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The profinite completions of knot groups determine the
Alexander polynomials

JUN UEKI

We study several properties of the completed group ring yZŒŒt yZ�� and the completed
Alexander modules of knots. Then we prove that if the profinite completions of the
groups of two knots J and K are isomorphic, then their Alexander polynomials
�J .t/ and �K .t/ coincide.

57M27; 20E18, 20E26, 57M12

1 Introduction

It is experimentally known that in order to distinguish two knots it is efficient to compare
homology torsions of their finite covers (eg Perko [37] and Kodama and Sakuma [25]).
Since homology torsions of finite covers are described by the profinite completions
of knot groups (see Remark 4.2), it is an interesting question to ask what topological
properties of knots are determined by the profinite completions of knot groups, in
other words, what the inverse systems of finite quotients of knot groups know. In this
article, we prove that the profinite completions of knot groups completely determine
the Alexander polynomials of knots, in the sense of Theorem 1.1.

3–manifold groups � are residually finite, namely, they canonically inject into their
profinite completions y� by results of Hempel [19] and Perelman [34; 35; 36]. Grothen-
dieck wrote that it is an interesting question whether finitely generated (finitely pre-
sented) residually finite groups are determined by their profinite completions [18], while
negative examples of finitely presented groups were given by Bridson and Grunewald [9].
Earlier negative examples of not necessarily finitely presented groups had been given
by Platonov and Tavgen [38].

What topological properties are determined by y� ’s is a very subtle problem and yet
to be understood completely. More detailed background and related topics will be
described in Section 2.
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Let us recall results prior to our main result. Bridson and Reid distinguished y� of
the figure-eight knot from those of other 3–manifolds [10]. Hence, the Alexander
polynomial of the figure-eight knot is determined by its y� . Boileau and Friedl proved
among other statements that the Alexander polynomial of a knot is determined by y� if
it does not vanish at any root of unity [6, Proposition 4.10]. They used Fox’s formula
for Z=nZ–covers [12] and applied Fried’s proposition [14]. We generalize their results
by removing any assumption on knots. The following theorem makes precise what we
mean by the statement in the title of this article that the profinite completions of knot
groups determine the Alexander polynomials:

Theorem 1.1 Let J and K be knots in S3 and suppose that an isomorphism
'W y�1.S

3 � J / Š�! y�1.S
3 � K/ between the profinite completions of their knot

groups is given. Then their Alexander polynomials �J .t/ and �K .t/ coincide up to
multiplication by a unit of ZŒtZ�.

The idea of our proof is to improve the argument of Boileau and Friedl [6]. We consider
not just the orders of groups on each layer, but also an isomorphism between the
completed Alexander modules over the completed group ring yZŒŒt yZ��, and obtain the
equality of the Fitting ideals. In Section 3, we develop some algebraic lemmas. We
study several properties of yZŒŒt yZ��, which would be useful also in studies of yZ–covers
of links or yZ–extensions of number fields (eg Ueki [42] and Asada [2]). In particular,
we prove that in the completed group ring yZŒŒt yZ��, any element 0¤ f .t/ 2 ZŒt � is not
a zero-divisor (Lemma 3.3). In Section 4, we develop some topological lemmas. We
consider inverse systems of branched Z=nZ–covers of knots and obtain an equality of
ideals in yZŒŒt yZ��. In addition, we define and study the completed Alexander modules of
knots. In Section 5, we prove our theorem.

We denote the profinite integer ring lim
 ��n

Z=nZ by yZ and the p–adic integer ring
lim
 ��n

Z=pnZ by Zp for each prime number p .

2 Preliminaries

In order to put our work into context, we survey some general background and related
work, together with some outlook on future work. We will not make use of them in the
paper, other than the definition of profinite completion. A basic reference for profinite
groups is [39].
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The profinite completion y� of a discrete group � is a topological group defined by
lim
 ���

�=� , where � runs through all the normal subgroups of finite index, and endowed
with the weakest topology such that the kernel ker.y� ��=�/ of the natural projection
is open for every � .

A group � is said to be residually finite if each nontrivial g 2 � has a finite quotient
of � in which the image of g is nontrivial. This condition is equivalent to that the
canonical homomorphism �! y� is an injection.

A residually finite group � is said to be Grothendieck rigid if none of its finitely
generated proper subgroups � < � induces an isomorphism y� Š�! y� on their profinite
completions [27]. Grothendieck wrote that it is an interesting question whether every
finitely presented residually finite group would satisfy this condition [18], while negative
examples were given by Bridson and Grunewald [9]. Thus, “ y� forgets about � to
some extent”.

By a result of Hempel [19] together with Perelman’s solution to the geometrization
conjecture [34; 35; 36], the fundamental group of any compact 3–manifold is residually
finite. By Long and Reid [27], the fundamental group of any closed geometric 3–
manifold is Grothendieck rigid. In addition, recently Boileau and Friedl proved that
the fundamental groups of compact, orientable, irreducible 3–manifolds with toroidal
boundaries are Grothendieck rigid [7]. However, it seems still unknown whether
profinite completions of groups of distinct two knots are never isomorphic to each
other.

