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Ends of Schreier graphs of hyperbolic groups

AUDREY VONSEEL

We study the number of ends of a Schreier graph of a hyperbolic group. Let G be a
hyperbolic group and let H be a subgroup of G. In general, there is no algorithm
to compute the number of ends of a Schreier graph of the pair .G;H / . However,
assuming that H is a quasiconvex subgroup of G, we construct an algorithm.

20F65; 20F10

1 Introduction

The theory of ends was introduced by H Freundenthal for topological spaces [12]. The
ends are often depicted as the connected components of some boundary of the space,
where each end indicates a distinct way to move to infinity within the space. Later,
Freudenthal extended his concept to finitely generated groups [13]. This theory was
well studied in the middle of the last century.

For instance, H Hopf [18, Section 2.11] showed that finitely generated groups have
0, 1, 2 or infinitely many ends and, later, J Stallings [30, 4.A.6] proved that finitely
generated groups have more than one end if and only if they split either as a free product
with amalgamation or as an HNN extension over a finite group.

Meanwhile, A Borel adds a new perspective to the theory of ends by studying ends
of a group relatively to a subgroup [4]. If G is a finitely generated group and H a
subgroup, the number of relative ends of the pair .G;H / is the number of ends of a
corresponding Schreier graph, that is the quotient of a Cayley graph of G under the
action of H. Later, C Houghton [19] and then P Scott [28] pursued this work.

The theory of ends remains of great interest. In 1999, V Gerasimov studied connected-
ness of the boundary of hyperbolic groups with an algorithmic approach and obtained
the following theorem:

Theorem 1.1 [14] There is an algorithm that, given a finite presentation of a hyper-
bolic group, computes the number of ends of this group.
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The question of an analogous result for relative ends of a pair of groups arises naturally.
Surprisingly, the answer isn’t straightforward. Indeed, we prove the following result:

Theorem 1.2 There exist pairs of groups .G;H /, where G is a hyperbolic group, for
which it is impossible to decide algorithmically if the pair has 0, 2 or infinitely many
relative ends.

Let us take a look at one of the few significant examples that can be clearly outlined.
Consider a closed oriented surface S of genus g� 2 endowed with a hyperbolic metric
and denote by G D �1.S/ the surface group. Consider also a subsurface † of S with
totally geodesic boundary. The universal cover of the surface S with basepoint in †
is H2 . In this space, a connected component of the inverse image of † is a convex
polygon C having infinitely many sides (see Figure 1). If H denotes the fundamental
group of †, the quotient C=H is isomorphic to †.

C

Figure 1: The convex set C in H2 and a projection onto C

Note that there exists an orthogonal H –equivariant projection of H2 onto the convex
polygon C ; see Bridson and Haefliger [6, II.2]. The space formed by taking the quotient
of the hyperbolic plane H2 by the group H is composed of a convex core † with
a funnel attached to each connected component of its boundary (see Figure 2). This
space inherits from H2 a projection onto its convex core, which, extended to infinity,
identifies the connected components of the boundary of † to the ends of the quotient
space.

So the number of relative ends of the pair .G;H / is equal to the number of connected
components of the boundary of the convex core †.

In light of this example, detecting the number of relative ends of a pair of groups
may still be possible in specific cases. Recall that the number of relative ends of a
pair of groups is essentially the number of ends of some quotient space. It appears
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S † †

Figure 2: Example of a closed surface S of genus 3 and a subsurface †
with totally geodesic boundary

that for the pairs of groups referred to in Theorem 1.2, the subgroup is usually not
quasiconvex (Remark 3.3). So we restrict ourselves to the study of the quotient of a
proper hyperbolic geodesic metric space X by a quasiconvex-cocompact group H of
isometries of X. The quotient space X=H has good properties as it is hyperbolic and
satisfies a geodesic extension property. A careful study of the ends of this quotient
space X=H will lead us to the main result of this paper, namely:

Theorem 1.3 There exists an algorithm to compute the number of ends of a one-ended
hyperbolic group relatively to a quasiconvex subgroup.

