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The fundamental group of locally standard T –manifolds

HAOZHI ZENG

We calculate the fundamental group of locally standard T –manifolds under the
assumption that the principal T –bundle obtained from the free T –orbits is trivial.
This family of manifolds contains nonsingular toric varieties which may be non-
compact, quasitoric manifolds and toric origami manifolds with coörientable folding
hypersurface. Although the fundamental groups of the above three kinds of manifolds
are well-studied, we give a uniform and simple method to generalize the formulas of
their fundamental groups.

14F35, 57S25; 57R19

1 Introduction

Torus manifolds, introduced by A Hattori and M Masuda [5], are a generalization
of toric manifolds, compact nonsingular toric varieties. A torus manifold is a 2n–
dimensional, closed, connected, orientable, smooth manifold M with an effective
smooth action of an n–dimensional torus T Š .S1/n such that the fixed-point set
M T ¤∅. A torus manifold M is called locally standard if every point of M has a
T –invariant open neighborhood equivariantly diffeomorphic to a T –invariant open
set of a faithful representation space of T . In this case the orbit space M=T is a nice
manifold with corners. For more details about locally standard torus manifolds, readers
can see V Buchstaber and T Panov’s nice book [1]. If a torus manifold is locally
standard, q�W �1.M /! �1.M=T / is an isomorphism, where q� is induced by the
quotient map qW M !M=T . This was proved by Wiemeler [10] and Yoshida [11].
If we allow M to be noncompact, nonorientable and M T D ∅, ie M is a locally
standard T –manifold,1 q� may fail to be an isomorphism. Nonsingular toric varieties
(see Fulton [4] or Cox, Little and Schenck [2]), quasitoric manifolds (see Davis and
Januszkiewicz [3]) and toric origami manifold with coörientable folding hypersurfaces
(see Holm and Pires [7]) are typical examples of locally standard T –manifolds. We use
the identification N WDHom.S1;T /DH1.T /DH2.BT / and let Mi for iD1; : : : ;m

1Here the locally standard T –manifold M is slightly different from the definition by Buchstaber and
Panov [1] since we allow the manifold to be noncompact and nonorientable, but we require the orbit space
M=T to have finitely many faces.
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be the characteristic manifolds of M, ie Mi is a connected codimension-2 submanifold
of M fixed pointwise by a circle subgroup Si � T . Thus, Mi determines a primitive
element vi 2 N up to sign such that Si D vi.S

1/. Let yN be the sublattice of N

generated by v1; : : : ; vm . Inspired by the arguments of Kuwata, Masuda and Zeng [9]
and T Holm and A R Pires’s results in [8], we can use a simple method to generalize
the known results to locally standard T –manifolds whose free T –orbits is a trivial
T –bundle. The following is our main result (see Theorem 2.2).

Theorem Let M be a locally standard T –manifold such that the free part of the
T –action is a trivial torus bundle. Then

�1.M /Š �1.M=T /�N= yN :

2 The fundamental group of locally standard T –manifolds

In this section we will deduce the formula for �1.M / based on some arguments in [9]
and a general position lemma in [6].

We set up some notation. Let M be a locally standard T –manifold of dimension 2n

and qW M !M=T DWQ be the quotient map. We assume that the principal T –bundle
obtained from the free T –orbits is trivial.

We use the identification

N WD Hom.S1;T /DH1.T /DH2.BT /:

Let Mi for i D 1; : : : ;m be the characteristic manifolds of M and Qi WDMi=T , so
Qi is a facet of Q. Let vi be a primitive element of N D Hom.S1;T / such that
vi.S

1/ fixes Mi pointwise (vi is uniquely determined up to sign). Let yN be the
sublattice of N generated by v1; : : : ; vm .

All homology groups are taken with Z coefficients unless otherwise stated.

Let Q.n�2/ be the union of all .n�2/–faces of Q. Let Q0 be a “small closed tubular
neighborhood” of Q.n�2/ �Q and let M 0 D q�1.Q0/.

Lemma 2.1 [9, Proposition 3.1] H1.M /ŠH1.M n Int M 0/ŠH1.Q/˚N= yN .

Proof Note that M 0 is homotopy equivalent to q�1.Q.n�2// and q�1.Q.n�2// is a
finite union of codimension-4 manifolds, so H1.M /ŠH1.M n Int M 0/ by Lemma 5.3
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and Remark 5.4 in [6]. For the calculation of H1.M n Int M 0/ we can use the same
argument as in [9] as follows. Let Q0 WD .Int Q/\.QnQ0/ and Q1 be the intersection
of QnQ0 and a small open neighborhood of Qn Int Q in Q. Since

q�1.Q0/'Q�T; q�1.Q1/'

mG
iD1

.Qi �T=vi.S
1//;

q�1.Q0/\ q�1.Q1/'

mG
iD1

.Qi �T /; q�1.Q0
[Q1/DM nM 0;

the Mayer–Vietoris exact sequence for the triple .M nM 0; q�1.Q0/; q�1.Q1// yields
the exact sequence

(1) � � �!

mM
iD1

H1.Qi�T /
f1
�!H1.Q�T /˚

mM
iD1

H1.Qi�T=vi.S
1//!H1.M nM

0/

!

mM
iD1

H0.Qi �T /
f0
�!H0.Q�T /˚

mM
iD1

H0.Qi �T=vi.S
1//:

As is easily seen, f0 is injective, so

(2) H1.M nM
0/Š cokerf1:

We write f1 as . 1; '1/ according to the decomposition of the target space. Since

'1W

mM
iD1

H1.Qi �T /!

mM
iD1

H1.Qi �T=vi.S
1//;

which is f1 composed with the projection on the second factor, is surjective, one has

(3) cokerf1 ŠH1.Q�T /= 1.ker'1/:

Since H1.Y �T /DH1.Y /˚H1.T / for any topological space Y , elements in ker'1

are of the form .c1v1; : : : ; cmvm/ with integers ci . It follows that

(4) H1.Q�T /= 1.ker'1/ŠH1.Q/˚N= yN :

Thus the lemma follows from (2), (3) and (4).

Next we consider the fundamental group �1.M /. Since the complement of the set
of principal T –orbits q�1.Int Q/ is of codimension 2, the inclusion map � from
q�1.Int Q/ to M induces an epimorphism

��W �1.q
�1.Int Q//! �1.M /
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by Lemma 5.3 in [6] and, since the principal T –bundle q�1.Int Q/! Int Q is assumed
to be trivial and Int Q is homotopy equivalent to Q, the above epimorphism can be
regarded as

(5) ��W �1.Q/��1.T /! �1.M /:

We note that the kernel of �� is contained in the second factor �1.T / because the
composition q� ı �� , where q�W �1.M /! �1.Q/, agrees with the projection on the
first factor.

Note that a principal T –orbit near Mi deforms to a T –orbit in Mi , which means that
the element vi 2 Hom.S1;T /DN maps to zero in �1.M / via �� . Since this holds
for any i , one can conclude that the subgroup yN of N generated by vi for all i lies
in the kernel of �� . Therefore, �� in (5) induces an epimorphism

(6)  W �1.Q/�N= yN ! �1.M /;

where the composition q� ı is the projection on the first factor �1.Q/, so that the
kernel of  is contained in N= yN .

Theorem 2.2 The homomorphism  in (6) is an isomorphism.

Proof The map  in (6) induces an epimorphism

(7) H1.Q/� ..N= yN /= ker /!H1.M /:

By Lemma 2.1, we have

H1.M /ŠH1.Q/˚N= yN :

This together with (7) implies that ker is trivial and hence  is an isomorphism.
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