Now we focus on the question of what topological properties the profinite completions
y� of 3–manifolds groups know. Note that in this article, if we write that y� determines
the property P , then it means the following statement: Suppose that M and N are
3–manifolds with y�1.M /Š y�1.N /. Then M satisfies the property P if and only if
so does N . (In another context, it might mean instead that we can explicitly describe
whether M satisfies the property P or not by using y�1.M /.)

By Wilton and Zalesskii [50], y� of a closed 3–manifold M determines whether M is
hyperbolic, and whether it is Seifert fibered. By Funar [16] and Hempel [20], there are
pairs of torus bundles and those of Seifert 3–manifolds whose fundamental groups are
not isomorphic but whose y� ’s are isomorphic, while the existence of such a pair of
hyperbolic 3–manifolds is still unknown. Other recent progress is due to Wilton and
Zalesskii [49; 51] and Wilkes [44; 45; 46; 47; 48].
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In regard to knot exteriors, Bridson and Reid distinguished y� of the figure-eight
knot from those of other 3–manifolds [10]. Boileau and Friedl distinguished y� of
each torus knot and the figure-eight knot from those of other knots [6]. In addition,
Bridson, Reid and Wilton proved for compact 3–manifolds with 1st Betti number 1

that fiberedness is determined by y� ’s [11], and Jaikin-Zapirain removed the condition
on Betti number [22].

As for an explicit description by using y� of the Alexander polynomial of a knot, we
have Hillar’s study [21], so we have an algorithm to recover a polynomial without root
on roots of unity from its cyclic resultants after knowing its degree. After our study
in this article, it will still remain, for instance, to study how to recover the Alexander
polynomial of a knot K without any assumption from the family of groups f yH1.Xn/gn

associated to the cyclic covers fXn!X gn over the knot exterior X D S3�K .

An important application of profinite (prosolvable) completions of fundamental groups
is the work of Friedl and Vidussi [15]. They used prosolvable completions to prove that
twisted Alexander polynomials determine the fiberedness of 3–manifolds. Another
application can be found in a study of PD.3/–groups by Boileau and Hillman [5].

Finally we would like to make a remark on the analogy between knots and prime
numbers. It was initially pointed out by Mazur [29] that there is a close relation between
Iwasawa theory on Zp –extensions of number fields and Alexander–Fox theory on
systems of cyclic covers over knot exteriors. After years, Kapranov, Reznikov, and
Morishita described the analogy between low-dimensional topology and number theory
in a systematic manner, and their study is called arithmetic topology (see [32]).

One of the basic analogies is observed between the fundamental group �1.M / of
a 3–manifold M and the étale fundamental group �ét

1
.SpecOk/ of the integer ring

Ok of a number field k , where the latter is a profinite group a priori. Therefore, the
study of profinite rigidity of 3–manifold groups would give a new angle in arithmetic
topology, as mentioned by Mazur [30, page 6].

We can expect further progress in this direction. As for Alexander–Fox theory, twisted
Alexander invariants of knots associated to certain profinite representations are investi-
gated from a viewpoint of Hida–Mazur theory and Galois deformation theory [33; 24],
and an analogue of Fox’s formula for twisted Alexander polynomial is given by
Tange [41]. In addition, we have a remarkable theorem by Le (the Bergeron–Venkatesh
conjecture) on the asymptotic formula of homology torsion growth in which hyperbolic
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volume appears (eg [4; 26]), while Lück’s “optimistic conjecture” on L2 –torsion would
imply that hyperbolic volume is determined by y� [28].

Moreover, in anabelian geometry, Mochizuki introduced the terms “mono/bi-anabelian”
in order to distinguish formulations in reconstruction problems for arithmetic funda-
mental groups (see [31, Remarks 3.7.3 and 3.7.5]). It would be interesting to examine
how to formulate answers to our question of what y� knows in comparison with his
point of view.

3 Algebraic lemmas

To begin with, we recall two assertions which will be used in this section. A polynomial
f .t/D

P
0�i�d ai t

d�i in ZŒt � with d D degf .t/ is said to be reciprocal if ai D ad�i

holds for every i . Such a polynomial is also said to be self-reciprocal or palindromic.
For two polynomials f .t/D

P
0�i�d ai t

d�i and g.t/D
P

0�j�e bj te�j in ZŒt � with
d D degf .t/ and e D deg g.t/, their resultant R.f .t/;g.t// 2 Z is defined as the
determinant of the Sylvester matrix

Syl.f .x/;g.x//D

0BBBBBB@
a0 a1 � � � am

: : :
: : :

: : :
a0 a1 � � � am

b0 b1 � � � bn
: : :

: : :
: : :

b0 b1 � � � bn

1CCCCCCA 2MdCe.Z/;

whose entries are given by their coefficients ai and bi . We have R.f .t/;g.t// D

ae
0
bd

0

Q
i;j .˛i � ǰ /, where ˛i and ǰ run through roots of f .t/ and g.t/ in an

algebraic closure Q of Q (see [43]).