To study the ends of the former quotient space X=H, we identify a convex core and fix
a basepoint xx0 in it. Given the previous example of the surface group, the geometry of
the boundary of the convex core may help us determine the number of ends of X=H. So
we determine a number R0 such that the sphere S.xx0;R0/ contains the convex core
and we define an equivalence relation � on this sphere (Definition 5.6). In Section 5,
we establish a bijection between the set of ends of X=H and the set of equivalence
classes for the relation � on S.xx0;R0/, via what comes to be known as their shadows
(Definition 5.9). Therefore, the number of ends of X=H is equal to the number of
equivalence classes on S.xx0;R0/. Applying this result to group theory, the number of
relative ends of a one-ended hyperbolic group and a quasiconvex subgroup is equal
to the number of equivalence classes of the sphere S.xx0;R0/ in the corresponding
quotient space. For this reason, the construction of an algorithm to compute the number
of these equivalence classes leads to Theorem 1.3.

Section 2 gathers definitions and properties dealing with hyperbolicity and quasi-
convexity and recalls the graph-theoretic approach of the theory of ends. In Section 3,
Markov properties and Rips construction are combined to prove that, in general, there
is no algorithm to compute the number of relative ends of a pair of groups. Section 4
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presents the quotient spaces and some of their interesting properties, including a new
proof of the hyperbolicity of this space. Section 5 is devoted to the study of the ends of
the quotient spaces, where we relate connected components of the boundary of a convex
core to the ends. Finally, Section 6 presents an algorithm to compute the number of
relative ends of a hyperbolic group and a quasiconvex subgroup.

Acknowledgement This article exposes results from my thesis written at the Univer-
sity of Strasbourg. I am grateful to my PhD advisor Thomas Delzant for his continual
support and helpful advice during this work. I would like to thank Indira Chatterji
and Eric Swenson, my PhD thesis reviewers, as well as the referee, for their numerous
questions and comments which greatly contributed to improve the presentation of this
paper.

2 Background

This section introduces the notations and gathers basic facts on hyperbolic geometry.
For more details, the reader can refer to [16] but also [9; 15; 6].

2.1 Hyperbolic spaces and groups

Recall some definitions of the original paper of M Gromov [16].

Let .X; d/ be a metric space. A geodesic in X is an isometric embedding of an interval
of R in X. The metric space X is called geodesic if every two points in X can be
joined by a geodesic. For x0 a basepoint in X, the Gromov product of two points
x;y 2X at x0 is given by

hx;yix0
D

1
2
.d.x0;x/C d.x0;y/� d.x;y//:

A geodesic metric space X is hyperbolic if there exists a real number ı � 0 such that
for all points x;y; z 2X,

hx;yix0
�minfhx; zix0

; hy; zix0
g� ı:

It turns out that a different choice of basepoint only changes the value of the constant ı ,
as explained in [9, page 2].

There are various equivalent definition of hyperbolicity (see [16, Section 6.3; 9, 1.3.6]).
Thus, a geodesic metric space is also hyperbolic if there exists ı � 0 such that each
side of a geodesic triangle is contained in the ı–neighbourhood of the union of the two
other sides. Such triangles are called ı–thin.
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Moreover, Section 8 of [16] provides a classification of isometries of hyperbolic spaces.
In particular, hyperbolic isometries of a hyperbolic space X are elements h such that
for any point x 2X, the map n 7! hnx is a quasi-isometric embedding of Z into X.

Remark 2.1 We use here the convention of I Kapovich and N Benakli [21, 2.22]: a
group acts geometrically on a geodesic space if it acts by isometries, cocompactly and
properly discontinuously (for any compact K in the space, there is a finite number of
elements g of this group such that K intersects g �K ). In particular, the Švarc–Milnor
lemma [32; 25] asserts that if a group acts geometrically on a proper geodesic metric
space then the orbit map is a quasi-isometry.

