14, Proposition B.116], hence a positive stable weak equivalence.

Remark 5.6 For any N1–operad P , the spaces P .n/ can be decomposed into a
homotopy colimit just as in the case for EG†n (the nth space of a complete N1–
operad). It follows that the analogues of [14, Proposition B.112 and Lemma B.114]
hold with P .n/ in place of EG†n , and hence that P –algebras have a transferred
model structure with respect to either the positive or positive complete model structure
on SpG .

We now prove the H–version of [5, Theorem A.1], where H is a family of subgroups
of G . We begin with a definition of a type of operad that arises naturally when studying
the H–family model structures on spaces and spectra. Such model structures often
arise in work related to the Baum–Connes and Farrell–Jones conjectures [21]. We now
define of a class of operads that parametrizes partial multiplications as in Example 3.10,
but with †n –freeness like in Definition 4.1.

Definition 5.7 Fix a family H of subgroups of G . A G–operad P is called an H–
N1–operad if P .n/ is a universal classifying space for a family Nn.P / of subgroups of
G�†n containing all H �1 for H 2H , and intersecting 1�†n trivially. Furthermore,
call P a complete H–N1–operad if the families Nn.P / consist of graphs for all H 2H

and all �W H !†n .

Remark 5.8 The proof of the Blumberg–Hill conjecture in Section 4 also proves that
H–N1–operads exist for any H–realizable sequence, defined just as in Definition 4.6,
but only with reference to H 2H . We leave the details to the reader.

Proposition 5.9 Let H be a family of subgroups of G , and let P be an H–N1–
operad whose spaces have the homotopy type of G�†n –CW–complexes. Then P is
admissible for the positive complete (hence for the positive) H–model structure SpH .
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We begin the proof with a lemma, generalizing [14, Lemma B.114 and Propositions
B.112 and B.108] to the setting of SpH and H–N1–operads. Note that, for the third
result, taking HD feg recovers [24, Lemma 15.5]. Note that taking HD fH < Gg

recovers [5, Equation A.5] (correcting an error in the statement of [23, Lemma III.8.4]).

Lemma 5.10 Let H be a family of subgroups of G , and give SpH either the positive
or positive complete model structure. Let P be an H–N1–operad having the homotopy
type of G�†n –CW–complexes. Then:

(i) The functors P .n/C ^†n
.�/�n preserve trivial cofibrations between cofibrant

objects (in the SpH–model structure).

(ii) The functors P .n/C ^†n
.�/�n preserve weak equivalences between cofibrant

objects (in the SpH–model structure).

(iii) If P is a complete H–N1–operad and X is cofibrant in SpH , then the natural
map P .n/C ^†n

X^n!X^n=†n is a weak equivalence in SpH .

Proof The proof of [14, Lemma B.114] goes through with P .n/ instead of EG†C ,
using the equivariant cellular filtration of P .n/, ie using that P .n/ is cofibrant in the
F–model structure on TopF , where F is the family underlying P . This proves the first
assertion. The second assertion is simply Ken Brown’s lemma. The third assertion is
proven just as in the proof of [14, Lemma B.108], using the completeness assumption
for the analogue of [14, Proposition B.116] (which now only yields a weak equivalence
in SpH ).

Proof of Proposition 5.9 The proof follows the approach of [14, Appendix B] as
summarized above, with a clever trick from [5, Proposition A.1]. For every generating
trivial cofibration j W A! B in SpH , and any map A! U.X / in SpG , we analyze
the pushout morphism f W X ! Y in the category of P –algebras:

(5-1)

P .A/ //

��

P .B/

��

X // Y

By [24, Proposition 5.13], what must be shown is that maps in P .I/ and P .J / satisfy
the cofibration hypothesis and that transfinite compositions of maps of the form X!Y

above are weak equivalences. The first part is easy, using the coproduct decomposition
of P .A/!P .B/ and using [14, Proposition B.89]. For the second part, we follow [5]
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and show that P .A/! P .B/ is a trivial h–cofibration [14, Definition A.60] in the
category of P –algebras. It follows that transfinite compositions of pushouts of such
maps are trivial h–cofibrations [24, Theorem 8.12]. We deduce that P .A/!P .B/ is a
weak equivalence from Lemma 5.10(i), using the coproduct decomposition of P .�/ and
the fact that the domains of the generating trivial cofibrations in SpH are cofibrant.