Fried’s proposition is stated as follows:

Proposition 3.1 (Fried [14, Proposition]) Let f .t/ be a reciprocal polynomial in
ZŒt � and let R.f .t/; tn�1/ denote the resultant of f .t/ and tn�1 for each n 2N . If
R.f .t/; tn� 1/¤ 0 holds for every n 2N>0 , then the sequence fjR.f .t/; tn� 1/jgn

determines f .t/.

We remark that Proposition 3.1 was originally stated for f .t/2RŒt � and in Fried’s proof
the condition that the coefficients are in R was essential. The proposition was proved by
studying the zeta function B.z/D

P1
nD1jR.f .t/; t

n�1/jzn=n of a dynamical system,
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which was introduced by Artin and Mazur [1]. We cannot remove the assumption
R.f .t/; tn�1/¤ 0 (eg Fried’s pair in Examples 3.7), while Hillar [21] proved without
this assumption that B.z/ is a rational function. A recent development on such kinds
of zeta functions is due to Bräunling [8].

The following proposition is an algebraic generalization of Fox’s formula:

Proposition 3.2 (Weber [43]) Let f .t/ and g.t/ be nonzero polynomials in ZŒt �

and suppose that the highest coefficient and the constant term of g.t/ are equal
to ˙1. If f .t/ and g.t/ have no common root in an algebraic closure Q of Q,
then ZŒt �=.f .t/;g.t// is a finite group with order jR.f .t/;g.t//j.

Note that R.f .t/; tn�1/D 0 holds if and only if f .t/ has a root at a primitive mth root
of unity for some m 2N with m j n. The mth cyclotomic polynomial ˆm.t/ 2 ZŒt � is
defined as the minimal polynomial of a primitive mth root of unity over Q. It vanishes
at every primitive mth root of unity and satisfies

Q
m jnˆm.t/ D tn � 1. Let Q be

an algebraic closure of Q and let �n 2 Q be a primitive nth root of unity for each
n 2N>0 .

The completed group ring yZŒŒt yZ�� is defined by lim
 ��n

yZŒtZ=nZ�, which can be identified
with lim

 ��n
yZŒt �=.tn� 1/. Since the composite

yZŒtZ� ,! yZŒŒt
yZ��� yZŒtZ=nZ�

is the natural surjection, the natural projection yZŒŒt yZ��� yZŒtZ=nZ� for each n 2N>0

is a surjection. We regard ZŒt � as a subring of yZŒŒt yZ��. We have natural decompositions

yZŠ
Y
p

Zp and yZŒŒt
yZ��Š

Y
p

Zp ŒŒt
yZ��:

Indeed, let m 2 N with the prime decomposition m D
Q

i p
ei

i . Then we have
Z=mZ Š

Q
i Z=pei

i Z by the Chinese remainder theorem, and hence the decom-
position of coefficients Z=mZŒtZ=nZ�Š

Q
i.Z=p

ei

i ZŒtZ=nZ�/ for each n. Since the
inverse limit is compatible with product of sets on each layer, we have the desired
isomorphisms. They are useful because Zp is an integral domain while yZ is not. For
each prime number p , let Cp denote the completion of an algebraic closure of the
p–adic numbers Qp , and fix an embedding Q ,!Cp .

Now we explain that we can substitute roots of unity for elements of yZŒŒt yZ��. We have
the natural surjection modˆmW Zp ŒŒt

yZ�� � Zp Œt �=.ˆm.t// for each m. Indeed, for

Algebraic & Geometric Topology, Volume 18 (2018)



The profinite completions of knot groups determine the Alexander polynomials 3019

any n with m j n, we have a natural map

Zp ŒŒt
yZ��� Zp Œt

Z=nZ�Š Zp Œt �=.t
n
� 1/� Zp Œt �=.ˆm.t//:

Since fZp Œt
Z=nZ�gn forms an inverse system, this map is independent of n.

In each Zp Œt �, ˆm.t/ is not necessarily irreducible. For instance, if m j .p � 1/,
then Zp contains primitive mth roots of unity, mainly due to Hensel’s lemma (see
[17, page 112]). Let �.t/ 2Zp Œt � be an irreducible divisor of ˆm.t/ and � 2Q a root
of �.t/. Then we have a natural isomorphism Zp Œt �=.�.t//Š Zp Œ��. We denote by
g.�/ the image of each g 2 yZŒŒt

yZ�� under the map

yZŒŒt
yZ��� Zp ŒŒt

yZ��� Zp Œt
Z=nZ�� Zp Œt �=.ˆm.t//� Zp Œt �=.�.t//Š Zp Œ��:

Lemma 3.3 In the completed group ring yZŒŒt yZ��, any element 0¤ f .t/ 2ZŒt � is not a
zero-divisor.

