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On the commutative algebra of categories

JOHN D BERMAN

We discuss what it means for a symmetric monoidal category to be a module over
a commutative semiring category. Each of the categories of (1) cartesian monoidal
categories, (2) semiadditive categories, and (3) connective spectra can be recovered
in this way as categories of modules over a commutative semiring category (or 1–
category in the last case). This language provides a simultaneous generalization of
the formalism of algebraic theories (operads, PROPs, Lawvere theories) and stable
homotopy theory, with essentially a variant of algebraic K–theory bridging between
the two.

18C10, 55U40; 13C60, 19D23

1 Introduction

Our primary goal in this paper is to develop a categorification of commutative algebra,
as a new toolbox for studying symmetric monoidal categories (which we regard in
this language as categorified abelian groups). We will first introduce our main results,
inspired by familiar facts from ordinary commutative algebra (Section 1.1), before
introducing our motivating examples, which come from the study of algebraic theories
(Section 1.2). Many of our results can be regarded as theorems in ordinary category
theory, and we have sought to use that language as much as possible in the introduction.
However, it is unavoidable that we use the language of 1–categories in the body of
the paper, for reasons we explain in Section 1.3.

1.1 Main results

Consider the classical situation of the ring R D Z
�
1
2

�
. An abelian group A admits

the structure of an R–module if and only if the “multiplication by 2” homomorphism
2W A! A is invertible. In this case, admitting an R–module structure is a property
of an abelian group, and not extra data. Equivalently, the unique ring homomorphism
Z!R induces a fully faithful functor

CRingR=! CRingZ=;

which is to say that Z! Z
�
1
2

�
is an epimorphism of commutative rings.
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2964 John D Berman

Here we come upon an odd phenomenon in the category of commutative rings: epimor-
phisms are not the same as surjections. What is true, however, is that epimorphisms of
commutative rings coincide with injections of affine schemes (provided the homomor-
phism is of finite type; see Grothendieck [15, Proposition 17.2.6]). We review these
ideas in Section 2.3. Thus we can identify

� properties of abelian groups which are classified by actions of commutative
rings;

� affine scheme “injections” into Spec.Z/.

Bousfield and Kan [7] call such rings solid, and have classified all of them. As we
might expect knowing the geometry of Spec.Z/, they are all built out of quotients and
localizations of Z in a suitable way (quotients or localizations depending on whether
the generic point of Spec.Z/ is included in the subset).

In this paper, we prove that many properties of symmetric monoidal categories are
classified by the actions of solid semiring categories. We should first explain the term
semiring category.

Most of the categories that arise frequently can be made symmetric monoidal in two
different ways. One symmetric monoidal structure (usually the categorical coproduct)
behaves additively, the other (usually closed symmetric monoidal) behaves multi-
plicatively, and the multiplicative structure distributes over the additive structure. For
example, Set has a cartesian product which distributes over disjoint union. Ab (abelian
groups) has a tensor product which distributes over direct sum. This language is made
precise in Gepner, Groth, and Nikolaus [12], which we review in Section 2.2.

In particular, each of Set and Ab have the structure of a semiring category (and in a
natural way).

Principle 1.1 Set and Ab classify the properties of symmetric monoidal categories
being cocartesian monoidal (respectively additive), just as Z

�
1
2

�
and Z=2 characterize

properties of abelian groups.

What we have said is not literally true. The problem is that Set and Ab are not finitely
generated as semiring categories, and will therefore have poor algebraic properties.
However, there are two ways to resolve this problem, and either way the principle
becomes true.
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The first option is to note that Set and Ab are finitely generated under colimits, which is
essentially to say they are presentable (or locally presentable for some authors). Lurie
has developed a commutative algebra of presentable 1–categories [23, Section 4.8]
and has proven 1–categorical analogues of the statements of Principle 1.1. (The
1–categorical statements are also true, and can be proven using the same techniques
applied to the 1–category of 1–categories.)

There are many benefits to this first approach. Presentable categories (and1–categories)
have excellent formal properties, guaranteed by results like the Yoneda lemma and the
adjoint functor theorem, which make them an ideal setting for proving universal proper-
ties. For example, Lurie uses his commutative algebra of presentable 1–categories to
define a well-behaved symmetric monoidal smash product of spectra [23, Section 4.8.2].
This is in answer to a long-standing open problem of late twentieth century homotopy
theory; the first solution, by Elmendorf, Kriz, Mandell, and May [11], predates Lurie’s
solution by a decade, but his is the first from an 1–categorical perspective and is
surprisingly slick compared with its predecessors.

The second approach to Principle 1.1 is to insist on working just with finitely generated
semiring categories, and take the smallest subsemirings of Set and Ab, that is, the
subcategories generated by sums and products of the additive and multiplicative units.
In the case of Set, we recover in this way the semiring category Fin of finite sets.

In the case of Ab, we recover the subcategory of finitely generated free abelian groups.
This is equivalent to the Burnside category Burn, which can also be described via a
group-completed span construction applied to Fin (see Example 3.15). We can also
apply a span construction without group-completing; this is the effective Burnside
category Burneff , and is equivalent to the category of finitely generated free commutative
monoids. Our main result is as follows:

Theorem 1.2 Each of the following is a semiring category:

Fin; Finop; Finiso; Fininj; Fininj;op; Fin�; Finop
� ; Burneff; Burn:

Superscripts denote that we are only allowing injections (inj) or bijections (iso). Fin�
denotes pointed finite sets.

Moreover, for each semiring category R on this list, the forgetful functor ModR !
SymMon is fully faithful; that is, being an R–module is a property of a symmetric
monoidal category, rather than containing extra structure. These properties are listed
in Table 1.
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R ModR

Finiso arbitrary
Fin cocartesian monoidal
Finop cartesian monoidal
Fininj semicocartesian monoidal
Fininj;op semicartesian monoidal
Fin� cocartesian monoidal with zero object
Finop
� cartesian monoidal with zero object

Burneff semiadditive (both cocartesian and cartesian monoidal)
Burn additive

Table 1

However, we will delay the last result (that Burn–modules are additive categories) until
a sequel [4]. Although it is possible to prove using techniques similar to those in this
paper (and we invite the reader to do so), the proof is more ad hoc. In the sequel, we
will develop tools from which this result naturally follows.

We also prove all these results for 1–categories. They remain true verbatim, and there
is an additional result as well (which does not have a natural 1–categorical analogue!):

Theorem 1.3 There is a (solid ) semiring 1–category ES for which ModES is equiva-
lent to the 1–category of connective spectra.

The idea of identifying spectra with S–modules in a larger category should be familiar
to stable homotopy theorists; in fact, standard constructions of spectra (like that of
Elmendorf, Kriz, Mandell, and May [11]) take this approach.1

A benefit of such an approach is that it provides us a way to compare symmetric
monoidal 1–categories to spectra, internal to our categorified commutative algebra.
For example, we have a free functor from symmetric monoidal1–categories to spectra,
given by tensoring with ES . This operation can be regarded as a relative of algebraic
K–theory, although not quite the same.

Roughly, if C is a symmetric monoidal 1–category, then C˝ ES is obtained from C
first by formally inverting all morphisms (taking the classifying space) and then group-
completing. In contrast, most constructions of algebraic K–theory (such as in Mandell
[25]) operate by throwing out all noninvertible morphisms and then group-completing.

1This theorem should not itself be taken as a construction or definition of spectra. We cannot work
seriously with symmetric monoidal 1–categories unless we already know something about connective
spectra, so such a definition would be circular.
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Various notions of categorified rings have appeared before, including to study iterated
K–theory (Baas, Dundas, Richter, and Rognes [1]), Tannaka duality (Chirvasitu and
Johnson-Freyd [8]), and smash products of spectra (Lurie [23, Section 4.8]). The
framework in this paper is general enough to permit comparisons to many of the
other notions of categorified rings; for the most part, we will not discuss this, but the
comparison to what may be called presentable categorified rings (as in [23, Section 4.8]
and [8]) is touched on in Remark 3.5 and Lemma 3.7, and the author hopes to elaborate
on this relationship in a sequel [4].

1.2 Applications

When we wish to work with a particular type of algebraic structure (such as a group,
abelian group, ring, Lie algebra, etc), it is often the case that the axioms of that structure
can be encoded most effectively in the data of a symmetric monoidal category.

For example, if we would like to define a commutative monoid object internal to a
symmetric monoidal category Cˇ , we may demand that we have an object X , a binary
operation X ˇX !X , a unit 1!X , and various axioms. Or we may simply ask for
a symmetric monoidal functor F W Finq! Cˇ . The two are equivalent; in particular,
F will send n to Xˇn , the map 2! 1 to the binary operation, and 0! 1 to the unit.
All other morphisms in Fin are generated by these, and associativity, commutativity,
and unitality are encoded in Fin itself.

More generally, we can imagine other symmetric monoidal categories T , whose objects
are still labeled by finite sets (and the symmetric monoidal operation is still given by
disjoint union of finite sets), but that may have other types of morphisms. All of the
semiring categories of Theorem 1.2 are of this form. A symmetric monoidal functor
F W T ! Cˇ will always consist of some object F.1/ 2 C with various kinds of units,
binary operations, ternary operations, etc. Many kinds of algebraic structure (including
the structure of an algebra over any operad — see Example 2.22) can be encoded in
this way.

The only constraint we have put on T is that it be cyclic — that it be generated by a
single object under its symmetric monoidal operation. Traditionally such a T is called
a PROP — for product and permutation category; see Mac Lane [24]. If T is also
cartesian monoidal, it is called a Lawvere theory; see Lawvere [21]. This formalism
of algebraic theories has been used extensively, particularly in homotopy theory. For
early references, see Boardman and Vogt [6] for infinite loop spaces and Segal [29] for
the Segal PROP.
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In light of Theorem 1.2:

Corollary 1.4 PROPs are cyclic Finiso–modules, and Lawvere theories are cyclic
Finop–modules.

For example, the Lawvere theory modeling associative algebras is Finop
� , while the

Lawvere theory modeling commutative algebras is Burneff .

In general, we identify cyclic modules over various semiring categories with different
flavors of algebraic theories, all of which can be folded into the study of categorified
commutative algebra.

Example 1.5 Another example comes from equivariant homotopy theory. Given a
space with the action of a finite group G , its homotopy groups will naturally inherit
the structure of product-preserving functors

Finop
G ! Set:

Given a generalized homology theory (or spectrum) with a G–action, its values at a
G–space will inherit even more structure, namely that of a product-preserving functor

BurnG! Ab:

BurnG is the category of spans of finite G–sets.

And if the generalized homology theory has well-behaved cup products (is a commuta-
tive ring spectrum), we will have even more structure than this: that of a symmetric
monoidal functor from a bispan category PolyG .

We can regard Finop
G , BurnG , and PolyG as all being cyclic modules over Finop

G —
that is, equivariant Lawvere theories. They play an even more central role in equi-
variant homotopy theory than we have indicated: in fact, by a result of Elmendorf
[10, Theorem 1], the 1–category of G–equivariant spaces is equivalent to space-
valued models of the G–Lawvere theory Finop

G . And by a result of Guillou and May
[16, Theorem 0.1] (but see also Barwick, Glasman, and Shah [2, Example B.6] for this
language) the 1–category of G–equivariant spectra is equivalent to spectra-valued
models of the G–Lawvere theory BurnG :2

TopG Š Fun�.Finop
G ;Top/;

SpG Š Fun�.BurnG ;Sp/:

2These results of Elmendorf and Guillou and May are not only theoretical. Most examples of
equivariant spaces and spectra which are algebraic rather than geometric in nature are constructed via
these theorems.
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Whether a similar result holds for equivariant commutative ring spectra remains an
open question. Although we say very little about equivariant homotopy theory in this
paper, it is our hope that a more systematic study of 1–categorical Lawvere theories
can help us to resolve this question.

We have seen that algebraic theories such as Lawvere theories and PROPs fit very
naturally into the framework of categorified commutative algebra, but we have said
practically nothing thus far about operads. Operads, though more troublesome to define
than Lawvere theories or PROPs, have been central to the development of homotopy
theory in recent decades. Since we are using the homotopy-theoretic language of 1–
categories and many of our intended applications are to homotopy theory, we would like
to do for operads (and 1–operads) what Corollary 1.4 does for PROPs and Lawvere
theories. The following is a collection of known results translated into our language
(see Section 3.4 for details):

Remark 1.6 If O is an operad, there is an associated symmetric monoidal category
Env.O/ˇ , which is a PROP and has the universal property that

Funˇ.Env.O/ˇ; Cˇ/Š AlgO.C
ˇ/;

for any symmetric monoidal category Cˇ . Moreover, Env.O/ˇ˝ Finq Š Fin. We
say that Env.O/ˇ is trivial over Fin.