As a consequence of the proof, we also have:

Corollary 5.11 Both the positive complete and the positive model structure on SpH

satisfy the generalized commutative monoid axiom, and maps of the form f �n=†n are
contained in the trivial h–cofibrations (trivial with respect to the H–model structure).

Remark 5.12 In this section we focused on transferred model structures. However,
experience has shown that often one only expects a transferred semi-model structure
(defined in [33] and treated in detail in [10]), where lifting and factorization only
hold for maps with cofibrant domains. Indeed, [2, Example 2.8] presents a situation
where there is no model structure on a category of operad-algebras, but there is a
semi-model structure. The reader may be tempted to rely on [10, Theorem 12.3.A]
to obtain transferred semi-model structures on EF

1–algebras, for any sequence F

encoding free †n –actions. Such operads are all †–cofibrant when viewed in the
Berger–Moerdijk model structure on operads [3], and any operad in TopG (or even
in Top) can act in SpG . The reader is warned: using those methods will not work to
prove the existence of a transferred semi-model structure.

More precisely, the proof of [10, Theorem 12.3.A] for an operad P requires that
P .n/^†n

.�/^n preserves weak equivalences between cofibrant objects. Nonequiv-
ariantly, this is proven using a †n –equivariant cellular filtration and the †n –freeness
of E†n . Equivariantly, we need G�†n –cells, and we need to work with EG†n .
When applied to P DEF

1 , the proof of [10, Theorem 12.3.A] only treats the trivial
�W H !†n . Thus, the types of algebras obtained have no multiplicative norms. The
results of [10] are correct, but only produce a transferred semi-model structure on
EG
1–algebras (or E1–algebras if the Top enrichment is used).

Remark 5.13 In this section we proved admissibility results for N1–operads and
H–N1–operads (with respect to SpH ). It is natural to wonder if, for any sequence F ,
there is some model structure on SpG where EF

1–algebras will have a transferred
model structure, analogous to how we used the H–model structure to get admissibility
for H–N1–operads. Certainly one can define a levelwise model structure on sequences
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of G –spaces, relative to the families Fn , but more work would be required to promote
this to a stable model structure on SpG .

6 Rectification for EF
1

–operads

In this section we consider when weak equivalences of N1–operads induce Quillen
equivalences on their categories of algebras. In order to use the results of the previous
section, we assume G is finite throughout this section. First, observe that for TopG ,
we do not expect rectification results in general, since E1–algebras are not Quillen
equivalent to commutative monoids (even when G is trivial). However, for G –spectra,
we do have rectification between different N1–operads [5, Theorem A.3]. We now
give a similar result for H–N1–operads in SpH , generalizing [5, Theorem A.3].

Proposition 6.1 Let H be a family of subgroups of G and give SpH either the
positive or positive complete model structure. Let P and P 0 be H–N1–operads with
sequences F and F0 , respectively, such that P .1/ and P 0.1/ have nondegenerate G–
fixed basepoints, and whose spaces have the homotopy type of G�†n –CW–complexes.
Let f W P ! P 0 be a weak equivalence in the F0–model structure on G –operads. Then
f induces a Quillen equivalence on the model structures of P– and P 0–algebras of
Proposition 5.9.

Proof The assumption on f guarantees that Fn � F0n for all n, because for any
� 2 Fn , the map f �n cannot have empty codomain. Indeed, the assumption on f
guarantees that F D F0 , because for all � 0 2 F0n , the map f �

0

n cannot have empty
domain if it is to be a weak equivalence in Top.

As in [5, Theorem A.3], we appeal to [1, Proposition 5.14], which carries out a detailed
cellular induction argument whose base case consists of a comparison of free algebras.
For us, this comparison uses Lemma 5.10(i). The rest of the cellular induction is formal,
as long as we keep in mind that we never take fixed points for H 62H .