Proof It is sufficient to prove the assertion for each irreducible element f .t/ 2 ZŒt �.
We have yZŒŒt yZ�� Š

Q
p Zp ŒŒt

yZ��. We denote the image of elements of yZŒŒt yZ�� in each
Zp ŒŒt

yZ�� by the same letters. If f .t/gD 0 holds for g2 yZŒŒt
yZ��, then we have f .t/gD 0

in every Zp ŒŒt
yZ��. Since f .t/¤ 0 in every Zp ŒŒt

yZ��, it is sufficient to prove that f .t/
is not a zero-divisor in Zp ŒŒt

yZ�� for an arbitrary prime number p .

Case 1 Suppose that f .t/ is not a cyclotomic polynomial. Since Zp is a unique factor-
ization domain, by Gauss’s lemma, so is Zp Œt �. Let tn�1D

Q
� ��.t/ denote the prime

factorization in Zp Œt � and let �� be a root of ��.t/ for each �. Since
T
�.��.t//D0 in

Zp Œt
Z=nZ�, we have a natural injection Zp Œt

Z=nZ� ,!
Q
�Zp Œt �=.��.t//Š

Q
Zp Œ���,

where each component Zp Œ��� is an integral domain, and the image of f .t/ in Zp Œ���

is given by f .��/. Thus, Zp Œt
Z=nZ� injects into the product of integral domains and

the image of f .t/ in each direct component is not zero. Therefore, the image of f .t/
in each Zp Œt

Z=nZ� is not a zero divisor, nor is it in Zp ŒŒt
yZ��.

Case 2 Next, we prove the assertion for each cyclotomic polynomial f .t/Dˆm.t/

in three steps.

Step 1 We prove the inclusion Ann.ˆm.t/
k/� .ˆm.t// of ideals in Zp ŒŒt

yZ�� for any
k 2N , where Ann.ˆm.t/

k/ denotes the annihilator ideal of ˆm.t/
k . It follows from

(i) Ann.ˆm.t/
k/� Ker.modˆm.t//, and (ii) Ker.modˆm.t//D .ˆm.t//, proved in

the following:
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(i) Suppose ˆm.t/
kgD 0 for g 2Zp ŒŒt

yZ��. It is sufficient to prove g.�/D 0 for every
primitive mth root of unity. We may assume � D �m . Let .gn.t//n 2 Zp Œt �

N with
gD .gn.t/ mod tn�1/n 2 lim

 ��
Zp Œt

Z=nZ� and consider r; n 2N with nDmpr . Since
ˆm.t/gn.t/� 0 mod .tn�1/, gn.t/ is divisible by ‰n;m.t/ WD .t

n�1/=ˆm.t/2Zp Œt �.
The value at �m , which is the image in Zp Œ�m�, satisfies j‰n;m.�m/jp � jnjp D jp

r jp .
If we put qn.t/ WD gn.t/=‰n;m.t/ 2 Zp Œt �, then jqn.�m/jp � 1 holds. Since g.�m/D

gn.�m/ and limr!1 jp
r jp D 0, we have g.�m/D 0.

(ii) The ring Zp ŒŒt
yZ�� is a compact Hausdorff topological ring with respect to the

topology such that the family Ker.Zp ŒŒt
yZ��� Z=psZŒtZ=nZ�/gs;n2N is a fundamental

neighborhood system of 0. The kernel of modˆm.t/W Zp ŒŒt
yZ��� Zp Œt �=.ˆm.t// is

a closed set and contains .ˆm.t// as a dense subset. Indeed, we have .ˆm.t// D

Ker.Zp Œt
Z� ,! Zp ŒŒt

yZ�� � Zp Œt �=.ˆm.t/// in Zp Œt
Z� and the image of Zp Œt

Z� ,!

Zp ŒŒt
yZ�� is dense. Since multiplication by ˆm.t/ is a continuous endomorphism on a

compact Hausdorff space Zp ŒŒt
yZ��, it is a closed map and its image .ˆm.t// is closed.

Therefore, we have the equality Ker.modˆm.t//D .ˆm.t//.

Step 2 We obtain an inclusion of the form “M � IM ”: If g 2Ann.ˆm.t/
k/, then we

have g Dˆm.t/h for some h 2 Zp ŒŒt
yZ�� by Step 1. By ˆm.t/

kg Dˆm.t/
kC1hD 0,

we have h 2Ann.ˆm.t/
kC1/. Thus, Ann.ˆm.t/

k/�ˆm.t/.Ann.ˆm.t/
kC1// holds.