Similarly, the associated Lawvere theory Env.O/ˇ˝Finop;q is trivial over Burneff .

Conjecture 1.7 The category of operads is equivalent to the full subcategory of
Lawvere theories spanned by those which are trivial over Burneff .

In Section 5, we give some evidence for this conjecture, and also describe how to
compute the Lawvere theory associated to an operad.

1.3 Why 1—categories?

Although all of our results hold for ordinary categories, we use the language of 1–
categories throughout. For example, Theorem 1.2 will remain true if we replace every
instance of the word “category” by “1–category” and repeat the rest of the theorem
statement verbatim.

We do not generalize to 1–categories out of a desire for needless abstraction, but for
three significant reasons:
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(1) It considerably simplifies many definitions and (especially) proofs, including
that of Theorem 1.2.

(2) We can apply our results to situations of homotopy-theoretic interest.

(3) It is necessary even to formulate Theorem 1.3.

Point (3) is self-explanatory, but we will elaborate on (1) and (2) shortly. Before we
do so, we want to assure the wary reader that we hardly ever have a need to use the
technical foundations of 1–categories. Actually, many statements we will need are
familiar statements from ordinary category theory which remain true for 1–categories.
And in most cases when the results are unfamiliar, we believe they are enlightening
rather than technical.

In ordinary commutative algebra, there are two types of perspectives that are available
to us. On one hand, we may think of rings as structured sets and manipulate them
explicitly. This is typically the easiest way to handle ordinary rings, but we run into
problems when we attempt to categorify. A tremendous number of axioms are necessary
just to define a commutative semiring category. Even more are needed to make sense
of statements like “C is a module over the semiring category R”; it is possible to write
down such definitions, but not at all pleasant to do anything with them. Moreover, the
proof (even the statement) of Theorem 1.2 becomes ad hoc and unenlightening.

On the other hand, we may think of rings according to how they act on other rings
and on modules. This is the perspective championed by Grothendieck, and it is the
perspective suggested by Theorem 1.2. But this perspective is even more problematic
to categorify, since it requires us to make sense of objects like “the 2–category of R–
modules, with closed symmetric monoidal structure given by relative tensor product”.
We quickly find ourselves pushed up the hierarchy of higher categories, to 2–categories
and even 3–categories.

Our solution is to work exclusively with 1–categories. The downside of this decision
is that the first perspective (the point-set perspective) is very nearly hopeless. But
the benefit is that the second perspective (the universal property perspective) is not
difficult at all. And unlike with ordinary categories, we are not sucked higher and higher
up the hierarchy of n–categories. In fact, the 1–category of 1–categories admits
the structure of a (large) symmetric monoidal 1–category Cat1 , and commutative
monoids in Cat1 are just symmetric monoidal 1–categories, and so forth. At no
point in this story do we need to utter the dreaded words “.1; 2/–category”.
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In cases where we need to make reference to point-set models (as in Lemma 4.7),
it is often possible to take homotopy categories and work with the 1–category of
1–categories, where both the point-set and universal property perspectives are available.
This is at least an approximation to the 1–categorical world.

As for point (2), some of the most successful applications of algebraic theories (par-
ticularly operads) are to homotopy theory, but in this case we typically want to take
algebra objects internal to the symmetric monoidal 1–categories of spaces or spectra.
Famously, iterated loop spaces and En–ring spectra can be described as algebras over
little cubes operads; see May [26]. In order to make sense of these applications, it will
inevitably be necessary to generalize to 1–categories.

In addition, there are other types of algebraic theories which arise in homotopy theory
and are not well addressed by the frameworks of operads or Lawvere theories, yet
can be understood as cyclic modules over semiring 1–categories. We have already
discussed examples from equivariant homotopy theory in Example 1.5. These will not
play much of a role in this paper, but they are a primary motivation for the author.

1.4 Outline

In Section 2, we set up the background and foundations of the commutative algebra of
symmetric monoidal and semiring 1–categories. Very little in this section is original,
but nonetheless many of the ideas are likely unfamiliar to anyone but a higher category
theory specialist. We are fortunate that we hardly ever need to rely on manipulating
fibrations of simplicial sets (which lie at the heart of 1–categories), but are instead
able to rely on high-powered algebraic tools. As a result, we recommend this section
to anyone who wants to see some of the benefits of higher category theory without
dwelling on the technical details.

Section 3 is mostly concerned with proving Theorem 1.2 but also contains related
results involving the comparison of symmetric monoidal to (co)cartesian monoidal
categories, most notably, a characterization of the “tensoring up” operations �˝Finq

and �˝ Finop;q . And the last part (Section 3.4) covers the examples arising from the
study of 1–operads.

In Section 4, we prove Theorem 1.3, and discuss the extent to which similar statements
hold for 1–categories. This provides the comparison between symmetric monoidal
1–categories and spectra.
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Finally, in Section 5, we discuss a few conjectures and questions related to 1–operads
and computations in categorified commutative algebra.

This paper has changed considerably from an earlier draft, which contained only parts
of Sections 2 and 3 and none of Sections 4 or 5. However, the earlier draft contained
in addition a more in-depth treatment of Lawvere theories, as providing a bridge
between our commutative algebra of symmetric monoidal 1–categories and Lurie’s
commutative algebra of presentable 1–categories (the two approaches to Principle 1.1
proposed above). It also contained a proof of the last part of Theorem 1.2 (on additive
categories). This material is still available on the arXiv (and is complete), but the author
hopes to rewrite and expand it in a sequel [4] to this paper, currently in preparation.

2 Categorified commutative algebra

In this section, we set up the foundations of the theory of semiring 1–categories
and modules over them. There are few new results (with the exception of some in
Section 2.4), but many of the ideas are not well known.

In Section 2.1, we set some notation we will use throughout the rest of the paper and
review a few key results from [23]. Starting in Section 2.2, we will be extending known
(but not always standard) constructions from commutative algebra.

Beginning with the category Set, we may take abelian group objects, and the resulting
category Ab is endowed with a closed symmetric monoidal tensor product. Commuta-
tive monoid objects in Ab˝ are commutative rings. Everything about this construction
is formal, so that Set can be replaced by any presentable 1–category which is closed
cartesian monoidal. This is the content of Section 2.2. When we replace Set by Cat1
(or Cat), we recover commutative semiring 1–categories (or 1–categories) and a
theory of commutative algebra over them.

For some commutative rings R , being an R–module is a property of an abelian
group, and not extra structure. For example, Z=p–modules correspond to abelian
groups which are annihilated by p , and Z

�
1
p

�
–modules correspond to abelian groups

for which multiplication by p is invertible. Such rings are called solid, and can be
characterized as epimorphisms out of Z, or subsets of Spec.Z/. In Section 2.3, we
generalize this theory, and review known classifications of solid rings and solid ring
spectra. This will be useful for us later, as all the main examples of commutative
semiring 1–categories we consider in Sections 3 and 4 are solid.
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Our most fruitful source of examples of symmetric monoidal 1–categories will arise
out of the study of algebraic theories. If we wish to endow an object X of a symmetric
monoidal 1–category Cˇ with some algebraic structure, typically there will be some
symmetric monoidal 1–category T ˇ which encodes all the data of this algebraic
structure, and endowing X with the structure corresponds to producing a symmetric
monoidal functor T ˇ! Cˇ which sends a distinguished object of T to X . In order to
make sense of the principle “T ˇ encodes algebraic structure on a single object of Cˇ”,
the distinguished object of T ˇ should generate all other objects under ˇ.

That is, algebraic theories will correspond to symmetric monoidal 1–categories which
are cyclic (generated by one object). In Section 2.4, we set up a general theory of
cyclic modules over a semiring 1–category which will provide the foundation for
future study of PROPs, Lawvere theories, and 1–operads (some of which appears in
Section 3, and some in the author’s upcoming paper [4]).

Remark 2.1 We should keep in mind when using ordinary commutative algebra for
motivation that we are not only categorifying, but also generalizing in two additional
directions:

(1) We are passing to a derived setting (that of1–categories rather than 1–categories).

(2) We are considering semirings instead of rings — that is, our symmetric monoidal
1–categories do not necessarily have inverses.

For point (1), we should be imagining we are categorifying not commutative rings but
rather commutative ring spectra. Fortunately, this is not such a problem; the higher
algebra and derived geometry of spectra is a vibrant area of current research, and in
some respects, ring spectra even behave better than rings (see Remark 2.14).

Point (2) is more devastating. As far as the author is aware, the commutative algebra
and algebraic geometry of commutative semirings is not very well understood.

Unfortunately, there is no getting around this problem — practically none of the exam-
ples of symmetric monoidal 1–categories that interest us are grouplike (have additive
inverses up to equivalence). In fact, we will see in Corollary 4.8 that every commutative
ring 1–category arises from a commutative ring spectrum.

2.1 Background and notation

When we say “1–category”, we mean any of the various equivalent definitions, but
when in doubt, it is safe to assume we mean the quasicategories of Joyal and Lurie. As
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much as possible, we follow Lurie’s notation from [22] and [23], and (unless otherwise
specified) everything in Section 2.1 is contained in those two sources.

We use Top for the 1–category of Kan complexes (or 1–groupoids), Sp for spectra,
Cat1 for 1–categories, and SymMon1 for symmetric monoidal 1–categories. We
also use CMon1 D CMon1.Top/ for E1–spaces (commutative monoids in the 1–
category of spaces) and Ab1 for grouplike E1–spaces.

When we write X Š Y , we always mean X and Y are equivalent as objects of some
1–category C . For example, if X and Y are categories (so that C D Cat1 ), we are
referring to an equivalence of categories, not an isomorphism. If C is a 1–category,
equivalences and isomorphisms agree, so we may refer to X Š Y as an isomorphism
in that context.

Grouplike E1–spaces are infinite loop spaces, and there is an equivalence of 1–
categories �1W Sp�0! Ab1 between these and connective spectra. We (somewhat
abusively) sometimes refer to the objects of Ab1 themselves as connective spectra.

Without exception, all of the 1–categories just mentioned have natural semiring
structures, with two operations ˚ and ˝, and ˝ distributing over ˚ (see Section 2.2
for details). But when ˚ is cocartesian monoidal, we may write it as q instead, and
when ˝ is cartesian monoidal, we may write it as � instead. The result is that we
will use the notation ˝ in a wide variety of different contexts. To mitigate confusion,
we typically use ˇ for a symmetric monoidal operation that is not part of a semiring
structure, and (as much as possible) indicate which symmetric monoidal structure we
are using by a superscript (for example, Setq vs Set� ). This has the potential to
conflict with Lurie’s notation in [23], where C and C˝ refer to different 1–categories.
When there is a possibility of confusion, we will use ŒC˝� to refer to the 1–category
Lurie calls C˝ (roughly, a category of tuples of objects of C ).

If C is a 1–category, we also use the same notation C to denote its nerve, regarding
Cat as a full subcategory of Cat1 . Thus we think of the 1–categories Set, Fin (finite
sets), Fin� (pointed finite sets), and so forth as 1–categories.

Although constructions involving 1–categories can be cumbersome, most familiar
results from ordinary category theory carry over. We will use extensively the following:

Remark 2.2 An 1–category C with finite products (respectively coproducts) may
be endowed with the structure of a symmetric monoidal 1–category, with the sym-
metric monoidal operation given by products (respectively coproducts). Such a sym-
metric monoidal 1–category is called cartesian monoidal (respectively cocartesian
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monoidal), and we write it as C� (respectively Cq ). A precise definition is given in
[23, Section 2.4].

Being cartesian (cocartesian) monoidal is a property of a symmetric monoidal 1–
category; that is, the forgetful functor

CartMon1! SymMon1

is a full subcategory inclusion. At the same time, the forgetful functor

CartMon1! Cat1

is also a subcategory inclusion (equivalent to the subcategory spanned by 1–categories
with finite products, and product preserving functors between them).