Remark 6.2 As in Remark 5.12, the reader is warned not to rely on nonequivariant
rectification results in the equivariant context. For example, while [10, Theorem 12.5.A]
does provide Quillen equivalences of semi-model categories of algebras over †–
cofibrant operads, forgetting to this setting loses the information of the multiplicative
norms. If [10, Theorem 12.5.A] is used, it only says that EG

1–operads have Quillen
equivalent categories of algebras (or E1–operads if the Top–enrichment is used), not
that N1–operads are all weakly equivalent.
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We turn now to strictification, ie Quillen equivalences between EF
1–algebras and

strict commutative monoids. Theorem A.6 of [5] proves a related result for complete
N1–operads, but does not obtain a Quillen equivalence. We now prove the analogue
for H–N1–operads, and along the way we improve [5, Theorem A.6] to obtain a
Quillen equivalence (with respect to either the positive or positive complete model
structure on SpG ).

Theorem 6.3 Let P be a complete H–N1–operad. Then rectification holds be-
tween P and Com in the positive complete (or positive) model structure SpH ; ie the
unique map f W P ! Com to the terminal G–operad induces a Quillen equivalence
f!W AlgEF

1
.SpH/�AlgCom.SpH/ Wf � . In particular, given a P –algebra X , there is a

strictly commutative algebra zX and a weak equivalence X ' zX .

Proof Following [11, Theorem 1.6], it is easy to show that .f!; f
�/ is a Quillen

pair using the definition of the weak equivalences and fibrations in both categories,
since weak equivalences and fibrations are created by the forgetful functor to SpH . To
show it is a Quillen equivalence we must show that for any cofibrant EF

1–algebra X ,
the unit of the adjunction X ! f �f!X is a weak equivalence. Reduce to the case
where X D P .X0/ via a standard cellular induction. The map X ! f �f!X is now
exactly the map induced by f which goes from P .X0/'

W
.EF†n/C ^†n

X^n
0

to
Sym.X0/D

W
X^n

0
=†n . By Lemma 5.10(iii), this map is a weak equivalence.

Remark 6.4 Taking H to be the family of all subgroups of G improves the result of
[5, Theorem A.6] to obtain a Quillen equivalence.

Remark 6.5 Another approach to Theorem 6.3 is to appeal to [36, Theorem 4.6], where
it is proven that, if the rectification axiom holds (as is shown here in Proposition 5.5
and Lemma 5.10(iii)), then f induces a Quillen equivalence between commutative
monoids and QCom–algebras, which in this case are precisely P –algebras for P as in
the statement of Theorem 6.3. Theorem 4.6 of [36] has been generalized in [37], which
also provides a mechanism for lifting Quillen equivalences among different models of
G –spectra to Quillen equivalences of P –algebras.

7 Bousfield localization and EF
1

–structure

In this section we give an application of the work from the previous sections. We
work with a compact Lie group G , but we remind the reader that results regarding the
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existence of transferred (semi-)model structures on commutative equivariant ring spectra
and algebras over N1–operads, and results regarding rectification, are only presently
known for the setting of a finite group G . We begin with an example [26, Theorem 2],
which we learned from Mike Hill, demonstrating that certain localizations of SpG can
take EF

1–algebras to EG
1–algebras, destroying all norm structure. This example is

expounded in [35, Example 5.7], but we recall the main details.

Example 7.1 Let P be the family of proper subgroups of G and let zEP be the
cofiber of the natural map from the classifying space EPC to S0 . This zEP is a
localization of S0 obtained by killing all maps from induced cells. If G is finite,
then this spectrum E D zEP does not admit multiplicative maps from the norms of
its restrictions, and so cannot be a commutative monoid (nor an algebra over any
N1–operad with norms linking proper subgroups of G with G ), even though it is a
localization of the commutative G –ring spectrum S0 . The proof that E cannot admit
multiplicative norms uses the fact that the restriction resH .E/ is contractible for every
H 2 P, hence there cannot be ring homomorphisms N G

H
resH .E/!E as would be

required if E had norms. These maps cannot exist, because E is not contractible
(because EPC is not homotopy equivalent to S0 , since P doesn’t contain G ). So
while any restriction to a proper subgroup views them to be homotopy equivalent, they
are not homotopy equivalent in SpG . This example is a localization that takes every
P –algebra to an EG

1–algebra, for any N1–operad P . We denote this localization
by LP .