Since fAnn.ˆm.t/
k/gk is an increasing sequence with respect to inclusions, by takingS

k we obtain [
k

Ann.ˆm.t/
k/�ˆm.t/

�[
k

Ann.ˆm.t/
k/

�
:

Step 3 Let g 2 Zp ŒŒt
yZ�� and suppose ˆm.t/g D 0. For each n 2N>0 , let M and I

denote the image of
S

k Ann.ˆm.t/
k/ and .ˆm.t// in A WD Zp Œt

Z=nZ�, respectively.
Then we have IM � M. Let g denote the image of g in M also. Since A is a
Noetherian ring, M is a finitely generated A–module. By a well-known variant of the
Nakayama–Azumaya–Krull lemma (eg [3, Corollary 2.5]), there exists some ˛ 2 A

satisfying ˛� 1 2 I and ˛M D 0. Let ˇ 2 A with ˛� 1D ˇˆm.t/. Since g 2M,
we have ˛gD .1Cˇˆm.t//gD 0. By the assumption ˆm.t/gD 0, we obtain gD 0

in A. Therefore, we have g D 0 in Zp ŒŒt
yZ��.

Thereby, we have proved that f .t/ D ˆm.t/ is not a zero-divisor in Zp ŒŒt
yZ��. This

completes the proof of the lemma.

Lemma 3.4 For each cyclotomic polynomial ˆm.t/ and a unit v 2 yZ, the fraction
ˆm.t

v/=ˆm.t/ is defined and is a unit of yZŒŒt yZ��.
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Proof The ring yZŒŒt yZ�� is a compact Hausdorff topological ring with respect to the topol-
ogy such that fKer.yZŒŒt yZ��� Z=n1ZŒtZ=n2Z�/gn1;n2

is a fundamental neighborhood
system of 0. By a similar argument to the case of Zp ŒŒt

yZ��, we have the natural surjection
modˆm.t/W yZŒŒt

yZ��� yZŒt �=.ˆm.t// and the equality .ˆm.t//D Ker.modˆm.t// of
ideals in yZŒŒt yZ��. Since ˆm.t

v/2Ker.modˆm.t//, we have ˆm.t
v/2 .ˆm.t//. Hence,

ˆm.t
v/Dˆm.t/f holds for some f 2 yZŒŒt yZ��. If we put sD tv , then by a similar argu-

ment, we have ˆm.t/Dˆm.s
v�1

/2Ker.modˆm.s//D .ˆm.s//D .ˆm.t
v//. Hence,

we have ˆm.t/Dˆm.t
v/g for some g 2 yZŒŒt

yZ��. Now we have ˆm.t/Dˆm.t/fg .
Since ˆm.t/ is not a zero divisor by Lemma 3.3, we have 1� fg D 0. Therefore,
f Dˆm.t

v/=ˆm.t/ is a unit of yZŒŒt yZ��.

Lemma 3.5 For polynomials f .t/;g.t/ 2 ZŒt � and a unit v of yZ, suppose the equal-
ity .f .t// D .g.tv// of ideals in yZŒŒt yZ��. Then the mth cyclic polynomial ˆm.t/

divides f .t/ if and only if it does g.t/. If ˆm.t/ divides f .t/, then the equality
.f .t/=ˆm.t//D .g.t

v/=ˆm.t
v// of ideals in yZŒŒt yZ�� holds.

Proof For each mth root of unity �m 2Q and unit v of yZ, �vm is defined and is again
a primitive mth root of unity. Hence, the two equalities g.�m/D 0 and g.�vm/D 0 are
equivalent.

Let p be an arbitrary prime number. Consider the natural surjection yZŒŒt yZ�� �
Zp ŒŒt

yZ�� � Zp Œ�m�. The equality .f .t// D .g.t�// of ideals in yZŒŒt yZ�� yields the
equality .f .�m//D .g.�vm// of ideals in Zp Œ�m�.

If ˆm.t/ divides f .t/, then we have f .�m/D 0, g.�vm/D 0, and g.�m/D 0. Hence,
ˆm.t/ divides g.t/. By Lemma 3.3, ˆm.t/ is not a zero-divisor in yZŒŒt yZ��. By
Lemma 3.4, ˆm.t

v/=ˆm.t/ is a unit of yZŒŒt yZ��. Therefore, we obtain the equality
.f .t/=ˆm.t//D .g.t

�/=ˆm.t//D .g.t
�/=ˆm.t

v// of ideals in yZŒŒt yZ��.

Lemma 3.6 For two reciprocal polynomials f .t/;g.t/ 2 ZŒt � and a unit v of yZ,
suppose the equality .f .t//D .g.tv// of ideals in yZŒŒt yZ��. Then f .t/ and g.t/ coincide
up to multiplication by a unit of ZŒtZ�.

Proof By Lemma 3.5, we can reduce all the common cyclotomic divisors of f .t/
and g.t/. Note that the polynomial obtained as the quotient of two reciprocal poly-
nomials is again reciprocal. From the reduced equality of ideals, we can derive the
equality of polynomials by a similar method to [6, Proposition 4.10]. Indeed, suppose
that any cyclotomic polynomial does not divide f .t/ and g.t/. By Weber’s proposition
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(Proposition 3.2), ZŒtZ=nZ�=.f .t// is a finite group with order jR.f .t/; tn � 1/j.
Hence, we have yZŒtZ=nZ�=.f .t//Š ZŒtZ=nZ�=.f .t//. If we write v D .vn mod n/n

with vn 2Z, then we have jR.f .t/; tn�1/j D jR.g.tvn/; tn�1/j D jR.g.t/; tn�1/j.
By Fried’s proposition (Proposition 3.1), f .t/ and g.t/ coincide up to multiplication
by a unit of ZŒtZ�.