Recall that a metric space is proper if every closed ball is compact. A proper hyperbolic
geodesic metric space X can be compactified by attaching its boundary @X. To do
so, say that two geodesic rays c1 and c2 in X are equivalent if there exists K > 0

such that d.c1.t/; c2.t// � K for all t � 0. Then the boundary @X of X is the set
of equivalence classes of geodesic rays in X for this relation. The space X [ @X is
endowed with the induced topology from X (see eg Chapter 7 of [15]). For a broad
overview on boundaries of hyperbolic spaces we refer the reader to Kapovich and
Benakli [21].

According to [9, 10.6.6], every hyperbolic isometry fixes two points on the boundary @X,
which are attractive and repulsive points for the action of this isometry on @X. Moreover,
in a ı–hyperbolic space, geodesic triangles with vertices on the boundary are 4ı–thin,
as proven eg in [22, 3.9]; these triangles are often called ideal triangles.

The approximating tree technique provided by the following lemma is often hidden
behind powerful results (see Proposition 2.5 and Theorem 4.3) as it transcribes properties
from trees (where ı D 0) to hyperbolic spaces.

Lemma 2.2 [16, Section 6.1] Let .X; d/ be a ı–hyperbolic space, x0;x1; : : : ;xn

be a set of nC1 points of X [@X and Y be the union of n geodesic segments joining
x0 to other points. Assume that 2n� 2kC1. There exist a simplicial tree .T; dT / and
a continuous map f W X ! T such that:

(1) d.u; v/� 2kı � dT .f .u/; f .v//� d.u; v/ for all u; v 2 Y .

(2) The restriction of f to each segment is isometric.

Hyperbolic spaces also satisfy the following geodesic extension property:
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Proposition 2.3 [3, 3.1] Let X be a geodesic proper ı–hyperbolic space with base-
point x0 and #@X � 2. Let G be a group acting geometrically on X. There exists
a constant � � 0 such that for any point x in X, there is a geodesic ray emanating
from x0 passing within distance � from x .

The constant � is called a constant of geodesic extension for X.

Remark 2.4 If x is a point in X and cW R�0 ! X is a geodesic ray emanating
from x0 and passing within distance � from x , then [6, III.H, Proposition 1.15] gives
d
�
x; c.d.x0;x//

�
� 2�C 2ı with ı a hyperbolicity constant for X.

A finitely generated group G is hyperbolic if, for a finite generating system S of G, the
Cayley graph �S.G/ is hyperbolic. This definition turns out to be independent on the
choice of the finite generating set as a change of generating set produces a Cayley graph
quasi-isometric to the first (see [16, Section 2.3.E]). A hyperbolic group G acts naturally
by left multiplication on its Cayley graph �S.G/ and this action continuously extends
to an action of G on the boundary of �S.G/; then the boundary of the hyperbolic
group G is the boundary of �S.G/. As a quasi-isometry between hyperbolic spaces
induces a homeomorphism between their boundary (see [9, 3.2.2]), this definition does
not depend on the generating set up to homeomorphism.

2.2 Quasiconvexity

Let .X; d/ be a geodesic proper metric space. A subset Y of X is quasiconvex if
there exists a constant "� 0 such that all geodesics joining two points of Y in X are
contained in Y C" D fx 2 X j d.x;Y / � "g, the "–neighbourhood of Y . According
to [16, Section 7.3.A], if X is a ı–hyperbolic space and Y �X is an "–quasiconvex
subset, then Y C� is 2ı–quasiconvex, for all � � ". For instance, every quasigeodesic
is a quasiconvex set according to the theorem of stability [16, Section 7.2].

The concept of quasiconvexity extends naturally to groups: a subgroup H of a finitely
generated group G is quasiconvex if for some (and all) finite generating set S of G,
H is a quasiconvex subset of �S.G/.

Quasiconvex subgroups of hyperbolic groups have interesting properties: for instance,
a quasiconvex subgroup of a hyperbolic group is in turn finitely generated, hyperbolic
and so finitely presentable (see Chapter 10 of [9]).

If the space X is ı–hyperbolic, recall that the limit set of a subgroup H � Isom.X /
is the set ƒH D H �x \ @X of accumulation points in @X of an orbit of a point
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x 2X under the action of H. Then the weak convex hull of the limit set of H, denoted
by C.ƒH /, is the union of all bi-infinite geodesics with endpoints in ƒH. In particular,
C.ƒH / is 8ı–quasiconvex.