Indeed, something similar occurs nonequivariantly. The Postnikov section map demon-
strates that a localization can even destroy E1–structure [7, Section 6]. We prohibit this
behavior by assuming our localizations commute with nonequivariant suspension (see
also [12] for more results in this direction). In the language of [7] such localizations
are called closed. In the language of [35] they are called monoidal localizations.
Recall that, for a set of morphisms C in a model category M, the left Bousfield
localization LC .M/ is a new model structure on M with more weak equivalences
(called C –local equivalences), the same cofibrations, and satisfying the universal
property that any left Quillen functor F W M ! N taking the morphisms in C to
weak equivalences factors through the identity idW M! LC .M/. Hirschhorn [15]
proves the existence of the model structures LC .M/ if M is left proper and cellular.
These conditions on SpG are verified in the appendix. Monoidal localizations are
characterized in [35, Theorem 4.5]. We state the version of that theorem for SpH .
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Theorem 7.2 Let G be a compact Lie group. Suppose C is a set of cofibrations
between cofibrant objects in SpH . Then the model category LC .SpH/ is a monoidal
model category if and only if the class of C –local equivalences is closed under sus-
pension, and for all H 2H , maps of the form C ^FW ..G=H /C^Sn�1

C / are C –local
equivalences for all W in the universe on which SpH is indexed.

For such localizations, the additional equivariant norm structure can be destroyed, but
the baseline EH

1–structure is always preserved, where EH
1 denotes the operad of

Definition 3.4 with respect to the families Fn D fH � 1 jH 2Hg. As a special case
(taking H to be all subgroups of G ), we prove that any monoidal localization of a
P –algebra, for an N1–operad P , has an EG

1–structure.

Definition 7.3 LC is said to preserve P –algebras if:

(1) When E is a P –algebra there is some P –algebra zE which is weakly equivalent
in M to LC .E/.

(2) In addition, when E is a cofibrant P –algebra, there is a choice of zE in AlgP .M/

with U. zE/ local in M, a P –algebra homomorphism rE W E! zE that lifts the
localization map lE W E ! LC .E/ up to homotopy and a weak equivalence
ˇE W LC .UE/! U zE such that ˇE ı lUE Š UrE in Ho.M/.

To understand when localization preserves structure, we make use of [35, Corollary 3.4
and Theorem 5.1], restated to G–spectra, and weakened to avoid the language of
semi-model structures. In the following, G is a compact Lie group, though to verify
the existence of transferred model structures in practice often requires G to be finite.

Theorem 7.4 Suppose C is a class of maps in SpH for which the Bousfield local-
ization LC .M/ exists and is a monoidal model category. Let P be an operad such
that the categories of P –algebras in SpH and in LC .SpH/ inherit model structures
from SpH and LC .SpH/. Then LC preserves P –algebras. Furthermore, if Q is a
†–cofibrant G –operad with respect to Oper.TopH/, then any monoidal left Bousfield
localization LC preserves Q–algebras.

Corollary 7.5 For any H–N1–operad P , any P –algebra X , and any monoidal left
Bousfield localization LC , the object LC .X / is weakly equivalent to an EH

1–algebra.
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Proof There is a forgetful functor from AlgP .SpH/ to AlgEH
1
.SpH/ that forgets all

nontrivial � (ie forgets all norms). As discussed in Remark 5.12, the operad EH
1 is

†–cofibrant relative to the Berger–Moerdijk model structure on Oper.TopH/ of [3].
By Theorem 7.4, with Q D EH

1 , we get that LC .X / is weakly equivalent to an
EH
1–algebra.