In order to reduce common cyclotomic divisors, it is necessary to consider the inverse
limit of modules. We cannot detect common noncyclotomic divisors by their roots,
because we can substitute only roots of unity for elements of yZŒŒt yZ��. Fried’s proposition
is also essential.

Examples 3.7 Fried’s pair .F.t/;G.t// is given by

F.t/D p̂q.t/ p̂2q.t/ p̂q2.t/; G.t/D p̂2q2.t/ p̂q.t/ p̂q.t/;

where p and q are different prime numbers. They have the same nth cyclic resultants
for every n [14]. In addition, if we put f .t/DF.t/2G.t/ and g.t/DF.t/G.t/2 , then
f .t/ and g.t/ have the same nth cyclic resultants for every n and the same sets of
zeros. By our argument, we have .F.t// ¤ .G.tv// and .f .t// ¤ .g.tv// as ideals
of yZŒŒt yZ�� for any v 2 yZ� . Hence, they can be distinguished by comparing families of
quotients .yZŒŒs yZ��=.F.s/; sn� 1//n etc.

4 Topological lemmas

For a discrete group � , profinite completion and abelianization commute. We simply
denote the profinite completion of the abelianization of � by y�ab . If � is a finitely
generated abelian (additive) group, then we have y� Š � ˝ yZ. If � is a finite group,
then we have y� Š � . For a finitely generated module M over a Noetherian ring R,
let FittRM �R denote the (0th ) Fitting ideal of M over R.

The following lemma says that the profinite completions of knot groups know those of
fundamental groups of finite covers over the knot exteriors.

Lemma 4.1 Let � be a finitely generated discrete group, G a finite group and y�� G

a surjection from the profinite completion. Then a surjection � � G is induced. Put
B WD ker.y� � G/ and � WD ker.� � G/. Then the inclusion map � ,! B induces
an isomorphism y� Š�!B from the profinite completion.
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Proof The set P of normal subgroups of � of finite index is a countable directed set
with order given by the reverse of inclusion. Indeed, if P1;P2 2 P , then P1\P2 2 P .

Note that � is a normal subgroup of � of finite index. Let G denote the set of normal
subgroups of � of finite index and put P 0 WD G \P . For each P 2 P , there exists
some P 0 2 P 0 with P 0 � P. Indeed, we may put P 0 D P \� . In addition, for each
P 2 G , there exists some P 0 2 P 0 with P 0 � P. Indeed, we may take the intersec-
tion of all the � –conjugates of P as P 0. Therefore, we have natural isomorphisms
lim
 ��P2P 0 �=P Š lim

 ��P2G �=P D
y� and lim

 ��P2P 0 �=P Š lim
 ��P2P �=P D y� . Since

�=P D ker.�=P � G/ holds for each P 2 P 0, we obtain a natural isomorphism
y� Š�!B .

Remark 4.2 Let � and � 0 be knot groups, y� 0 Š�!y� an isomorphism on their profinite
completions and � � G a surjection to a finite group. Let � ,! y� � G and � 0 ,!
y� 0 Š�! y� � G denote the induced surjections, and XG! S3�J and YG! S3�K

the corresponding covers of the knot exteriors. Then Lemma 4.1 yields a natural
isomorphism y�1.XG/

Š
�! y�1.YG/. In addition, through the Hurewicz isomorphisms,

an isomorphism H1.XG/tor
Š
�!H1.YG/tor on Z–torsions is induced.

In particular, if we take a representation of a knot group � over a completed ring, then
homology torsions of the corresponding inverse system of finite covers is determined
by y� . Therefore, we can study profinite rigidity of invariants associated to nonabelian
covers.

Next, we induce an isomorphism of completed Alexander modules over the completed
group ring yZŒŒt yZ�� and obtain an equality of ideals:

Lemma 4.3 Let J and K be knots in S3 with an isomorphism 'W y�1.S
3�J / Š�!

y�1.S
3 �K/ between the profinite completions of the knot groups. Then, for some

unit v of yZ, the equality .�J .t
v//D .�K .t// of ideals in yZŒŒt yZ�� holds.