The group H is quasiconvex-cocompact if it acts geometrically on C.ƒH /.

Let X be a geodesic proper metric space and Y a subset of X. Let � � 0. An
�–projection is a map � W X ! Y such that every point x 2 X satisfies d.x;y/ �

d.x;Y /C�. A fundamental property of projections on quasiconvex sets is the following
contraction property:

Proposition 2.5 [8] Let X be a ı–hyperbolic geodesic space and Y an "–quasi-
convex subset of X. Let � W X ! Y be an �–projection. For all points x;x0 2X, we
have

d.�.x/; �.x0//�maxf�; 2� C d.x;x0/� d.x; �.x//� d.x0; �.x0//g;

where � D 12ıC 2"C 2�. Furthermore, we also have

d.�.x/; �.x0//� � C d.x;x0/:

If H is a group acting on X, it will be convenient to assume that "–projections on
H –invariant sets are also H –equivariant, as in the proof of Proposition 4.1 for example.

2.3 Ends and relative ends

This part recalls the graph-theoretic approach used to define ends of finitely generated
group in [6, pages 144–148].

A map between two topological spaces is proper if the inverse image of any compact
set by this map is also a compact set. Two proper rays c and c0 in a topological
space X are converging to the same end of X if for every compact set K �X there
exists an integer N such that c.ŒN;C1// and c0.ŒN;C1// are contained in the same
path-connected component of X nK . It defines an equivalence relation on proper rays.
The set of these equivalence classes form the set of ends of the topological space X,
denoted by Ends.X /. As a quasi-isometry between geodesic proper spaces induces
a homeomorphism between their sets of ends, the set of ends of a finitely generated
group is the set of ends of a Cayley graph of this group. The number of ends of a
finitely generated group G is denoted by e.G/.
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Let G be a group generated by a finite set S and let H be a subgroup of G. The
Schreier graph �S.G;H / of G with respect to H, also called the relative Cayley graph,
is the quotient of �S.G/ under the left action of H.

Remark 2.6 If H is a normal subgroup of G, the Schreier graph �S.G;H / is exactly
the Cayley graph of the group G=H associated with S . Indeed, in this case, the cosets
of H in G are the orbits of elements of G under the action of H.

As already mentioned in the introduction, the number of relative ends of the pair .G;H /

associated with S is the number of ends of the Schreier graph �S.G;H /. The aim of
the following work is to give an algorithm to determine the number of relative ends of
a pair of groups.

3 The quasiconvex hypothesis

Computing the number of relative ends of a pair of groups happens to be more difficult
than expected. The following theorem states that, in general, there is no algorithm to
compute the number of relative ends of a pair of groups.

Theorem 3.1 We can construct a pair of groups .G;H / for which it is impossible to
decide algorithmically if

(1) G=H is finite;

(2) the pair .G;H / has two relative ends;

(3) the pair .G;H / has infinitely many relative ends.

The proof of this theorem mainly relies on the Rips construction given in [27]. Given a
finite presentation of a group Q, the Rips construction furnishes a hyperbolic group
G (in fact a small cancellation group) and a subgroup H of G for which the number
of relative ends depends on properties of the original group presentation that are not
recursively recognizable, namely Markov properties.

As explained in [23, IV.4], a Markov property of a finitely presented group is a prop-
erty P for which there exist two finitely presented groups, GC and G� , such that
GC satisfies P and G� cannot be embedded in any finitely presented group which
satisfies P . A large range of well-known properties of finitely presented groups are
Markov properties (see also [24] for more details). The following Markov properties
are used in the proof of Theorem 3.1:
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(1) “Being the trivial group” (ie the group reduced to a single element) with GCD 1

and G� D Z2 as witnesses.

(2) “Being a group of cardinality 2” with GC D Z2 and G� D Z5 .

(3) “Being of cardinality less than or equal to 2” with GC D Z2 and G� D Z5 .

The main result about Markov properties is the Adyan–Rabin theorem [1; 26]. It states
that Markov properties are not recursively recognizable. This will be a key point in the
proof of Theorem 3.1.