Unlike the nonequivariant setting, equivariant localizations can be “partially monoidal”,
ie maps in C ^FW ..G=H /C ^Sn�1

C / can be C –local equivalences for some W and
some H , even if they are not C –local equivalences for all W;H .

Remark 7.6 For any sequence of families of subgroups of G �†n , we have EF
1–

operads via Definition 3.4. For each n, there is a poset of families of subgroups of
G �†n , ordered by inclusion. For any subfamily Fn � F0n , an EF0

1–algebra may
be viewed as an EF

1–algebra via neglect of structure. Hence, we have a poset of
EF
1–operads, interpolating between the minimal amount of structure (discussed in

Example 3.6) and the EF
1–operad corresponding to the sequence F D .Fn/ where

Fn is all subgroups of G �†n . Nonmonoidal localizations can take algebras over an
EF0

1–operad to a lower EF
1–operad (for F � F0 ).

Within this poset of EF
1–operads is contained a poset of N1–operads (and, more

generally, H–N1–operads). This poset interpolates between EG
1 (which has no

multiplicative norm maps) and complete N1–operads (which has all possible norms).
Nonmonoidal localization can also move algebras within this poset. Worse, even
monoidal localizations can move algebras within this poset, as Example 7.1 shows.
This problem is remedied in Theorem 7.8 below. The observation that Example 7.1 is
smashing, hence monoidal, is due to Noel.

Example 7.7 We have seen that monoidal localizations of N1–operad algebras
always land at least in EG

1–algebras. Generalizing the Postnikov section example
[7, Section 6], we may define localizations L that are monoidal with respect to any
family H of subgroups of G , but not monoidal with respect to all subgroups of G .
These localizations drop structure to less than EG

1 . The following diagram represents
the movement within the poset discussed in the previous remark, where all families
take the form fH � 1 j H 2 Hg. The vertical bars represent the forgetful functors,
and the families get smaller in lower levels of the diagram (ie H �H0 ). The arrows
represent localization functors. For simplicity, we have compressed the poset to a linear
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order, though of course the actual posets need not be linear:

EG
1

��

��

&&

L
// EG
1

EH0

1
//

��

EH0

1

:::
:::

EH
1

//

&&

EH
1

E1 // E1

Here E1 means ET
1 for the trivial family T . Any localization that is monoidal with

respect to H will land in EH
1–algebras.

We have provided a theorem guaranteeing preservation of EG
1–structure, and have

given an example characterizing when such structure can be reduced to EH
1–structure.

We finish the paper with results guaranteeing preservation even of N1–structure.

In [35, Corollary 6.7], together with [2, Theorem 5.6], localizations that preserve
commutative monoid structure are characterized. We recall the version for G –spectra
[35, Theorem 7.9] as Theorem 7.8 below. An alternative approach to preservation
of commutative monoid structure (or preservation of algebras over linear isometries
G –operads) may be found in [13, Section 6]. Let Sym.�/ denote the free commutative
monoid functor. As all of our results from now on require the existence of transferred
(semi-)model structures on categories of algebras, we assume G is finite for the rest of
the section.

Theorem 7.8 Consider the positive complete (or positive) stable model structure on
G –spectra. Suppose LC is a monoidal left Bousfield localization. Then the following
are equivalent:

(1) LC preserves commutative equivariant ring spectra.

(2) Symn.�/ preserves local equivalences between cofibrant objects, for all n.
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(3) Symn.�/ takes maps in C to local equivalences.

(4) Symn.�/ preserves C –acyclicity for all n.

The following corollary gives easy-to-check conditions under which a left Bousfield
localization will preserve algebras over N1–operads that satisfy rectification with
respect to Com. The assumption on P is only so that we can use [5, Theorem A.6] in
order to rectify.

Corollary 7.9 Let P be a complete N1–operad whose spaces have the homotopy
type of G�†n –CW–complexes, and with a nondegenerate G –fixed basepoint. Let C

be a set of maps of G –spectra (with the positive or positive complete model structure).
Then a monoidal localization LC preserves P –algebras if and only if Symn.C / is
contained in the C –local equivalences for all n. Furthermore, such localizations
preserve P –algebra structure for general N1–operads, and preserve P –algebras for
H–N1–operads P , with respect to the H–model structure SpH on SpG .