Proof Let s and t denote the meridians of J and K in �1.S
3�J /ab and �1.S

3�K/ab,
respectively. Then we have �1.S

3 � J /ab D sZ and �1.S
3 � K/ab D tZ . Let

'W y�1.S
3�J /ab Š�! y�1.S

3�K/ab denote the induced isomorphism. Since abelian-
ization and profinite completion commute, we have

y�1.S
3
�J /ab

D s
yZ and y�1.S

3
�K/ab

D t
yZ:

If we denote the inverse image '�1.t/ of t also by t , then we have s D tv for some
unit v of yZ.
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Let Xn! S3 � J and Yn! S3 �K denote the Z=nZ–covers, and let Mn! S3

and Nn! S3, respectively, denote the branched covers obtained as their Fox comple-
tions [13]. The isomorphisms

y�1.S
3
�J /ab Š

�! yZ; s 7! v;

y�1.S
3
�K/ab Š

�! yZ; t 7! 1;

and ' form the following commutative diagram:

y�1.S
3�J / // //

Š'

��

y�1.S
3�J /ab

Š'

��

Š
// yZ

y�1.S
3�K/ // // y�1.S

3�K/ab Š
// yZ

Let y�1.S
3 � J / � Z=nZ denote the composite of the first row and the natural

surjection yZ � Z=nZ. Then Lemma 4.1 yields the natural isomorphism y�1.Xn/Š

ker.y�1.S
3 � J /! Z=nZ/. In addition, we have well-known natural isomorphisms

y�1.Xn/
abŠ yH1.Xn/ and an exact sequence 0! snyZ! yH1.Xn/! yH1.Mn/! 0 via

the Hurewicz isomorphism, the Mayer–Vietoris exact sequence and the Wang exact
sequence. These modules and hence yH1.Mn/ Š yH1.Xn/=s

nyZ admit natural s–actions
induced by conjugation and become yZŒsZ=nZ�–modules. Similarly, yH1.Nn/ becomes
a yZŒtZ=nZ�–module.

Now we have y�1.S
3�J /Š y�1.S

3�K/� Z=nZ for each n. Hence, Lemma 4.1
yields y�1.Xn/Š y�1.Yn/, as explained in Remark 4.2. Since abelianization and profinite
completion commute, the Hurewicz isomorphisms yield yH1.Xn/ Š yH1.Yn/. Since
the isomorphism snyZ Š tnyZ commutes with other isomorphisms, we obtain a natural
isomorphism of groups

'W yH1.Mn/Š yH1.Xn/=s
nyZ Š
�! yH1.Yn/=tnyZ

Š yH1.Nn/:

We consider the sZ=nZ –module yH1.Mn/ as a yZŒtZ=nZ�–module via the induced
isomorphism 'W sZ=nZ Š

�! tZ=nZI s 7! tv mod n . We will verify that the induced group
isomorphism 'W yH1.Mn/

Š
�! yH1.Nn/ is tZ=nZ –equivariant. Note that the following

diagram consisting of exact rows and the induced isomorphism commutes:

0 // y�1.Xn/ //

Š'

��

y�1.S
3�J /

Š'

��

// Z=nZ // 0

0 // y�1.Yn/ // y�1.S
3�K/ // Z=nZ // 0
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Recall that the actions of sZ=nZ and tZ=nZ are defined by the conjugate actions
of lifts of elements. We denote ab WD b�1ab for elements a and b of a group.
Consider the induced isomorphism 'W y�1.Xn/

Š
�! y�1.Yn/. Let x and y be lifts

of elements of yH1.Mn/ to y�1.Xn/ � y�1.S
3 �K/, and let '�1.r/; '�1.u/ be lifts

of elements of y�1.S
3 �K/ab to y�1.S

3 �K/ with r;u 2 y�1.S
3 �K/. Then we

have '.x'
�1.r/y'

�1.u//D '.x/r'.y/u . Hence, any xx; xy 2 yH1.Mn/ and xr ; xu2 tZ=nZ

satisfy '.xr xxCxuxy/Dxr'.xx/Cxu'.xy/. Thus, 'W yH1.Mn/
Š
�! yH1.Nn/ is an isomorphism

of yZŒtZ=nZ�–modules.

Let X1! S3�J denote the Z–cover. The Alexander module H1.X1/ of J is a
finitely generated ZŒsZ�–module with FittZŒsZ�H1.X1/D .�J .s// in ZŒsZ�. Namely,
let ZŒsZ�q

Q
�!ZŒsZ�q!H1.X1/!0 be a finite presentation (an exact sequence) of the

Alexander module with q2N and Q2Mq.ZŒsZ�/ (see [40, Corollary 8.C.4]). Then we
have the equality .det Q/D .�J .t// of ideals in ZŒsZ� by the definition of �J .t/. For
each n2N>0 , the Wang exact sequence yields a well-known isomorphism H1.Mn/Š

H1.X1/=.t
n�1/H1.X1/ of ZŒsZ=nZ�–modules. Therefore, we obtain a presentation

ZŒsZ=n�q
Qn
�!ZŒsZ=nZ�q!H1.Mn/!0 with Qn WDQ mod .sn�1/2Mq.ZŒtZ=nZ�/.

Hence, FittZŒsZ=nZ�.H1.Mn//D .det Qn/D .�J .s/ mod .sn � 1// holds. Similarly,
FittZŒtZ=nZ�.H1.Nn//D .�K .t/ mod .tn� 1// holds.