Given a symmetric monoidal1–category Cˇ, we can check whether Cˇ is (co)cartesian
monoidal just by checking whether its homotopy category is (co)cartesian monoidal in
the ordinary 1–categorical sense [23, Proposition 2.4.3.19].

In short, (co)cartesian monoidal 1–categories are far easier to work with than arbitrary
symmetric monoidal 1–categories (which are defined to be 1–operads fibered over
Comm, satisfying additional properties).

Definition 2.3 A semiadditive 1–category is a symmetric monoidal 1–category
which is both cocartesian monoidal and cartesian monoidal.

We are departing from standard terminology in regarding a semiadditive 1–category
as a type of symmetric monoidal 1–category rather than a type of 1–category. The
latter structure is called preadditive by Gepner, Groth, and Nikolaus [12, Definition 2.1].
However, the two definitions are equivalent: an 1–category C is preadditive if and
only if its homotopy category hC is preadditive/semiadditive [12, Example 2.2], which
is true if and only if hC has cocartesian monoidal and cartesian monoidal structures
which agree.

The reader who is not familiar with the higher algebra literature may be especially
confused by the discrepancy between the notation CMon.C/ and CAlg.Cˇ/. By a
commutative monoid in an 1–category C (the former), we mean a product-preserving
functor Fin! C ; by a commutative algebra in a symmetric monoidal 1–category
(the latter), we mean an algebra over the commutative operad. The two notions agree
when Cˇ is cartesian monoidal (so ˇD�).
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Following Lurie, we write PrL
1 for the 1–category of presentable 1–categories, and

left adjoint functors between them. By the adjoint functor theorem, the morphisms
of PrL

1 can also be regarded as colimit-preserving functors.

There is a closed symmetric monoidal structure on PrL given by

C˝DD FunR.Cop;D/;

where FunR denotes right adjoint functors (functors that admit left adjoints).

Finally, commutative algebras in PrL;˝ coincide with closed symmetric monoidal
presentable1–categories [23, Section 4.8]. This is also a corollary of the adjoint functor
theorem. All of Top, Sp, CMon1 , Ab1 , Cat1 , and SymMon1 are presentable 1–
categories, each with a closed symmetric monoidal product (that is, a commutative
algebra structure in PrL;˝ ), which we typically write as ˝ instead of ^ (smash) or �.

2.2 Semiring and module categories

We have just asserted that SymMon1 is an example of a presentable 1–category with
a closed symmetric monoidal tensor product, but this is certainly not well known. We
believe it was first observed by Gepner, Groth, and Nikolaus [12], as an example of the
following lemma:

Lemma 2.4 Let V� be a presentable 1–category which is closed cartesian monoidal.
Then CMon.V/ has a closed symmetric monoidal structure which is uniquely charac-
terized by the property that the free functor

V�! CMon.V/˝

is symmetric monoidal.

Moreover, if W is another such 1–category and LW V � W WR an adjoint pair such
that L is product-preserving, there is an induced adjunction

L�W CMon.V/� CMon.W/ WR�

such that

(1) the adjunction lifts to a symmetric monoidal adjunction (that is, L� lifts to a
symmetric monoidal functor and R� to a lax symmetric monoidal functor);

(2) R� agrees with R after forgetting commutative monoid structures.

Most of the proof is in [12], but the main idea is so striking that we cannot help but
include it.
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Proof Gepner, Groth, and Nikolaus show that CMon.V/ŠCMon1˝V , where this ˝
is taken in PrL

1 . Since CMon1 and V each admit the structure of a commutative alge-
bra object in PrL

1 (via closed symmetric monoidal operations ˝ and �, respectively),
CMon.V/ inherits such a structure as well, with the given universal property.

Given an adjoint pair LW V � W WR such that L is product-preserving, L lifts to a
functor V�!W� in CAlg.PrL;˝/, that is, a symmetric monoidal left-adjoint functor.
Tensoring with CMon1 , we obtain another symmetric monoidal left-adjoint functor
L�W CMon.V/˝! CMon.W/˝ . By [13, Proposition A.5.11], we have a symmetric
monoidal adjunction between L� and R� .

We have a commutative diagram of left adjoint functors,

V L
//

Free
��

W

Free
��

CMon.V/
L�

// CMon.W/

Taking right adjoints, we see that R� is compatible with R after forgetting the com-
mutative monoid structures.

Example 2.5 Taking V D Cat1 , we find that SymMon1 has a symmetric monoidal
tensor product characterized by the property that the free functor Cat�1! SymMon˝1
is symmetric monoidal.

The same is true for symmetric monoidal 1–categories, taking V D Cat.

Definition 2.6 A commutative semiring 1–category is a commutative algebra object
in the symmetric monoidal 1–category SymMon˝1 , and we write

CRingCat1 D CAlg.SymMon˝1/:

For R 2 CRingCat1 , we write ModR , AlgR , and CAlgR for the 1–categories of
R–modules, associative R–algebras, and commutative R–algebras, respectively.

By “R–modules”, we will always mean left/right modules as in [23, Section 4.5]. Since
R is commutative, the two notions are equivalent.

A commutative semiring 1–category can be interpreted as an 1–category C with
two symmetric monoidal operations ˚ and ˝, satisfying axioms (and even extra
data) specifying that ˝ distribute over ˚. We may write C˚;˝ to emphasize this
structure, but in nearly every example it will be unambiguous to write C . Of course,
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this description is not practical for constructing semiring 1–categories! In particular,
the axioms encoding distributivity are infinite in number and not feasible to write down.
Instead, most of our examples come from universal constructions.

Example 2.7 Since any presentable1–category admits all small colimits and any mor-
phism of PrL preserves all small colimits, there is a forgetful functor PrL

1!SymMon1
assigning to a presentable 1–category its cocartesian monoidal structure. Moreover,
this functor is lax symmetric monoidal, so any closed symmetric monoidal presentable
1–category C˝ is an example of a commutative semiring 1–category Cq;˝ . Here
the additive structure is coproduct.

For example, Setq;�, Topq;�, Catq;�1 , CMon_;˝1 , Ab_;˝1 , SymMon�;˝1 , and Sp_;˝

are all commutative semiring 1–categories.

Example 2.8 If C˚;˝ is a commutative semiring 1–category, and D � C is a full
subcategory whose objects are closed (up to equivalence) under ˚ and ˝, then D˚;˝

is a commutative semiring 1–category as well.

For example, the category Fin of finite sets is a commutative semiring 1–category,
as is FinG (finite G–sets, for a finite group G ), as well as the full subcategory of Sp
consisting of finite wedges of the sphere spectrum — this last object is the Burnside
1–category (Example 3.15).

Consider the following adjunctions (the first of which is an equivalence):

.�/op
W Cat1� Cat1 W.�/op;

i W Top � Cat1 W.�/iso;

hW Cat1� Cat WN:

The functor i is the inclusion of 1–groupoids into 1–categories, N is the nerve,
and h is the formation of homotopy categories. In both cases, the left adjoint is
product-preserving, so Lemma 2.4 applies, producing lax symmetric monoidal functors
.�/op; i.�/isoW SymMon˝1! SymMon˝1 . Taking commutative algebra objects, we
learn:

Example 2.9 If C is a commutative semiring 1–category, so are Cop and Ciso . The
homotopy category hC is a commutative semiring (1–)category.

For example, Finiso is a commutative semiring 1–category. In fact, since the free
functor Cat�! SymMon˝ is symmetric monoidal, and Finiso is the free symmetric
monoidal 1–category on one generator, Finiso is the unit of ˝.
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By analogy with ordinary commutative algebra, we will use Hom.�;�/ to denote the
internal Hom in SymMon1 , HomR.�;�/ for the inherited internal Hom in ModR ,
and ˝R for the closed symmetric monoidal relative tensor product in ModR . In
particular, Hom.�;�/ will always denote a symmetric monoidal 1–category. For just
the mapping space (or mapping 1–groupoid) we may use MapSymMon1.�;�/ instead.

Remark 2.10 Let R ! A be a functor of semiring 1–categories. The forgetful
functor ModA!ModR has a left adjoint given by A˝R� [23, Section 4.5.3], in the
sense that it is equivalent to A˝R� after restricting along ModA!ModR .

Moreover, the forgetful functor also has a right adjoint HomR.A;�/. To see this, note
that ModA!ModR preserves colimits [23, Section 3.4.4], so by the adjoint functor
theorem, it has a right adjoint. The restriction of the right adjoint along ModA!ModR

is itself right adjoint to A˝R�, so indeed it takes the form HomR.A;�/.

Note that all of the discussion of this section so far carries over if we begin with the
1–category Cat of categories (or specifically, the nerve of the .2; 1/–category Cat).
We use the same notation, removing the subscripted 1.

2.3 Solid rings, ring spectra, and semiring categories

Throughout Sections 3 and 4, we will give a number of examples of semiring 1–
categories R for which being an R–module is a property of a symmetric monoidal
1–category, and not extra structure. There are a number of equivalent ways to formulate
this condition.

Definition 2.11 Let Cˇ be symmetric monoidal. For R 2 CAlg.Cˇ/, all of the
following are equivalent, in which case we call R solid:

(1) The forgetful functor ModR! C is fully faithful.

(2) The functor �ˇRW C! C is a localization (called a smashing localization).

(3) The multiplication map RˇR!R is an equivalence in C .

(4) Either of the maps R!RˇR induced by the unit map 1!R is an equivalence
in C .

(5) The map 1!R is an epimorphism in CAlg.Cˇ/.

Although we are not aware of a specific work which includes all of these conditions
under the name “solid”, none of the conditions are new. So the reader who objects that
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this “definition” requires proof (that all the conditions are equivalent) may consult [12]
for all but the last condition.

As for (5), it is directly equivalent to (3), because X!Y is an epimorphism if and only
if (by definition) the codiagonal Y qX Y ! Y is an equivalence. The unit 1 is initial
in CAlg.Cˇ/ and so Y q1 Y Š Y qY . Moreover, the coproduct q in CAlg.Cˇ/ is
just ˇ, so the equivalence follows directly.

Remark 2.12 The terminology comes from the classical situation of “solid rings”,
which were studied and classified by Bousfield and Kan [7]. The (finitely generated)
solid rings are just quotients and localizations of Z, as well as products ZŒS�1��Z=n,
where each prime divisor of n is in S .

Remark 2.13 In commutative rings (and certainly semiring1–categories), we should
not expect epimorphisms to look anything like literal surjections. For example, as in
the previous remark, localizations R!RŒS�1� are epimorphisms. On the other hand,
it is true that any surjection is an epimorphism.

Instead, we might think of epimorphisms as having geometric meaning. Provided
that f W R! A is finitely generated, f is an epimorphism if and only if Spec.A/!
Spec.R/ is injective in the sense that every fiber is either an isomorphism or empty
[15, Proposition 17.2.6]. So we may think of solid semiring 1–categories as being
related to subobjects of the hypothetical geometric “Spec.Finiso/”, and therefore telling
us something about the geometry of symmetric monoidal 1–categories.

We would like to port as many techniques from commutative algebra and algebraic
geometry as possible into the setting of symmetric monoidal and semiring1–categories.
For example, we might like to classify solid semiring 1–categories. (Although we
give a host of examples, a full classification seems out of reach for now.)

But if we want to have any hope of doing this, Remark 2.1 warns us (1) that we
should first understand not only solid rings, but solid semirings and solid ring spectra,
and (2) that we should expect the problem to arise in generalizing rings to semirings.
Indeed, the classification of solid ring spectra is even simpler than that of solid rings.
See the next remark for details. Analogously, we will see repeatedly (particularly in
Section 4.1) that symmetric monoidal 1–categories can actually be more badly behaved
than 1–categories.

But solid semirings are very poorly behaved. The author hopes to partially address this
problem in an upcoming paper [5].
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Remark 2.14 In the derived setting of ring spectra, epimorphisms have even less
in common with surjections. Consider the map of Eilenberg–Mac Lane ring spectra
�W HR!HA induced by a ring map R!A. For � to be an epimorphism, we would
need HA^HR HA! HA to be an equivalence; that is, not only is R! A a ring
epimorphism (A˝RA!A is an isomorphism), but also TorR� .A;A/Š 0 for all �>0.
This is in general not true when R! A is surjective.

For example, HZ!HR is an epimorphism of ring spectra only when R is a subring
of Q (localization of Z). While Bousfield and Kan do not prove this, it is a straight-
forward corollary of their results [7], and details can be found in the MathOverflow
answer [20].