Proof Observe that the rectification axiom of Section 5 is unchanged by left Bousfield
localization. If it holds in M then it holds in LC .M/, since cofibrant objects are the
same, and every weak equivalence in M is a weak equivalence in LC .M/. Thus, lo-
calization preserves commutative monoids if and only if localization preserves algebras
over a complete N1–operad. The first statement of the corollary now follows from
Theorem 7.8.

The “furthermore” part follows from Corollary 7.10 below. The point is that the
condition on Sym in Corollary 7.9 implies that Sym preserves C –local equivalences
(by [35, Corollary 6.7]). This preservation occurs if and only if all norm functors
N G

H
resH .�/ preserve C –local equivalences (by Proposition 5.5). In particular, all

norms encoded by P will preserve C –local equivalences, so Corollary 7.10 implies
that LC preserves P –algebras.

In order to get preservation results for noncomplete N1–operads, we shift to phrasing
our condition on C in terms of the norm functors, since phrasing the condition in terms
of Sym is the same as a requirement about all norm functors. The following is phrased
in terms of H–N1–operads, but already the case for HD fH <Gg is new (although
a version where P is a linear-isometries N1–operad has appeared in [13, Section 6]).
We use the notation N T .�/ of [5, Definition 6.1] for the norm parametrized by an
H –set T . By [5, Proposition 6.2] these norms can be written in terms of the norms
N G

H
resH .�/, but the notation becomes more cumbersome.
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Corollary 7.10 Let P be an H–N1–operad whose spaces have the homotopy type
of G�†n –CW–complexes. Let LC be a monoidal left Bousfield localization. Then
LC preserves P –algebras in SpH if and only if, for all H 2H , and for all norms N T

parametrized by P (one for each homomorphism H ! †n ) — ie for all admissible
H –sets T — the functors GC ^H N T .�/ preserve C –local equivalences between
cofibrant objects.

Proof Assume that the functors N T .�/ preserve C –local equivalences for all norms
parametrized by P . To prove LC preserves P –algebras, we will use Theorem 7.4. First,
AlgP .SpH/ has a transferred model structure by Proposition 5.9. Next, we can use the
same proof in LC .SpH/ to obtain a transferred model structure on AlgP .LC .SpH//.
The free P –algebra maps P .A/! P .B/ are still h–cofibrations. To prove they are
C –local equivalences, we use our assumption on C , instead of Lemma 5.10. The norm
functor is defined [5, Definition 6.1; 14, Section 2.2.3] so that

GC ^H N T .�/Š ..G �†n/=�/C ^†n
.�/^n;

where � is the graph subgroup parametrizing the norm. Thus, our assumption, together
with a standard cellular induction (writing P .n/ in terms of the cells .G �†n/=� ),
implies that P .n/C^†n

.�/^n preserves C –local equivalences for all n. The proof of
Proposition 5.9 now goes through in LC .SpH/, hence LC preserves P –algebras by
Theorem 7.4.

For the converse, assume LC preserves P –algebras. Then [2, Theorem 5.6] proves
that the free P –algebra functor preserves C –local equivalences between cofibrant
objects. The identification GC^H N G

H
resH .�/Š ..G�†n/=�/C^†n

.�/^n proves
that every norm functor parametrized by P preserves C –local equivalences between
cofibrant objects.

Just as in Theorem 7.8, for monoidal localizations LC , the functors P .�/ preserve
C –equivalences if and only if they preserve C –acyclicity.

Remark 7.11 If the reader wishes to weaken the assumption in Corollary 7.10, so
that one only needs to check that the norm functors take C into the class of C –local
equivalences (rather than requiring the norm functors to preserve the class of C –local
equivalences), then the model of [35, Corollary 6.7] can be followed. For brevity’s
sake, we have not pursued that approach here.
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We finish with an example that generalizes Hill’s example, and shows that it is possible
to destroy some, but not all, equivariant norms. From this point of view, Hill’s example
is maximally bad, because of its use of the family P of proper subgroups of G .