Consider the identification yZŒsZ=nZ�Š yZŒtZ=nZ� given by s 7! tv D tv mod n . Then
the isomorphism yH1.Mn/

Š
�! yH1.Nn/ of yZŒtZ=nZ�–modules yields the equalities

.�J .s/ mod .sn
� 1//D .�J .t

v/ mod .tn
� 1//D .�K .t/ mod .tn

� 1//

of Fitting ideals in yZŒtZ=nZ�.

In general, for each f 2 yZŒŒt yZ��, there is a natural isomorphism

.f /Š lim
 ��

n

.f mod .tn
� 1//

in yZŒŒt yZ��. Indeed, let Kn denote the kernel of the restriction mod.tn � 1/W .f / �
.f mod .tn � 1// of the natural surjection for each n. We may assume that n runs
through the ordered subset N 0 WD fm! j m 2 Ng of N . Since fKngn is a surjective
system, it satisfies the Mittag-Leffler condition and lim

 ��

1
n

Kn D 0 holds. Together with
lim
 ��n

Kn D 0, the isomorphism is induced (eg [23, Section 1]).

Therefore, taking the inverse limit in the equality of the Fitting ideals in yZŒtZ=nZ�, we
obtain the equality .�J .t

v//D .�K .t// of ideals in yZŒŒt yZ��.
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In the rest of this section, we verify that the equality of ideals obtained in Lemma 4.3
can be interpreted as that of Fitting ideals of completed Alexander modules. Let the
notation be as in Lemma 4.3. We define the completed Alexander module of J � S3

by HJ WD lim
 ��n

yH1.Mn/.

Lemma 4.4 The completed Alexander module HJ is a finitely generated yZŒŒs yZ��–
module with the Fitting ideal .�J .s// in yZŒŒs yZ��.

Proof Let the notation be as in the proof of Lemma 4.3 and consider the finite
presentation of H1.Mn/ by Qn 2Mq.ZŒtZ=nZ�/. Since yZ is flat over Z, the functor
˝yZ is exact for modules. Hence, we have a presentation

yZŒsZ=nZ�q
yQn
��! yZŒsZ=nZ�q! yH1.Mn/! 0

of yH1.Mn/, where yQn DQn as matrices.

We may assume that n runs through N 0 D fm! jm 2Ng. Taking the inverse limit, we
obtain an exact sequence

yZŒŒs
yZ��q

yQ
�! yZŒŒs

yZ��q!HJ ! lim
 ��

n

1 Ker yQn

with yQ D .Qn/n 2 Mq.yZŒŒs
yZ��/. Since .Ker yQn/n is a surjective system, we have

lim
 ��

1
n

Ker yQn D 0. Thus, we obtain a finite presentation

yZŒŒs
yZ��q

yQ
�! yZŒŒs

yZ��q!HJ ! 0

of HJ . Therefore, HJ is a finitely generated yZŒŒs yZ��–module. (This fact can be
obtained also in an abstract way by using the topological Nakayama lemma.)

Since .det Qn/ D .�J .t/ mod .tn � 1// in each yZŒsZ=nZ�, we obtain the equalities
FittyZŒŒs yZ��HJ D .det yQ/D lim

 ��n
.det Qn/D .�J .s// of ideals in yZŒŒs yZ��.

The module HJ is a yZŒŒt yZ��–module under the identification yZŒŒs yZ��Š yZŒŒt yZ��I s 7! tv.
We put HK WD lim

 ��n
yH1.Nn/. Since the isomorphisms yH1.Mn/

Š
�! yH1.Nn/ of

yZŒŒtZ=nZ��–modules are compatible with the inverse systems, we obtain an isomorphism
HJ

Š
�!HK of yZŒŒt yZ��–modules. This yields the equality .�J .t

v//D .�K .t// of Fitting
ideals in yZŒŒt yZ��, which coincides with the one we obtained in Lemma 4.3.
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5 Proof of Theorem 1.1

Proof of Theorem 1.1 Since the Alexander polynomials of knots are reciprocal up to
multiplication by units of ZŒtZ�, the theorem follows immediately from Lemmas 3.6
and 4.3.

An isomorphism 'W y�1.S
3�J / Š�! y�1.S

3�K/ does not necessarily yield an isomor-
phism  W y�1.S

3�J /ab Š�!y�1.S
3�K/ab sending the meridian of J to that of K . For

a reciprocal polynomial g.t/ in ZŒt � and a unit v of yZ, the equality .g.t//D .g.tv//
does not necessarily hold. Therefore, Lemma 4.3 seems to be the best we can say in this
direction in Section 4. In addition, even if we have an isomorphism  and the equality,
we still need the algebraic argument in Section 3 to determine the polynomials.

We finally remark that indeed we only needed an isomorphism of the prometabelian
completions of knot groups to prove the coincidence of Alexander polynomials.

We will try to apply our method to twisted Alexander polynomials of knots or invariants
of links in our future work.
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