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The fundamental group of locally standard 7 —manifolds

HAOZHI ZENG

We calculate the fundamental group of locally standard 7T'—manifolds under the
assumption that the principal T —bundle obtained from the free 7 —orbits is trivial.
This family of manifolds contains nonsingular toric varieties which may be non-
compact, quasitoric manifolds and toric origami manifolds with codrientable folding
hypersurface. Although the fundamental groups of the above three kinds of manifolds
are well-studied, we give a uniform and simple method to generalize the formulas of
their fundamental groups.

14F35, 57525; 57R19

1 Introduction

Torus manifolds, introduced by A Hattori and M Masuda [5], are a generalization
of toric manifolds, compact nonsingular toric varieties. A torus manifold is a 2n—
dimensional, closed, connected, orientable, smooth manifold M with an effective
smooth action of an n—dimensional torus 7 2 (S!)” such that the fixed-point set
MT £ . A torus manifold M is called locally standard if every point of M has a
T —invariant open neighborhood equivariantly diffeomorphic to a 7 —invariant open
set of a faithful representation space of 7. In this case the orbit space M/ T is a nice
manifold with corners. For more details about locally standard torus manifolds, readers
can see V Buchstaber and T Panov’s nice book [1]. If a torus manifold is locally
standard, ¢g«: 71 (M) — m{(M/T) is an isomorphism, where ¢ is induced by the
quotient map ¢: M — M/ T . This was proved by Wiemeler [10] and Yoshida [11].
If we allow M to be noncompact, nonorientable and M7 = @, ie M is a locally
standard 7'-manifold,! ¢, may fail to be an isomorphism. Nonsingular toric varieties
(see Fulton [4] or Cox, Little and Schenck [2]), quasitoric manifolds (see Davis and
Januszkiewicz [3]) and toric origami manifold with coorientable folding hypersurfaces
(see Holm and Pires [7]) are typical examples of locally standard 7"—manifolds. We use
the identification N :=Hom(S!, T) = H{(T) = H>(BT) andlet M; fori=1,...,m
Mally standard 7 —manifold M is slightly different from the definition by Buchstaber and

Panov [1] since we allow the manifold to be noncompact and nonorientable, but we require the orbit space
M/ T to have finitely many faces.
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be the characteristic manifolds of M, ie M; is a connected codimension-2 submanifold
of M fixed pointwise by a circle subgroup S; C 7. Thus, M; determines a primitive
element v; € N up to sign such that S; = v;(S 1. Let N be the sublattice of N
generated by vy, ..., Uy . Inspired by the arguments of Kuwata, Masuda and Zeng [9]
and T Holm and A R Pires’s results in [8], we can use a simple method to generalize
the known results to locally standard 7'—manifolds whose free 7 —orbits is a trivial
T —bundle. The following is our main result (see Theorem 2.2).

Theorem Let M be a locally standard T —manifold such that the free part of the
T —action is a trivial torus bundle. Then

(M) =m(M/T)xN/N.

2 The fundamental group of locally standard 7 —-manifolds

In this section we will deduce the formula for 7r; (M) based on some arguments in [9]
and a general position lemma in [6].

We set up some notation. Let M be a locally standard 7'—manifold of dimension 2
and g: M — M/ T =: Q be the quotient map. We assume that the principal 7 —bundle
obtained from the free 7 —orbits is trivial.

We use the identification
N :=Hom(S!,T) = H,(T) = H,(BT).

Let M; fori =1,...,m be the characteristic manifolds of M and Q; := M;/ T, so
Q; is a facet of Q. Let v; be a primitive element of N = Hom(S', T') such that
v;(S1) fixes M; pointwise (v; is uniquely determined up to sign). Let N be the
sublattice of N generated by vq,..., vpy.

All homology groups are taken with Z coefficients unless otherwise stated.

Let Q=2 be the union of all (n—2)—faces of Q. Let Q’ be a “small closed tubular
neighborhood” of Q=2 ¢ Q and let M’ =¢~'(Q’).

Lemma 2.1 [9, Proposition 3.1] H{(M) =~ Hi(M\Int M) =~ H(Q) & N/]V

Proof Note that M’ is homotopy equivalent to ¢~ (Q”~2) and ¢~ (0" ?) is a
finite union of codimension-4 manifolds, so Hy (M) = Hy(M \ Int M) by Lemma 5.3
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and Remark 5.4 in [6]. For the calculation of H;(M \ Int M) we can use the same
argument as in [9] as follows. Let Q% := (Int ) N (Q\Q’) and Q! be the intersection
of O\ Q' and a small open neighborhood of Q\ Int Q in Q. Since

Q%) ~OxT. g7 (@Y ~ | |(Qix T/vi(S")).

i=1
g (@) ng ' (@Y = | |(@ixT). ¢7'(Q°u QY =M\M'
i=1

the Mayer—Vietoris exact sequence for the triple (M \M',g=1(0°),q~1(Q")) yields
the exact sequence

_>€D Hy(Q;xT)-LL Hl(QxT)EB@ Hy(QixT /vi(SY) — H (M\M')

i=1 i=1
a@Ho(Ql x T) L2 Ho(QxT)GB@Ho(Qz x T/vi(S")).
i=1 i=1

As is easily seen, fj is injective, so
2) Hi(M\M') == coker f;.
We write f1 as (Y1, ¢1) according to the decomposition of the target space. Since

m m

o1: €D Hi1(Qi x T) > @5 Hi(Qi x T/vi(S")),
i=1 i=1

which is f; composed with the projection on the second factor, is surjective, one has

3) coker f1 = H(Q x T)/¥1(kergy).

Since H1(Y xT) = H;(Y) @ H,(T) for any topological space Y, elements in ker ¢,
are of the form (civq, ..., cmvm) with integers ¢;. It follows that

“ Hi(Q xT)/Y1(kerg)) = H,(Q) & N/N.

Thus the lemma follows from (2), (3) and (4). O

Next we consider the fundamental group 71 (M). Since the complement of the set
of principal T —orbits ¢~!(Int Q) is of codimension 2, the inclusion map ¢ from
g~ '(Int Q) to M induces an epimorphism

te w1 (g ™ (Int Q) — 71 (M)
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by Lemma 5.3 in [6] and, since the principal 7 —bundle ¢~!(Int Q) — Int Q is assumed
to be trivial and Int Q is homotopy equivalent to Q, the above epimorphism can be
regarded as

®) te: T (Q) X (T) = 7 (M).

We note that the kernel of ¢4 is contained in the second factor 7;(7") because the
composition ¢ o tx, where g«: w1 (M) — m1(Q), agrees with the projection on the
first factor.

Note that a principal T —orbit near M; deforms to a 7 —orbit in M;, which means that
the element v; € Hom(S!, T) = N maps to zero in 71 (M) via (4. Since this holds
for any 7, one can conclude that the subgroup N of N generated by v; for all i lies
in the kernel of t4. Therefore, tx in (5) induces an epimorphism

(6) ¥ 1 (Q)x N/N — 7 (M),

where the composition ¢, o ¥ is the projection on the first factor 7;(Q), so that the
kernel of i is contained in N/ N.

Theorem 2.2 The homomorphism v in (6) is an isomorphism.

Proof The map v in (6) induces an epimorphism
@) H{(Q) x (N/N)/keryr) — Hi(M).
By Lemma 2.1, we have

Hy(M) = H(Q)® N/N.

This together with (7) implies that ker ¥ is trivial and hence v is an isomorphism. O
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