Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
The profinite completions of knot groups determine the Alexander polynomials

Jun Ueki

Algebraic & Geometric Topology 18 (2018) 3013–3030
Abstract

We study several properties of the completed group ring ̂[[t ̂]] and the completed Alexander modules of knots. Then we prove that if the profinite completions of the groups of two knots J and K are isomorphic, then their Alexander polynomials ΔJ(t) and ΔK(t) coincide.

PDF Access Denied

However, your active subscription may be available on Project Euclid at
https://projecteuclid.org/agt

We have not been able to recognize your IP address 3.95.139.100 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Keywords
profinite completion, profinite group ring, knot, branched covering
Mathematical Subject Classification 2010
Primary: 57M27
Secondary: 20E18, 20E26, 57M12
References
Publication
Received: 24 September 2017
Revised: 21 February 2018
Accepted: 5 March 2018
Published: 22 August 2018
Authors
Jun Ueki
Department of Mathematics
School of System Design and Technology
Tokyo Denki University
Tokyo
Japan