Note that this is a classification of solid HZ–algebras, not solid ring spectra. But the
classification of solid ring spectra is very similar. In particular, a commutative ring
spectrum E is solid if and only if it is a Moore spectrum and �0E is isomorphic to a
subring of Q [17].

2.4 Cyclic modules

We now set up the theory of cyclic modules over a semiring 1–category. Unlike in
the rest of this section, the classical story of cyclic modules over a ring provides poor
motivation here. Classically, cyclic R–modules are all quotients of R , and are therefore
in bijection with ideals of R . In fact, they all have ring structures. The parallels break
down very quickly. Indeed, if R is a commutative semiring 1–category, it is usually
not even true that cyclic R–modules have semiring structures at all.

Instead, we think of cyclic modules as modeling algebraic theories, such as PROPs
(Example 2.18), Lawvere theories (Example 2.21), or operads (Example 2.22).

Definition 2.15 Let R be a commutative semiring 1–category. A pointed R–module
is an R–module M along with a choice of distinguished object X 2R, or, equivalently,
an R–module M together with a distinguished map of R–modules R!M. We
denote by

ModR;� D .ModR/R=

the 1–category thereof.

Remark 2.16 ModR;� can be identified with E0–algebras in ModR [23, Remark
2.1.3.10] and therefore inherits a symmetric monoidal structure ˝R from ModR .
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Definition 2.17 A cyclic R–module is a pointed R–module such that the distinguished
map R!M is essentially surjective. We denote by CycModR the full subcategory
of ModR;� spanned by cyclic modules.

Example 2.18 A cyclic Finiso–module (or just a cyclic symmetric monoidal 1–
category) is a symmetric monoidal 1–category T ˇ with a distinguished object X ,
such that every object of T is equivalent to Xˇn for some nonnegative integer n.
Classically, these are called PROPs (product and permutation categories) [24].

Given a PROP T ˇ , a model of T ˇ valued in Cˇ (often Cˇ D Set�, Ab˝, Top�,
or Sp^ ) is a symmetric monoidal functor T ˇ! Cˇ , and the 1–category thereof is
Mdl.T ˇ; Cˇ/D Hom.T ˇ; Cˇ/.

When C D Top� , we write just Mdl.T ˇ/D Hom.T ˇ;Top�/.

We can think of the model of T ˇ as picking out an object of C (the image of X ) along
with various maps Xˇm!Xˇn corresponding to the maps of T . In this way, PROPs
model different kinds of algebraic structure (groups, abelian groups, rings, commutative
rings, Lie algebras, etc).

Example 2.19 Finq is the PROP modeling commutative algebras, and similarly
Finop;q the PROP modeling cocommutative coalgebras.

With this example in mind, we often think of cyclic R–modules as “R–indexed algebraic
theories”. This perspective is meaningful even when R is more complex:

Example 2.20 Fix a finite group G , and consider the semiring category of finite G–
sets with isomorphisms Finiso

G . We may think of cyclic Finiso
G –modules as equivariant

PROPs.

For example, the subcategory inclusions Finiso
G ! Finop

G and Finiso
G ! BurnG are

semiring functors, where BurnG is the classical Burnside category of spans of finite
G–sets. These exhibit Finop;q

G and BurnqG as Finiso
G –modules, which are certainly

cyclic, and therefore equivariant PROPs.

By Elmendorf’s theorem [10, Theorem 1], Finop
G–models in spaces recover the 1–

category of genuine equivariant G–spaces:

Hom.Finop;q
G ;Top�/Š TopG :
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And by a result of Guillou and May [16, Theorem 0.1] and Barwick [2, Example B.6],
BurnG–models in spectra recover the 1–category of genuine equivariant G–spectra:

Hom.BurnqG ;Sp^/Š SpG :

In general, we can think of Finop;q
G as the equivariant PROP modeling coefficient

system objects, and BurnG as the equivariant PROP modeling Mackey functor objects.

Example 2.21 If a PROP T ˇ is cartesian monoidal, it is called a Lawvere theory [21].
In Example 3.2, we will see that Lawvere theories are precisely cyclic Finop–modules.

Although 1–categorical PROPs and Lawvere theories have been studied extensively,
higher categorical PROPs and Lawvere theories have only begun to be studied in the
past few years. The only sources we are aware of are Cranch’s thesis [9] and the
appendix of [12]

Example 2.22 We have already introduced PROPs and Lawvere theories, but operads
are arguably the most successful model for algebraic theories. We follow Lurie’s
conventions [23], so that an 1–operad O consists of a type of fibration ŒO˝� p!Fin� .
Remember we are using square brackets to emphasize that ŒO˝� is a different 1–
category from O . Really, these correspond to what are traditionally called colored
operads. If we wish to insist that O be single-colored, we must ask that the underlying
1–category O have just one object up to equivalence.

By [23, Section 2.2.4], to an 1–operad is associated a symmetric monoidal envelope
Env.O/ˇ . This is a symmetric monoidal 1–category satisfying the universal property

Hom.Env.O/ˇ; Cˇ/Š AlgO.C
ˇ/:

If O is single-colored, then Env.O/ˇ is a PROP, and its models are exactly O–algebras.

As an 1–category, Env.O/ is the subcategory of ŒO˝� spanned by all objects and
active morphisms between them. That is, it is given by the pullback:

Env.O/ //

��

Fin

��

ŒO˝�
p
// Fin�

Example 2.23 The commutative (E1 ) 1–operad has symmetric monoidal envelope
Fin [23, Section 2.2.4]. The E0–operad has symmetric monoidal envelope Fininj;q

[23, Example 2.1.1.19 and Section 2.2.4].
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Remark 2.24 In general, if O is an1–operad which is not necessarily single-colored,
then Env.O/ˇ is a colored PROP. We can make sense of colored algebraic theories
using our algebraic language, although they won’t play much of a role in this paper.

Specifically, if R is a commutative semiring1–category, a colored R–module consists
of the following data: an R–module M, an 1–category O of colors, and a fully
faithful functor O !M such that the induced R–module functor RŒO� !M is
essentially surjective. Here, RŒO� denotes the R–module freely generated by O ,
which may not be easy to describe though we will not need to do so. However, its
objects can be described (up to equivalence) by R–linear combinations of objects of O ,
that is, formal sums

nM
iD1

.Ai ˝Xi /

with Ai 2R and Xi 2O .

In other words, an O–colored R–module is an R–module M and a fully faithful
functor O!M such that every object of M is equivalent to an R–linear combination
of objects in the subcategory O .

For RD Finiso , respectively Finop , we recover notions of colored PROPs and colored
Lawvere theories.

We end by showing that cyclic modules are well behaved under relative tensor products.

Lemma 2.25 Suppose that R is a commutative semiring 1–category. If F W A! B
is an essentially surjective R–module functor and C is another R–module, then
F�W C˝R A! C˝R B is also essentially surjective.

Proof Let S be the full subcategory of C˝R B spanned by the image of F� . Then
the functor

j W C! HomR.B; C˝R B/

(obtained via adjunction from the identity C˝R B! C˝R B ) factors as

C! HomR.B;S/� HomR.B; C˝R B/;

since the image of j.X/ is the same (up to equivalence) as the image of j.X/ ıF ,
but j.X/ ıF W A! C˝R B factors through S .

Undoing the tensor-Hom adjunction, the identity on C˝R B factors as

C˝R B! S � C˝R B
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(up to equivalence). Therefore, S � C˝R B is essentially surjective. Since S is the
image of F� , this completes the proof.

Both of the following propositions are immediate using the lemma.

Proposition 2.26 If M and N are two cyclic R–modules, then M˝R N is also
cyclic. The structure map from R is given by RŠR˝R R!M˝R N , the tensor
product of the structure maps R!M; N . That is, CycMod˝R

R is symmetric monoidal,
and the subcategory inclusion CycMod˝R

R �Mod˝R
R;� is also symmetric monoidal.

Proposition 2.27 For A 2 CAlgR , the functor

A˝R�W ModR!ModA

restricts to
A˝R�W CycModR! CycModA:

Corollary 2.28 Higher categorical PROPs form a symmetric monoidal 1–category
PROP˝1 D CycMod˝

Finiso under the ordinary tensor product of symmetric monoidal
1–categories. This tensor product has the following universal property:

Mdl.T ˝ T 0; Cˇ/ŠMdl.T ;MdlT 0.Cˇ//:

We will see in Example 3.2 that Lawvere theories are also closed under tensor products.

The tensor product of 1–categorical PROPs and Lawvere theories is classical, but
we believe we are the first to show that higher PROPs and Lawvere theories form a
symmetric monoidal 1–category under ˝.

3 Cartesian monoidal and semiadditive categories

Some symmetric monoidal 1–categories Cˇ may be particularly well behaved. In a
best possible scenario, Cˇ may be additive. That is,

(1) the unit of Cˇ is a zero object (both initial and terminal);

(2) ˇ is a categorical biproduct (both a product and a coproduct); and

(3) for every object X , there is an automorphism X!X corresponding to negation.

Or just some of these conditions may hold: Cˇ is semicartesian monoidal if the unit
is terminal or semicocartesian monoidal if the unit is initial. If the unit is terminal
and ˇ is the product (respectively initial and coproduct), Cˇ is cartesian monoidal
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(cocartesian monoidal). If (1) and (2) both hold but not necessarily (3), then Cˇ is
semiadditive.

For every such collection of properties, there is a commutative semiring 1–category R
for which being an R–module is equivalent to satisfying that property. Since these are
properties and not extra structure, all these semirings will be solid.

In Section 3.1, we show that Fin and Finop classify cocartesian and cartesian monoidal
1–categories, and we also show that the effective Burnside 2–category Burneff classi-
fies semiadditive 1–categories.

In Section 3.2, we compare symmetric monoidal 1–categories to cocartesian (or,
dually, cartesian) monoidal 1–categories via the “tensor up” and “Hom up” operations
Finq˝� and Hom.Finq;�/.

In Section 3.3, we discuss the other possible properties from the list above — with the
exception of additive 1–categories themselves, which will be addressed in a sequel [4].

An immediate consequence of our results is that PROPs and Lawvere theories can be
identified with cyclic modules over Finiso , respectively Finop . Operads also give rise
to cyclic modules, but the correspondence is less immediate. In Section 3.4, we discuss
the place of 1–operads in our framework of algebraic theories as cyclic modules.
This will be relevant in Section 5, where we present some evidence that there is an
equivalence of1–categories between reduced1–operads and Lawvere theories which
are trivial over Burneff .

3.1 The semiring categories Fin and Burneff

We use CocartMon1 (respectively CartMon1 ) to denote the 1–category of cocarte-
sian (cartesian) monoidal 1–categories, along with those functors that preserve finite
coproducts (respectively products).

Theorem 3.1 Finq;� and Finop;q;� are solid semiring 1–categories. Moreover, a
symmetric monoidal 1–category is a Fin–module (respectively Finop–module) if and
only if it is cocartesian (respectively cartesian) monoidal. Exactly analogous statements
hold for 1–categories.

Proof We will only prove the claim about Fin–modules for 1–categories; the case
of Finop–modules is dual, and the 1–category case is identical, just removing most
instances of the symbol 1.
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Since Fin is the symmetric monoidal envelope on the commutative operad (see
Example 2.23), there is an equivalence Hom.Finq; Cˇ/ a!CAlg.Cˇ/, with the sym-
metric monoidal structure on CAlg.Cˇ/ given by coproducts, that is, the cocartesian
monoidal structure [23, Section 3.2.4].

Combining this with [23, Proposition 2.4.3.9], the forgetful functor CAlg.Cˇ/! Cˇ is
an equivalence if and only if Cˇ is cocartesian monoidal. Consider the following com-
mutative diagram, with the top map induced by inclusion into the second multiplicand,
i2W Finq! Finq˝Finq :

MapSymMon1.Finq; Cˇ/

a Š

��

MapSymMon1.Finq˝Finq; Cˇ/
f
oo

Š a

��

CAlg.Cˇ/ CAlg.CAlg.Cˇ/q/Š

Forget
oo

Thus f is an equivalence (even of symmetric monoidal 1–categories, but certainly of
1–groupoids). By Yoneda, i2W Finq! Finq˝Finq is an equivalence of symmetric
monoidal 1–categories, and thus Fin is solid.