Example 7.12 Consider the H–generalization of Hill’s example, where we replace P

everywhere by a general family H of subgroups of G . Denote the resulting localization
by LH and define E in the analogous way to Example 7.1, ie E DLH.S

0/. Just as
in Example 7.1, LH is a monoidal Bousfield localization (relative to the H–model
structure on SpG ), hence cannot reduce structure to below EH

1 . However, even more
is true. Now some, but not all, of the spectra resH .E/ will be contractible, so E can
admit some, but not all, norms. Indeed, given any containment G � H of families
of subgroups of G , such a localization can be arranged to reduce G–N1–algebra
structure to H–N1–algebra structure. As a consequence, we can deduce that, for any
H–N1–operad P , there are P –algebras in spectra (all having the form LH.S

0/) with
precisely the norms encoded by P . This existence result for algebras complements the
existence result for operads, from Theorem 4.7.

Between Corollaries 7.5 and 7.10, and Examples 7.7 and 7.12, we now have results
characterizing when localization preserves EF

1–algebra structure (both multiplicative
norm structure and classical E1 structure), and we have examples allowing any move
between algebraic structures in the poset of H–N1–operads.

Appendix

In this appendix, we prove that the positive complete stable model structure on G–
spectra is left proper and cellular, conditions sufficient for left Bousfield localizations
to exist. Throughout, G is a compact Lie group. Where results from [14] are used
(which assumes G is a finite group), we have checked that these results remain true
in the setting of a compact Lie group G . The proof technique of Proposition A.1
demonstrates that the nonpositive and noncomplete variants, as well as the variants
where the model structure is defined relative to a family of subgroups H of G , are
also left proper and cellular. The proof here is based on [17, Theorem A.9], and uses
the description of G –spectra used in this paper, and discussed in [18] (rather than the
description used in [23]).

Proposition A.1 The positive complete stable model structure SpG on G –spectra is
left proper and cellular.
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Proof That it is left proper can be deduced from the combination of three results
in [14]. First, in [14, Remark B.64] it is proven that cofibrations are h–cofibrations,
ie have the homotopy extension property. In [14, Corollary B.21] it is proven that
h–cofibrations are flat maps, ie maps f such that cobase change along f preserves
weak equivalences [14, Definition B.9]. Finally, in [14, Remark B.10], it is observed
that a model category is left proper if and only if every cofibration is a flat map. Putting
these together we see that SpG is left proper.

We turn now to cellularity. We must prove that SpG satisfies the following three
properties [15, Chapter 12], relative to the generating cofibrations

I D fGC ^H S�V
^Sn�1
C !GC ^H S�V

^Dn
Cg

of the positive complete model structure [14, Definition B.4.1] and the generating
acyclic cofibrations J defined analogously. The three properties are as follows:

(1) The domains and codomains of I are compact relative to I .

(2) The domains of J are small relative to the cofibrations.

(3) Cofibrations are effective monomorphisms.

The easiest to verify is (2). We have just seen that the cofibrations are h–cofibrations,
and [14, Lemma A.70] shows that h–cofibrations are objectwise closed inclusions. A
�–sequence of h–cofibrations is again an h–cofibration [14, Proposition A.62], and
all spaces are small relative to inclusions [16, Lemma 2.4.1]. Let X be a domain of a
map in J , let Y˛ be a �–sequence of cofibrations in SpG for some regular cardinal �,
and let f W X ! colim Y˛ . Each space Xn is small relative to the closed inclusions
making up the colimit, so fn factors through some map gn to an earlier stage Yˇn

.
Take ˇ to be the supremum of the ˇn and the gn will assemble to a map gW X ! Yˇ ,
verifying smallness.