We now follow an argument as in Section 4.8.2 of [23] to show that a symmetric
monoidal 1–category admits the structure of a Fin–module if and only if it is cocarte-
sian monoidal. This will suffice, since ModFin! SymMon1 is fully faithful (because
Fin is solid).

Suppose that Cq is a cocartesian monoidal 1–category. Then

C Š CAlg.Cq/Š Hom.Finq; Cq/;

and the latter lifts to a Fin–module structure, as desired (see the description of the right
adjoint in Remark 2.10).

Conversely, suppose Cˇ is a Fin–module. Then

Cˇ Š HomFin.Finq; Cˇ/Š Hom.Finq; Cˇ/Š CAlg.Cˇ/q;

which is cocartesian monoidal. (The second equivalence in the chain holds because
Fin is solid.)

Example 3.2 In Section 2.4, we asserted that cyclic modules over semiring 1–
categories are models for algebraic theories, and we saw that

PROP˝1 Š CycMod˝
Finiso :
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Cyclic Finop–modules are PROPs which are cartesian monoidal. Classically, these are
known as Lawvere theories, another common model for algebraic theories. For the
symmetric monoidal 1–category thereof, we write

Lawvere˝1 D CycMod˝Finop I

the tensor product comes from Proposition 2.26.

If Fin classifies cocartesian monoidal 1–categories, and Finop classifies cartesian
monoidal1–categories, then Finq˝Finop;q should classify those symmetric monoidal
1–categories which are both cartesian and cocartesian — that is, semiadditive 1–
categories. A natural problem then is to compute Fin˝ Finop . It turns out that it is the
2–category of spans of finite sets, also known as the effective Burnside 2–category.

Definition 3.3 The effective Burnside 2–category Burneff (which we thought of
as Span.Fin/ in the introduction) has finite sets for objects, and a morphism from
S to T consists of another finite set X and a span

X

��   

S T

Composition is via pullbacks, and 2–morphisms (all of which are invertible) are
bijections of the top object in the span. Via the nerve, we think of Burneff as an
1–category.

There is also a more general effective Burnside (or span) construction. The construction
for categories is classical; for 1–categories it is due to Barwick [2], so we use his
language (“effective Burnside construction”). In particular, Burneff is just the effective
Burnside construction applied to Fin. For now, we will not need to understand the
details of this construction in any more generality.

Corollary 3.4 As symmetric monoidal 1–categories,

Burneff;q
Š Finop;q

˝Finq:

In particular, Burneff;q;� is a commutative semiring 1–category, with � distributing
over q, and it is solid. Moreover, a symmetric monoidal 1–category admits the
structure of a Burneff–module if and only if it is semiadditive. Analogous statements
hold for 1–categories, with Burneff replaced by its homotopy category hBurneff .
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Proof We begin with the 1–category case.

We first prove that Fin˝Finop–modules are just semiadditive 1–categories. Indeed,
since Fin and Finop are solid, they are idempotent by Definition 2.11. Thus Fin˝Finop

is also solid, so that ModFin˝Finop is the full subcategory of SymMon1 given by the in-
tersection of the full subcategories ModFinŠCocartMon1 and ModFinopŠCartMon1 .
A semiadditive 1–category is just a cartesian monoidal 1–category which is also
cocartesian monoidal, so the claim is certainly true of Fin˝Finop .

Now it suffices to show that Burneff;q
Š Finq ˝ Finop;q as symmetric monoidal

1–categories. It will follow that Burneff has all the properties described. Consider the
free functors (that is, left adjoints to the forgetful functors)

Cat1
FinisoŒ��
������!SymMon1

�˝Fin˝Finop

�������! SemiaddCat1:

The free semiadditive1–category on the trivial one-object1–category � is Fin˝Finop .

On the other hand, Glasman [14, Theorem A.1] has already done our hard work for us
by showing that Burneff is the free semiadditive 1–category on �. That completes
the proof for 1–categories.

The only difference for the 1–category case is that we need to know hBurneff is
the free semiadditive category on one generator. This can be proven directly, or
alternatively follows from the 1–categorical statement since the homotopy category
functor hW Cat1!Cat is itself free; that is, the following diagram commutes since the
diagram of left adjoints (made up of horizontal forgetful functors and vertical nerves)
also commutes:

Cat1
Free

//

h
��

SemiaddCat1

h
��

Cat
Free

// SemiaddCat

Remark 3.5 Since CocartMon1 is isomorphic to ModFin , it inherits a symmetric
monoidal product ˝Fin . Moreover, since Fin is solid, the tensor product or Hom of
two cocartesian monoidal 1–categories agrees with their tensor product or Hom as
symmetric monoidal1–categories: C˝FinDŠC˝D and HomFin.C;D/ŠHom.C;D/.

Lurie has constructed a tensor product for 1–categories closed under certain colimits
[23, Section 4.8.1]. By considering 1–categories closed under finite coproducts, his
construction produces a closed symmetric monoidal structure for cocartesian monoidal
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1–categories. This agrees with ours, because for each C admitting finite coproducts, the
functors �˝LurieC and �˝Cq have the same right adjoint Funq.C;�/ŠHom.Cq;�/
[23, Remark 4.8.1.6].

3.2 Free and cofree (co)cartesian monoidal categories

If we wish to understand the relationship between SymMon1 and ModR , where R
is one of the semiring 1–categories just discussed, then we might study the cofree
construction Hom.R;�/ and free construction R˝� as in Remark 2.10.

Remark 3.6 In the cases of RD Fin, Finop, or Burneff, we already know the effect
of the cofree construction: the commutative algebra construction

CAlgŠ Hom.Finq;�/W SymMon1! CocartMon1

and the cocommutative coalgebra construction

CocCoalgŠ Hom.Finop;q;�/W SymMon1! CartMon1

are, respectively, the cofree functors from symmetric monoidal 1–categories to
(co)cartesian monoidal 1–categories.

The commutative-cocommutative bialgebra construction is equivalent to

Hom.Burneff;q;�/Š CAlg.CCoalg.�//;

that is, the cofree functor from symmetric monoidal 1–categories to semiadditive
1–categories.

For us, these results are direct consequences of Theorem 3.1 with Remark 2.10.

The free construction is more complicated, and not always easy to compute, but we do
have some results.

First, recall that if C� and D� are two cartesian monoidal categories, then Hom.C�;D�/
is the full subcategory of Fun.C;D/ spanned by product-preserving functors. The
following is a sort of cartesian monoidal Yoneda lemma.

Lemma 3.7 If C� is a cartesian monoidal 1–category, the Yoneda embedding
Cop! Fun.C;Top/ factors through Hom.C�;Top�/, so that there is a full subcategory
inclusion

Cop
� Hom.C�;Top�/:
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Dually, if Cq is cocartesian monoidal, there is a full subcategory inclusion

C � Hom.Cop;q;Top�/:

These embeddings are themselves symmetric monoidal functors if and only if C is
semiadditive.

Proof By [22, Proposition 5.1.3.2], corepresentable functors C! Top preserve limits,
and in particular finite products. Thus if C� is Cartesian monoidal, then the Yoneda
embedding factors through Cop ! Hom.C�;Top�/. The proof is similar for Cq

cocartesian monoidal.

For the last sentence: If (for example) C� is cartesian monoidal, then

Cop;�
! Hom.C�;Top�/�

is symmetric monoidal if and only if (applying tensor-Hom adjunctions) the map
C! Fun.Cop;Top/ factors through Hom.Cop;�;Top�/. That is, every corepresentable
functor C.�; X/ sends finite products in C to products in Top. This is true if and only if

C.A�B;�/Š C.A;�/� C.B;�/Š C.AqB;�/;

which is to say if and only if C is semiadditive.

Example 3.8 If T � is any Lawvere theory, T is a full subcategory of

Mdl.T �/op
Š Hom.T �;Top�/op:

Remark 3.9 If Cˇ is symmetric monoidal, then there is a forgetful functor

FgtC W Hom.Cop;ˇ;Top�/! Fun.Cop;Top/;

but in general we should not expect FgtC to be fully faithful (if Cˇ is not cocartesian
monoidal).

Theorem 3.10 If Cˇ is a symmetric monoidal1–category, then FgtC (as in the above
remark) has a left adjoint FreeC . If X 2 C , let X denote the representable functor
MapC.�; X/.

Then the free cocartesian monoidal 1–category Cˇ˝ Finq generated by Cˇ is equiv-
alent to the full subcategory of Hom.Cop;ˇ;Top�/ spanned by the objects FreeC.X/,
X 2 C , with its induced cocartesian monoidal structure.
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Remark 3.11 Dually (by considering Cop instead of C ), Cˇ˝Finop;q is the opposite
of the corresponding full subcategory of Hom.Cˇ;Top�/.

Proof Denote P.C/D Fun.Cop;Top/ and Pˇ.Cˇ/D Hom.Cop;ˇ;Top�/ throughout
the proof. We may write Pq.Cq/ instead of Pˇ.Cq/ for cocartesian monoidal Cq .

First, assume Cq cocartesian monoidal, so that Cq˝Finq Š Cq . By [22, Corollary
5.3.6.10], the forgetful functor PrL

1!CocartMon1 has a left adjoint given by Pq.�/,
and if F W Cq ! Dq is a coproduct-preserving functor, Pq.F / is left adjoint to
restriction F �W Hom.Dop;q;Top�/! Hom.Cop;q;Top�/.

As in [22, Section 5.3.6] (see also Remark 3.5), let Pq∅ denote the left adjoint to the
forgetful functor CocartMon1! Cat1 . (Elsewhere in this paper, we have thought
of Pq∅ .C/ as FinŒC�.) And let F W Pq∅ .C/!Cq and GW C!Pq∅ .C/ be the two functors
arising from the unit and counit of the adjunction .Pq∅ ;Forget/. Precompositions with
F and G induce

Pq.Cq/ F
�

�!Pq.Pq∅ .C//
G�
�!P.C/:

The composite functor is FgtC (because F ı GW C ! C is the identity), G� is an
equivalence by [22, Corollary 5.3.6.10], and F � is right adjoint to Pq.F /. Therefore
FgtC has a left adjoint FreeC .

Since FreeC has fully faithful right adjoint, it is a localization functor. In particular,
the restriction

FreeC W Pq.Cq/� P.C/! Pq.Cq/

is naturally equivalent to the identity [22, Proposition 5.2.7.4]. The theorem’s claim
follows from FreeC.X/ŠX and Lemma 3.7.

This completes the proof if Cq is cocartesian monoidal, but now take Cˇ arbitrary.
The symmetric monoidal functor i W Finiso

! Fin (which realizes Fin as cyclic) induces
after tensoring with C a symmetric monoidal functor

F W Cˇ! Cˇ˝Finq

which is essentially surjective by Lemma 2.25. Moreover,

i�W Hom.Finop;q;Top�/! Hom.Finiso;q;Top�/

is an equivalence, so

F �W Hom.Cop;ˇ
˝Finop;q;Top�/! Hom.Cop;ˇ;Top�/

is also an equivalence (from the tensor-Hom adjunction).
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Call Dˇ D Cˇ˝Finq , and consider the commutative square3

Pˇ.Cˇ/
FgtC

// P.C/

Pˇ.Dˇ/ FgtD

�
//

ŠF �

OO

P.D/

F �

OO

We have already established that FgtD has a left adjoint (because Dˇ is cocartesian
monoidal). In addition, the left vertical functor is an equivalence, and the right vertical
functor has left adjoint P.F / by [22, Theorem 5.1.5.6]. Thus FgtCŠF

�ıFgtDı.F
�/�1

has a left adjoint FreeC . Taking left adjoints, we have another commutative square (on
the left), and the right square also commutes since F �.X/ Š F.X/ by the Yoneda
lemma:

Pˇ.Cˇ/

Š.F �/�1

��

P.C/
FreeC
oo

F�
��

C
�
oo

F

��

Pˇ.Dˇ/ P.D/
FreeD
oo D

�

oo

The bottom composite D ! Pˇ.Dˇ/ is fully faithful because Dˇ is cocartesian
monoidal (Lemma 3.7) and FreeD.X/ŠX (first part of the proof).

Since moreover C! D is essentially surjective, DD C˝Fin is the full subcategory
of Pˇ.Cˇ/ spanned by the image of C . Following the top horizontal functors, the
image of X 2 C in Pˇ.Cˇ/ is FreeC.X/, as desired.

Thus computation of the free functor SymMon1! CocartMon1 reduces to compu-
tation of another free functor Fun.Cop;Top/! Hom.Cop;ˇ;Top�/, which may very
well still be a difficult problem.

However, if Cˇ is cyclic (a PROP), then we can say more.

Example 3.12 The Lawvere theory associated to a PROP T ˇ is T ˇ˝Finop;q (which
is a Lawvere theory by Proposition 2.26). If C� is cartesian monoidal (for example,
Set or Top), then

Mdl.T ˇ˝Finop;q; C�/ŠMdl.T ˇ; C�/:

3For the sake of this proof, we only need to know that the squares commute in the weakest sense: the
two composite functors around the square should send any single object to equivalent objects.

Algebraic & Geometric Topology, Volume 18 (2018)



2994 John D Berman

Corollary 3.13 The Lawvere theory T ˇ ˝ Finop;q associated to a PROP T ˇ is
equivalent to the full subcategory of Mdl.T ˇ/op spanned by the models which are
freely generated by finite sets (finitely generated free models).

Proof Let X be the distinguished (generating) object of T . We have a forgetful functor

RW Hom.T op;ˇ;Top�/! Top;

which evaluates at X . We want to show that the left adjoint L sends the finite discrete
space on n points to FreeT .Xˇn/, up to equivalence.

But indeed mapping into F 2 Hom.T op;ˇ;Top�/ from L.n/ or FreeT .Xˇn/ has the
same universal property,

Map.L.n/; F /Š F.X/�n Š F.Xˇn/ŠMap.FreeT .Xˇn/; F /:

Example 3.14 Since Burneff is the Lawvere theory for E1–spaces, it is the full
subcategory of CMon1 spanned by those E1–spaces which are freely generated by
finite sets.

By the 1–categorical analogues of these results (which are also true with the same
proofs), the 1–category hBurneff is the full subcategory of commutative monoids
spanned by Nk as k � 0 varies.

Example 3.15 Let Burn be the Lawvere theory for Ab1 (which exists by the appendix
of [12]). Burn is the full subcategory of Sp spanned by wedge powers of the sphere
spectrum, because Burn� Hom.Burnop;_;Top�/Š Ab1 � Sp.

Burn can also be obtained from Burneff by group-completing the Hom-spaces (which
are already E1–spaces since Burneff is semiadditive). This construction is known to
many people, but we are not aware of a reference for 1–categories. It will appear in
detail in the sequel to this paper [4].

Similarly, hBurn is the full subcategory of abelian groups spanned by the finitely
generated free abelian groups.

Example 3.16 If O is a (single-colored) 1–operad, the associated Lawvere theory is
Env.O/ˇ˝Finop;q .

By Corollary 3.13, this Lawvere theory is the (opposite of the) full subcategory
of AlgO.Top�/ spanned by the free O˝–algebras on finite sets. But there is a well-

Algebraic & Geometric Topology, Volume 18 (2018)



On the commutative algebra of categories 2995

known calculation of free algebras over an operad; the free O˝–algebra on the finite
set n has underlying space a

T2Fin

.O.T /�†T
nT /:

(Here we are using classical language; see [23, Section 3.1] for a precise treatment of
free algebras over 1–operads.) In particular, we can describe all the mapping spaces
in Env.O/ˇ˝Finop;q :

Map.Xˇm; Xˇn/Š
� a
T2Fin

O.T /�†T
mT

�n
:

3.3 The semiring categories Fininj and Fin�

Recall that we are using Fininj for the category of finite sets, considering only the
injections between them.

Proposition 3.17 Fininj and its opposite are solid semiring 1–categories. A sym-
metric monoidal 1–category Cˇ is a Fininj–module (respectively Fininj;op–module)
if and only if the unit of Cˇ is initial (respectively terminal ). We say that Cˇ is
semicocartesian monoidal (respectively semicartesian monoidal ).

Proof The proof is exactly as in Theorem 3.1, noting that Fininj;q is the symmetric
envelope of the E0–operad (Example 2.23), and AlgE0

.Cˇ/ Š C1= [23, Remark
2.1.3.10].

Example 3.18 There is an equivalence of symmetric monoidal 1–categories

Finq˝Fininj;op;q
Š Finq� :

This follows from Corollary 3.13 along with the observation that

Hom.Fininj;q;Top�/Š AlgE0
.Top�/D Top�:

The following proposition follows immediately from Example 3.18.

Proposition 3.19 Fin� and its opposite are solid semiring1–categories. A symmetric
monoidal 1–category C is a Fin�–module (respectively Finop

� –module) if and only
if C is cocartesian (respectively cartesian) monoidal and has a zero object (an object
which is both initial and terminal ).
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Remark 3.20 For a given morphism X  T ! Y in Burneff , we will say that the
morphism is, for example, (injective, arbitrary), if T !X is injective and T ! Y is
arbitrary. By considering functions which are injective, bijective, or arbitrary, we obtain
in this way nine types of structured morphisms in Burneff . For each type of structured
morphism, we may consider the subcategory of Burneff spanned by all objects, but
only the morphisms of that type. In this way, we recover each of the nine semiring
1–categories we have considered so far:

Fininj (bijective, injective) morphisms

Fininj;op (injective, bijective) morphisms

Fin (bijective, arbitrary) morphisms

Finop (arbitrary, bijective) morphisms

Fin� Š Fin˝Fininj;op (injective, arbitrary) morphisms

Finop
� Š Finop

˝Fininj (arbitrary, injective) morphisms

Finiso (bijective, bijective) morphisms

Fininj
� Š Fininj

˝Fininj;op (injective, injective) morphisms
(conditional on Conjecture 3.28; see Example 3.30)

Burneff
Š Fin˝Finop (arbitrary, arbitrary) morphisms

As usual, the cofree functors play an important role.

Remark 3.21 The cofree functor Hom.Finq� ;�/ is Segal’s �–object construction [28].

As in the proof of Proposition 3.17 (because Fininj
Š Env.E0/), the cofree functor

Hom.Fininj;q;�/ takes Cˇ to Cˇ
1=

.

The free functor Finq� ˝� can be described by means of Theorem 3.10, which tells us,
since Finq� ˝ Cˇ Š Finq˝Fininj;op;q

˝ Cˇ , that Finq� ˝ Cˇ is a full subcategory of

Hom.Cop;ˇ
˝Fininj;q;Top�/ŠHom.Cop;ˇ;Hom.Fininj;q;Top�//ŠHom.Cop;ˇ;Top�� /;

where Top� is the 1–category of pointed spaces.

The free functor Fininj;q
˝� is more mysterious, but see Conjecture 3.28.

3.4 Operads

Our main examples of modules over Fininj and Fin� arise from 1–operads. For the
rest of the section, we will look at these examples in more detail.
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We will want to be careful with our notation. A (colored) 1–operad O includes
by definition the data of an 1–category ŒO˝� fibered over Fin� . The fiber over the
pointed set h1i (a singleton plus a basepoint) is the 1–category O of colors. More
generally the objects of ŒO˝� are labeled by tuples of objects of O , and the fibration
ŒO˝�! Fin� sends an n–tuple to hni.

ŒO˝� itself admits a symmetric monoidal structure ˇ given by agglutination of tuples.
For example, .A;B/ˇ .C /Š .A;B; C /, and in particular, the fibration ŒO˝�! Fin�
lifts to a symmetric monoidal functor ŒO˝�ˇ! Finq� .

This symmetric monoidal structure on ŒO˝� is known to Lurie [23, Remark 2.2.4.7],
but no details are given. We will give a conjectural universal property of ŒO˝�ˇ

(Conjecture 3.28), but it is not important for us otherwise. A proof of this conjecture
would likely also make clear how to construct ŒO˝�ˇ explicitly.

Example 3.22 The empty tuple . / is a terminal object in ŒO˝�. That is, ŒO˝�ˇ itself
is a Fininj;op–module, which is colored (in the sense of Remark 2.24).

In other words, we can think of ŒO˝�ˇ as an “algebraic theory” relative to Fininj;op .
We will conjecture that it is precisely the Fininj;op–algebraic theory which models
O–algebras; see Conjecture 3.28.

Example 3.23 An 1–operad O is called unital if the empty tuple . /2 ŒO˝� is initial
[23, Section 2.3.1], or equivalently either of the following:

� Env.O/ˇ is a Fininj–module.

� ŒO˝�ˇ is a Fininj
˝Fininj;op–module.

O is called reduced if it is unital and the 1–category O of colors is contractible. In
this case, Env.O/ˇ is a cyclic Fininj–module.

The following proposition is a restatement of [23, Proposition 2.4.3.9] into our algebraic
language.

Proposition 3.24 Suppose that O is an 1–operad. Then there is an 1–category O0

such that
Env.O/ˇ˝Finq Š FinŒO0�;

where FinŒO0� is the commutative Fin–algebra freely generated by the1–category O0 .

If O is unital, then O0 ŠO , the underlying 1–category of colors.

Proof First, suppose that O is unital. It will suffice to show that the two sides are
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equivalent in CocartMon1 ; that is, for every cocartesian monoidal 1–category Cˇ ,
Hom.Env.O/ˇ˝Finq; Cˇ/Š Hom.FinŒO�; Cˇ/. Indeed,

Hom.Env.O/ˇ˝Finq; Cˇ/Š Hom.Env.O/ˇ;Hom.Finq; Cˇ//;

which is equivalent by [23, Proposition 2.4.3.9] to

Hom.Env.O/ˇ; Cˇ/Š AlgO.C
ˇ/Š Fun.O; C/Š Hom.FinŒO�; Cˇ/:

If O is not unital, note that O˝E0 is a unital 1–operad with symmetric monoidal
envelope Env.O/ˇ˝Fininj;q , so

Env.O/ˇ˝Finq Š Env.O˝E0/
ˇ
˝Finq Š FinŒO0�;

where O0 is the underlying 1–category of O˝E0 .

The author does not have an explicit description of FinŒO0�, but in general it should be
much simpler than Env.O/ because it does not remember any of the operad structure.
In the most important case, O0 is contractible and FinŒO0�Š Fin. That is:

Example 3.25 The 1–operad O is reduced if and only if Env.O/ˇ is a cyclic Fininj–
module such that Env.O/ˇ˝Finq Š Fin.

In Section 5.2, we will address to what extent we should expect a converse. That is, given
a cyclic Fininj–module M with M˝Finq Š Fin, does M arise from an 1–operad?
We conjecture that the answer to a slightly modified version of this question is yes.

We have seen that every operad O gives rise to a PROP Env.O/ˇ and a Lawvere theory
Env.O/ˇ˝Finop;q . However, there are certainly examples of Lawvere theories which
do not arise from operads. We give the following example in terms of 1–categories
and sets, but we expect a similar story for 1–categories.

Example 3.26 The Lawvere theory TR modeling R–modules [21] does not arise from
an operad (even colored nonunital) for any commutative ring R .

Indeed, suppose ModR D AlgO.Set�/, where O is an operad (possibly colored). We
may assume O is unital, because O˝E0 is a unital operad with the same Set�–algebras,
thus the same Lawvere theory. Since TR is semiadditive,

TR Š TR˝Finq Š .Env.O/ˇ˝Finop;q/˝Finq;

which is BurneffŒO� by Proposition 3.24. Thus

ModR Š Hom.TR;Set�/Š Fun.O;Hom.Burneff;q;Set�//Š Fun.O;CMon/:
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However, Fun.O;CMon/ cannot be additive (only semiadditive). To see this, note
that there is a full subcategory inclusion CMon! Fun.O;CMon/ given by taking
the constant functor. This inclusion is compatible with the semiadditive structure, but
CMon is not additive.

Now suppose O is any1–operad (not necessarily unital). We call a morphism of ŒO˝�
inert if it is of the form X ˇ f W X ˇ Y ! X (up to equivalence), where X and Y
are tuples and f W Y ! . / is a terminal map. On the other hand, call a morphism
f W S ! T of Fin� active if f �1.�/D f�g, and a morphism in ŒO˝� active if it lies
over an active morphism in Fin� .

Remark 3.27 Any morphism in ŒO˝� can be factored uniquely as an inert morphism
followed by an active morphism. That is, inert and active morphisms form a factorization
system for ŒO˝� [23, Proposition 2.1.2.4].