Next we turn to (3). A map f W X ! Y is an effective monomorphism if f is the
equalizer of the two obvious maps Y � Y qX Y . In Top and TopG , condition (3) is
equivalent to the statement that X is the intersection of the two copies of Y in Y qX Y .
In particular, closed inclusions in (compactly generated weak Hausdorff) spaces are
precisely the effective monomorphisms. Since limits in SpG are taken levelwise, it
is sufficient to check condition (3) on each level fn . Here again [14, Lemma A.70]
shows that h–cofibrations in SpG (hence cofibrations) are objectwise h–cofibrations
in TopG , hence effective monomorphisms.
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Finally, we turn to (1). The domains and codomains of maps in I have the form
GC ^H S�V ^KC , where K is either Sn�1 or Dn . Observe that S�V ^ .�/ is the
left adjoint FV to a functor EvV W SpG ! TopH , where V is an H –representation.
The functor FV takes an H –space A to the G –space A^H GC ŠA^ .G=H /C and
then to the spectrum S�V ^A^ .G=H /C . In the proof to follow, let ADKC denote
a domain or codomain of a map in I , the set of generating cofibrations in TopH .
Because everything is being converted into a G–space, it will not matter which H

our object begins with. Let FV .A/ denote a domain or codomain of a generating
cofibration in SpG .

The notion of compactness in (1) is different from the one in [16]. Here it means that
there is some cardinal � such that for every relative I –cell complex f W X ! Y and
every presentation of f by a chosen collection of cells, every map FV .A/! Y factors
through a subcomplex of size at most � . A presentation of f is a realization of f
as the colimit of a �–sequence of maps which are pushouts of coproducts of cells. A
subcomplex of the given presentation of f is a �–sequence formed by pushouts of
coproducts of a subset of cells. The size is the cardinality of the set of cells.

We will prove (1) by following the proof of [17, Proposition A.8]. This proof has three
key ingredients. First, for all H the standard fixed-point model structure on TopH is
cellular. This is because cells have the form .H=K/C ^Sn�1

C ! .H=K/C ^Dn
C and

so the same proof which works for spaces applies just as well to this model category.
Next, by adjunction every map FV .A/! Y is equivalent to a map A! EvV .Y /

and for every presentation f W X ! Y , we write fV W XV ! YV as a retract of a
presentation XV D Z0 ! Z1 ! � � � ! Z� D Z of relative I –cell complexes [15,
Lemma 10.5.25], where again I is the set of generating cofibrations for TopH and V is
an H –representation, in which every cell appearing in the presentation of XV !Z

has an associated FV .I/–cell appearing in the presentation of f . This step allows us
to reduce the verification of spectra to one in spaces, and all it requires is that every
generating cofibration of spectra is an objectwise cofibration in spaces (this is clear,
since every such map is a cofibrant object smashed with a cofibration of spaces). Lastly,
a transfinite induction following precisely the same steps as in [17, Proposition A.8]
verifies that for every presentation of f by a �–sequence, if � is a cardinal for which
TopH satisfies cellularity for all H , then every map FV .A/! Y factors through a
subcomplex with at most � many FV .I/–cells.

This transfinite induction makes use of the fact that we have already verified (3), so a
subcomplex is uniquely determined by its set of cells [15, Proposition 12.2.1]. It also
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uses the observation that it suffices to work with a �–sequence formed by transfinite
compositions of pushouts of maps in I rather than coproducts of such maps. Lastly,
the main points of the transfinite induction are that every FV .I/–cell is contained in a
subcomplex of at most � many FV .I/–cells by induction (since each cell is glued on
at some stage ˛ < �), the �–sequence in TopH has the property that A! Yn!Z

factors through a subcomplex with at most � many I –cells, and the subcomplex of Y

formed by the FV .I/–cells corresponding to the I –cells required for the factorization
in spaces still uses fewer than �2 D � many FV .I/–cells. The interested reader is
referred to Hovey’s original proof in [17, Proposition A.8] for more details.

Remark A.2 The same proof demonstrates that the positive noncomplete model
structure and the stable model structure of [23, Theorems III.4.2 and III.5.3] are cellular
(using the equivalence of this model structure with the U–stable model structure of
[18, Section 5]), as well as the family model structures SpH of Section 2.
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