The subcategory ŒO˝act� (of all objects and only active morphisms) inherits a symmetric
monoidal structure from ŒO˝�. This is the symmetric monoidal envelope Env.O/ˇ Š
ŒO˝act�

ˇ [23, Section 2.2.4].

In a sense, ŒO˝� is built from Env.O/ by “forcing the empty tuple . / to be terminal” —
that is, by forcing Env.O/ˇ to be a Fininj;op–module. Motivated by this observation,
we make a conjecture.

Conjecture 3.28 For an1–operad O , there is an equivalence of symmetric monoidal
1–categories

ŒO˝�ˇ Š Env.O/ˇ˝Fininj;op;q:

Equivalently, Hom.ŒO˝�ˇ; Cˇ/Š AlgO.C
ˇ

=1
/.

Example 3.29 The E1–operad is given by ŒO˝�D Fin� . The conjecture correctly
asserts Fin� Š Fin˝Fininj;op .

Example 3.30 The E0–operad is given by ŒO˝� D Fininj
� , the subcategory of Fin�

given by all objects and only those morphisms f W S ! T which are injective away
from the basepoint (that is, f .x/Df .y/¤� implies xDy ). Assuming the conjecture,

Fininj
˝Fininj;op

Š Fininj
� :

This is consistent with Remark 3.20: Fininj
� can be identified with the subcategory of

Burneff spanned by all objects and only those morphisms such that both the ingressive
and the egressive are injective.
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4 Connective spectra

In the last section, we saw that various properties of symmetric monoidal 1–categories
(en route to full-fledged additive 1–categories) correspond to the structure of modules
over a solid semiring 1–category.

In this section, we consider another example of a solid semiring 1–category with
dramatically different properties.

Because any Kan complex is a quasicategory, there is a full subcategory inclusion
Top� Cat1 . This inclusion preserves products and has a right adjoint, so by Lemma 2.4,
there are full subcategory inclusions

Ab1 � CMon1 � SymMon1;

which are even symmetric monoidal. Recall from Section 2.1 that we are identify-
ing Ab1 with connective spectra. So connective spectra are examples of symmetric
monoidal 1–categories, and tensor products of the latter agree with smash products of
the former.

If E is a connective spectrum, we will write EE to denote the symmetric monoidal
1–category (emphasizing that we are thinking of paths in the 1–groupoid �1E as
directed morphisms, that is, in an 1–category). Somewhat abusively, we say that such
a symmetric monoidal 1–category EE is a connective spectrum.

Thus we may think of the sphere spectrum as a commutative semiring 1–category ES .
In Section 4.1, we show that ES–modules are exactly connective spectra; they recover
the subcategory Ab1 � SymMon1 .

In other words, a symmetric monoidal 1–category is an ES–module if and only if it is
both grouplike (in the sense that every object has an inverse up to equivalence) and an
1–groupoid (every morphism has an inverse up to equivalence).

Therefore the inclusion Ab1! SymMon1 has both a left and a right adjoint, given
by ES˝� and Hom.ES;�/, respectively. These are operations which produce spectra
from symmetric monoidal 1–categories; the former is related to algebraic K–theory
and the latter to the Picard group. Thus, we may view the higher algebra of spectra as
a special case of the commutative algebra of symmetric monoidal 1–categories, with
a variant of K–theory playing the role of tensoring up ES˝�. This is the content of
Section 4.2.
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4.1 The semiring category ES

As in the introduction to this section, connective spectra are examples of symmetric
monoidal 1–categories, and connective commutative ring spectra are examples of
commutative semiring 1–categories, via the symmetric monoidal full subcategory
inclusion

Ab1 � CMon1 � SymMon1:

We will shortly see that this full subcategory Ab1 can be recovered as modules over a
solid semiring 1–category, which is just the sphere spectrum ES .

Unlike in Section 3, this is not a situation where the 1–categorical and 1–categorical
stories are verbatim the same. We will want to compare the 1–categorical story for
motivation, even though it is in many ways less transparent than the 1–categorical
one (see Remarks 4.6 and 4.9).

Example 4.1 If M is a commutative monoid (for example, an abelian group), then
M is a (discrete) symmetric monoidal category.

If R is a commutative ring (or a commutative semiring), then R is a (discrete) semiring
category.

If C 2 SymMon is in the full subcategory Ab� SymMon, we might say abusively that
C is an abelian group.

Remark 4.2 If R is a solid ring spectrum, ER is also solid, since solidness is equivalent
to idempotence under ˝. Recall from Remark 2.14 that the solid ring spectra have
been classified (and are all connective): they are just the Moore spectra with �0E
isomorphic to a subring of Q.

In particular, ES is a solid semiring 1–category.

Warning 4.3 In contrast, solid rings are not necessarily solid as semiring categories.
For example Z=2 is a solid ring, but the map of semiring categories Z=2˝Z=2!Z=2

is not an equivalence (�1.HZ=2^HZ=2/Š Z=2, not 0), and therefore Z=2 is not
solid as a semiring category.

The difference is that the inclusion Top! Cat1 has a right adjoint, so Lemma 2.4
applies to show that Ab1 ! SymMon1 is a symmetric monoidal functor. But
Set! Cat does not have a right adjoint.
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Remark 4.4 A symmetric monoidal 1–category C is a connective spectrum if and
only if both: all objects are invertible up to equivalence (C is grouplike); and all
morphisms are invertible up to equivalence (C is an 1–groupoid).

But both of these conditions are simultaneously necessary: Finiso is a symmetric
monoidal 1–category which is an 1–groupoid but not grouplike. On the other hand,
for an example of a symmetric monoidal category which is grouplike but not an 1–
groupoid, take the full subcategory of ModR spanned by invertible modules (under ˝).

If, however, C is a commutative semiring 1–category which is grouplike (a ring
1–category), then C is an 1–groupoid by Corollary 4.8.

Theorem 4.5 The sphere spectrum ES is a solid semiring1–category, and a symmetric
monoidal 1–category C admits an ES–module structure if and only if C is a connective
spectrum.

Remark 4.6 We might ask whether a similar result holds for 1–categories. The
answer is partially yes. However, we have already seen in Warning 4.3 that the functor
Ab! Cat does not even have a right adjoint, so certainly Ab is not a category of
modules in Cat.

Instead, we can only expect to recover “2–abelian groups” as a category of modules.
These are symmetric monoidal categories which are both grouplike and groupoids.

The associated semiring category (which is itself an example of such a 2–abelian group)
is hES , the homotopy category of ES . As a groupoid, hES has objects labeled by Z, and
all automorphism groups are isomorphic to �1SŠ Z=2.

Since ES is a solid semiring 1–category, hES is a solid semiring 1–category, and
a symmetric monoidal category admits an hES–module structure precisely if it is a
groupoid with every object invertible up to isomorphism (a 2–abelian group). The
proof is essentially the same as the proof of Theorem 4.5 (to follow).

Now we are ready to prove Theorem 4.5.

Lemma 4.7 Every ES–module is an 1–groupoid.

Proof Suppose MC is an ESC;�–module. As in the discussion before Example 2.9,
hW SymMon˝1! SymMon˝ is symmetric monoidal, so hMC is an hES–module (as
1–categories). It suffices to show that hM is a groupoid.
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Let 0 and 1 denote the additive and multiplicative units of hES , and �1 an additive
inverse of 1, with a chosen isomorphism ˛W .�1/C 1 �!� 0. An integer n denotes (as
an object of hES) 1Cn if n is positive or .�1/Cjnj if n is negative.

The module structure on hM induces symmetric monoidal functors hESC˝ hMC!
hMC and therefore

m�W hES
C
! Hom.hMC; hMC/

such that m1 is the identity functor and m0 is the constant functor sending all of hM
to the unit 0 2 hM. Denote m�1X by �X , and note that ˛W .�1/C 1 �!� 0 induces
a natural isomorphism ˛X W .�X/CX �!

� 0.

Suppose f W X ! Y in hM. The inverse to f will be �f W �Y ! �X after an
appropriate shift. Specifically, the inverse to f C0W XC0! Y C0 is the composition

Y C 0
˛�1

X CY
����!X C .�X/CY

XC.�f /CY
�������!X C .�Y /CY

XC˛Y
����!X C 0:

To prove it is the inverse amounts to a diagram chase; the diagram proving that
f �1 ıf D id is as follows (the right square commutes by naturality of ˛X ):

X C 0
˛�1

X CX
//

f

��

X C .�X/CX
XC˛X

//

XC.�f /Cf

��

X C 0

id
��

Y C 0
˛�1

X CY

// X C .�X/CY
XC.�f /CY

// X C .�Y /CY
XC˛Y

// X C 0

Proof of Theorem 4.5 We already saw that ES is solid (Remark 4.2).

Now because Ab˝1 � SymMon˝1 as symmetric monoidal 1–categories, any connec-
tive spectrum is an ES–module (since it is an S–module in Ab˝1 ). Conversely, suppose
the symmetric monoidal 1–category Cˇ is an ES–module. By the lemma, C is a
(symmetric monoidal) 1–groupoid, that is, an E1–space. Since �0C is a �0SŠ Z

module, C is even grouplike, and therefore a connective spectrum.

Corollary 4.8 Suppose R is a commutative ring1–category — that is, a commutative
semiring 1–category which is grouplike (every object has an additive inverse up to
equivalence). Then R is an 1–groupoid.

Proof If R is a commutative ring 1–category, Riso is a commutative ring 1–
groupoid (connective commutative ring spectrum), and by Lemma 2.4 the inclusion
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Riso!R is a semiring functor.4 The composite semiring functor

ES!Riso
!R

exhibits R as an ES–algebra, thus an ES–module. So R is an 1–groupoid.

In Remark 4.6, we noted that the 1–categorical analogue of ES is the groupoid with
objects labeled by Z, and all automorphism groups isomorphic to Z=2. In particular,
it is not (as we might expect) Z. Regardless, Z has some interesting properties as a
semiring category:

Example 4.9 We think of the ring Z as a commutative semiring 1–category in one
of two (equivalent) ways: either as the nerve of the discrete semiring 1–category, or as
the connective Eilenberg–Mac Lane spectrum

���!

HZ. To avoid confusion, we will use
the notation EZ.

Since EZ is an ES–module, any module over EZ is a connective spectrum. That is,

Mod EZ.SymMon˝1/ŠModHZ.Ab^1/;

which is the 1–category of chain complexes of abelian groups, concentrated in non-
negative degrees [30].

But EZ is not solid, since HZ^HZ is the integral dual Steenrod algebra, and not HZ.
On the other hand, the map ��.HZ^HZ/! ��HZ is an isomorphism for � D 0; 1
and only stops being an isomorphism at � D 2 (where �2.HZ^HZ/Š Z).

The upshot is this: that Z is solid as a semiring 1–category, but not as a semiring
n–category for any n > 1.

Theorem 4.10 The semiring (1–)category Z is solid, and a symmetric monoidal
(1–)category Cˇ admits the structure of a Z–module if and only if Cˇ is a 2–abelian
group (both grouplike and a groupoid) and the symmetry isomorphisms � W X ˇY !
Y ˇX in C are all identity morphisms when X D Y .

Example 4.11 If A is any abelian group, the category BA (with one object and
morphisms labeled by A) is a symmetric monoidal category and a Z–module.

Lemma 4.12 Let NC be the discrete symmetric monoidal (1–)category correspond-
ing to the commutative monoid of nonnegative integers under addition. As symmetric
monoidal (1–)categories, ZC ŠNC˝ hESC .

4Specifically, the semiring functor is the counit of the symmetric monoidal adjunction i W CMon^1�
SymMon˝1W .�/

iso evaluated at R .
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Proof of lemma Denote T DN˝ hES . There are semiring functors from N and hES
to T given by (for example)

hESŠ Finiso
˝ hES!N˝ hESŠ T :

First, we will analyze the image of hSC in T .

Since the “isomorphism classes” functor �0W Cat! Set is product-preserving, likewise
�0W SymMon˝! CMon˝ is symmetric monoidal. So

�0.T /ŠN˝ZŠ Z:

Recall that every object of hES has exactly one nontrivial automorphism. For 2 2 hES ,
this is the symmetry isomorphism of the symmetric monoidal structure � W 1˚1!1˚1.
For any other n2 hES , it is �˚.n�2/. However, since the symmetric monoidal functor
NC! T preserves the symmetry automorphism, all symmetry automorphisms in T
are identities. Therefore, every morphism of hES is sent to the identity in T .

Let T 0 be the (semiring) subcategory of T spanned by the image of hES . We have just
seen that T 0 Š Z. In particular, there are semiring functors hES! T 0 and N! T 0 ,
and therefore an induced semiring functor from the coproduct T ! T 0 , such that
T ! T 0 � T is equivalent to the identity on T . So T Š T 0 Š Z, as desired.

Proof of theorem We already saw in Example 4.9 that Z is solid. Since it is itself a
2–abelian group (an hES–module), all Z–modules are 2–abelian groups. Now say that
a 2–abelian group is strictly commutative if � W X ˇX ! X ˇX is the identity for
all X . As in the proofs of Theorems 3.1 and 4.5, we need only show both

(1) Hom.ZC; Cˇ/ is strictly commutative for all symmetric monoidal C ;

(2) if Cˇ is a strictly commutative 2–abelian group, Hom.ZC; Cˇ/ ! C is an
equivalence of categories.

If Cˇ is any symmetric monoidal category, and F W ZC! C˝ a symmetric monoidal
functor, then by the definition of a symmetric monoidal functor, the following diagram
commutes:

F.n/ˇF.n/
�
//

�

��

F.n/ˇF.n/

�

��

F.nCn/
D

// F.nCn/

Here the bottom morphism is the identity and � is an isomorphism, so the symmetry
isomorphism � in Cˇ is also the identity. Since this holds for every n, the symmetry
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map � W F ˇF ! F ˇF in the symmetric monoidal category Hom.ZC; Cˇ/ is also
the identity. Therefore, Hom.ZC; Cˇ/ is strictly commutative.

For (2), suppose that Cˇ is a strictly commutative 2–abelian group. Note that being
a strictly commutative 2–abelian group is invariant under equivalence of symmetric
monoidal categories, so we may as well assume Cˇ is also permutative (or if not,
replace it by a permutative category). Then

Hom.ZC; Cˇ/Š Hom.NC;Hom.hESC; Cˇ//Š Hom.NC; Cˇ/

by the lemma and the fact that Cˇ is an hES–module (a 2–abelian group). So we
need only show that the evaluation at one functor, ev1W Hom.NC; Cˇ/! C , is an
equivalence of categories.

Consider the functor F W C! Hom.NC; Cˇ/ given by

F.X/.n/DXˇn and F.f /.n/D f ˇnW Xˇn! Y ˇn:

Then ev1F is the identity, so ev1 is full and essentially surjective. Moreover, ev1 is
faithful, and therefore an equivalence of categories, as desired.

4.2 Free and cofree spectra

As with Fin and Finop , the cofree spectrum on a symmetric monoidal 1–category,
Hom.ESC;�/W SymMon1! Ab1 , is not difficult to describe.

Proposition 4.13 If Cˇ is a symmetric monoidal 1–category, Hom.ESC; Cˇ/ is the
symmetric monoidal subcategory of Cˇ spanned by those objects which have inverses
(up to equivalence) and morphisms which have inverses (also up to equivalence). This
is sometimes known as the Picard 1–groupoid Pic.Cˇ/.

Proof Let D be the full subcategory of C spanned by invertible objects (invertible up
to equivalence). Then Hom.ESC;Dˇ/! Hom.ESC; Cˇ/ is an equivalence, since every
object of ES is invertible (and therefore is sent by any symmetric monoidal functor to
an invertible object of C ).

Now we know there is a subcategory inclusion

i W Hom.ESC;Diso;ˇ/� Hom.ESC;Dˇ/

because Diso is a subcategory of D . (This follows from the definition of symmetric
monoidal functors [23, Definition 2.1.3.7].) Any object of Hom.ESC;Dˇ/ factors
through Diso (is in the image of i , up to equivalence) since every morphism in ES is
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invertible. Moreover, because Hom.ESC;Dˇ/ is an ES–module (Remark 2.10), it is an
1–groupoid by Lemma 4.7. Thus any morphism �W F !G in Hom.ESC;Dˇ/ is in
the image of i (up to equivalence), since for any object x 2 ES , �x W F.X/! G.X/

must be an equivalence. Therefore i is an equivalence.

But ES and Diso;ˇ are both ES–modules; write Diso Š EE where E is a connective
spectrum. Because ES is solid,

Hom.ESC; Cˇ/Š Hom.ESC;Diso;�/Š HomES.
ESC;Diso;�/Š HomES.

ES; EE/:

Moreover, because Mod˝
ES
Š Ab^1 as symmetric monoidal 1–categories, we have

HomES.
ES; EE/D EX , where X D HomSp.S; E/ŠE . Thus, as desired,

Hom.ESC; Cˇ/Š EE Š Diso:

As in Section 3.2, the free construction ES˝� is much harder to compute, but we can
say something nonetheless. In this case, we think of ES˝ Cˇ as a variant of algebraic
K–theory of Cˇ . Where the usual algebraic K–theory of a symmetric monoidal 1–
category roughly involves taking the core (throwing out noninvertible morphisms) and
then the 1–group completion, ES˝� involves taking the classifying space (formally
inverting all morphisms) and then the1–group completion. Of course, if Cˇ is already
an 1–groupoid, the two constructions agree.

Proposition 4.14 If Cˇ is symmetric monoidal, then ES˝CˇŠK.jCˇj/. Here jCj is
the geometric realization of the 1–category C (construed as a quasicategory and thus a
simplicial set), and K.�/ is the 1–group completion of an E1–space.

Proof By Theorem 4.5, ES˝� is left adjoint to the subcategory inclusion Ab1!
SymMon1 , which factors as

Ab1! CMon1! SymMon1:

Therefore, ES˝� factors as a composition of left adjoints

SymMon1
j�j
���!CMon1

K.�/
���!Ab1:

For example, if Cˇ has an initial or terminal object, its classifying space is contractible.
The following corollary is an algebraic restatement of this classical fact.

Corollary 4.15 ES˝ Fininj
Š 0 Š ES˝ Fininj;op . As a result, ES˝ Cˇ D 0 for any C

whose unit is initial or terminal, and in particular for Cˇ any of the solid semiring
1–categories discussed before: Fin, Fin� , Fininj, Burneff, or their opposites.
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We also have a slightly stronger result.

Corollary 4.16 If Cˇ is a Fininj–module, then the only object which is invertible (up
to equivalence) is the unit.

Proof By Proposition 4.13, Hom.ESC˝Fininj;q; Cˇ/ŠHom.ESC; Cˇ/ is the maximal
subgroupoid spanned by invertible objects. But it is also a module over ES˝Fininj

Š 0,
and therefore contractible. So every invertible object is equivalent to the unit.

Example 4.17 Let Hˇ be the following pushout of symmetric monoidal (not semir-
ing!) 1–categories (all symmetric monoidal structures are disjoint union, as usual):

Finiso //

��

Fin

��

Finop // H

In particular, an object of Hom.Hˇ; Cˇ/ consists of an object of C along with both
a commutative algebra and a cocommutative coalgebra structure (but not necessar-
ily compatible with each other). Tensoring with symmetric monoidal 1–categories
Cˇ˝� preserves colimits (such as pushouts) because the functor has a right adjoint
Hom.Cˇ;�/. Thus Hˇ˝ ES is the pushout

ES //

��

0

��

0 // Hˇ˝ ES

Since this is a square of ES–modules (connective spectra), we can take the pushout in
spectra, so that Hˇ˝ ESŠ

��!

†S , the suspension of S .

On the other hand, Hˇ˝ Finq Š Hˇ˝ Finop;q
Š Burneff , by analyzing the same

pushout square.

5 Questions and conjectures

5.1 Computation of tensor products

A major obstacle in this subject is the difficulty in making any computations, such as
the computation of tensor products of symmetric monoidal 1–categories. In Sections
3.2 and 4.2, we saw strategies for computing C˝ Fin, C˝ Finop , and C˝ ES , which
are useful at least for some symmetric monoidal C .
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We also know in many examples that tensor products are related to the span (or effective
Burnside) construction. Notably:

� Fin˝Finop
Š Burneff (Corollary 3.4).

� All the other semiring 1–categories of Section 3 can be described as span
subcategories of Burneff (Remark 3.20 and, conjecturally, Example 3.30).

� There is some reason to believe Env.O/˝ Finop;q can be described via a span
construction; see Remark 5.1.

Remark 5.1 The last point requires justification. Let O be a reduced 1–operad, and
recall from Example 3.16 that the associated Lawvere theory has mapping spaces

Map.X˝m; X˝n/Š
� a
T2Fin

O.T /�†T
mT

�n
:

This mapping space can equivalently be described as the space of spans

T
f

~~

g

  

Œm� Œn�

where T is an arbitrary finite pointed set, f is an active morphism of finite pointed sets,
g is an active morphism in ŒO˝�, and Œn� denotes a set with n elements. Thus we expect
that the associated Lawvere theory can be described in terms of a span construction.

A very natural question then is:

Question 5.2 Is there a general class of tensor products of symmetric monoidal 1–
categories which can be computed via span constructions?

On the other hand, we might approach this question from the opposite direction. Instead
of trying to compute tensor products, we might regard tensor product formulas like
Fin˝Finop

ŠBurneff as providing algebraic universal properties for span constructions.
There are many places where span constructions naturally arise, and a universal property
would be helpful. A particularly natural example comes from equivariant homotopy
theory, as in Example 2.20.

Question 5.3 Let G be a finite group, FinG the category of finite G–sets, and Burneff
G

the category of spans of finite G–sets. Can Burneff
G be decomposed as a tensor product?

Is it true that
Burneff

G Š FinG ˝Finiso
G

Finop
G ‹
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This last question is equivalent to asking whether

Hom.Burneff;q
G ;Top�/Š HomFiniso

G
.FinqG ;Hom.Finop;q

G ;Top�//I

or whether equivariant E1–spaces coincide with “G–commutative monoids” in equi-
variant spaces. Here we mean G–commutative monoids in the sense of Mazur [27] and
Kaledin [19]. The more refined notions of Hill and Hopkins [18] or Barwick et al [3]
require that we work with equivariant symmetric monoidal 1–categories. In that fully
equivariant setting, we very much expect to have a statement of the form Burneff

G Š

FinG ˝Finiso
G

Finop
G , but the successes of [27] and [19] suggest that there is some hope

of proving such a statement even for ordinary symmetric monoidal 1–categories.

5.2 Reconstruction of operads

We have seen (Proposition 3.24) that to every unital 1–operad O (given by a fibration
ŒO˝� ! Fin� ) is associated a PROP, or symmetric monoidal envelope, satisfying
Env.O/ˇ˝Finq Š FinŒO�.

Remark 5.4 The associated PROP is colored (see Remark 2.24); that is, it includes
the data of a full subcategory O inducing an essentially surjective symmetric monoidal
functor FinisoŒO� ! Env.O/ˇ . Proposition 3.24 asserts that this map becomes an
equivalence after tensoring with Fin; we say that the colored PROP is trivial over Fin.

We might now ask whether we can reconstruct an 1–operad from the associated
colored PROP. Assuming Conjecture 3.28, the answer is yes:

There is a symmetric monoidal functor FinŒO�! Fin induced from the trivial functor
O! Fin sending all of O to the singleton set. Then we have a composite

Env.O/! Env.O/ˇ˝Finq Š FinŒO�! Fin:

Tensoring this functor with Fininj;op produces (assuming Conjecture 3.28) a functor
ŒO˝�! Fin� which recovers the original 1–operad.

This motivates a second question: given any colored PROP T which is trivial over
Fin, will this procedure produce an 1–operad? The answer is no, for the following
reason: if T ˝ Fininj;op were an 1–operad, it should have the property that picking
an object over a doubleton set Œ2� amounts to picking a pair of objects, each over a
singleton set Œ1� (condition (2) of Definition 2.1.1.10 in [23]). But there is no reason to
suspect such a thing, unless T is suitably built out of a cartesian monoidal 1–category
(a Lawvere theory):
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Conjecture 5.5 The functor Env.�/ˇ ˝ Finop , from unital 1–operads to colored
Finop
� –modules (“colored pointed Lawvere theories”, if you like), is fully faithful. A

colored Finop
� –module is in the image of this functor if and only if it is trivial over

Burneff .
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