We will also need the following lemma:

Lemma 3.2 Let A be a finitely presented group. Let QDA�Z2 .

(1) The group Q is finite if and only if the group A is the trivial group.

(2) The group Q has 2 ends if and only if the group A is of cardinality 2.

(3) The group Q has infinitely many ends if and only if the cardinality of A is
greater than 2.

Proof Firstly, by Hopf’s theorem, e.Q/D 0 if and only if the group Q is finite. But
by definition, the free product of two groups is finite if and only if one of them is
the trivial group. This implies that the group QD A�Z2 is finite if and only if the
group A is the trivial group. Then e.Q/D 0 if and only if A is the trivial group.

The second point of this result comes from P Scott and T Wall [29, Theorem 5.12],
which indicates that e.Q/D 2 if and only if Q splits into an HNN extension A�C or in
a free product with amalgamation A�C B , where C is finite and jA=C j D jB=C j D 2.
By comparison with QDA�Z2 , the group C is here the trivial group, BDZ2 and A

is a group of cardinal 2. Thus, the group Q has two ends if and only if QD Z2 �Z2 .

The point (1) and Stallings’ theorem [30, 4.A.6] imply that Q has infinitely many ends
if and only if the cardinality of A is greater than 2.

Proof of Theorem 3.1 Let A be a finitely presented group. By Adyan and Rabin’s
theorem, there is no algorithm to decide if A satisfies the properties:

(1) “Being the trivial group”.

(2) “Being a group of cardinality 2”.

(3) “Being of cardinality less than or equal to 2”.

Then, by Lemma 3.2, there is no algorithm to decide if
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(1) Q is finite;

(2) Q has 2 ends;

(3) Q has infinitely many ends.

Now denote by G and H groups associated to Q by the Rips construction. So the
number of ends of Q is equal to the number of relative ends of the pair .G;H /. Indeed,
the Rips construction for the group Q furnishes a short exact sequence

1!H !G!Q! 1;

where G is a hyperbolic group and H is a finitely presented subgroup of G. In
particular, the group G=H is isomorphic to Q. Therefore the Schreier graph of the
pair .G;H / is exactly the Cayley graph of Q according to the same generating set.
Thus the number of relative ends of the pair .G;H / is equal to the number of ends
of Q. In particular, there is no algorithm to decide if

(1) G=H is finite;

(2) the pair .G;H / has two relative ends;

(3) the pair .G;H / has infinitely many relative ends.

It is possible to give an explicit finite group presentation hS jRi for which we cannot
decide if the group defined is the trivial group (see [7] for instance). This example
provides a group Q from which the Rips construction produces explicitly a hyperbolic
group G and a subgroup H such that G=H is finite. And so this is an example
for case (1) of the theorem. Likewise, with the presentations hS; b j R; b2i and
hS; b jR; b3i, we can explicit hyperbolic groups and a subgroup such that the number
of relative ends is two or infinite.

Remark 3.3 In each case, the subgroup H raised by the Rips construction is a normal
subgroup of the hyperbolic group G. If such a subgroup were quasiconvex then it would
necessarily be finite or of finite index in G (see Proposition 3.9 in [2]). Added to the
well-known properties of quasiconvex subgroups of hyperbolic group, this observation
tends to consider this particular class of subgroups.

4 Quotient spaces

4.1 Description of quotient spaces

From now on, let X be a proper hyperbolic geodesic metric space and let G be a group
acting geometrically on X. Let H be a quasiconvex-cocompact group of isometries
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of X. Denote by C.ƒH / the weak convex hull of the limit of X and fix a point
x0 2 C.ƒH /. Let ı

X
� 0 be a constant large enough for X to be ı

X
–hyperbolic and

any orbit of H in C.ƒH / to be ı
X

–quasiconvex.

For every point x in X, denote by xx the point in X=H equal to the orbit of x under
the action of H. The quotient space X=H is endowed by a natural distance inherited
from X : for all points x and y of X,

dX=H .xx; xy/D inf
h2H

dX .x; hy/D dX .x;H �y/:

(Distances’ subscripts will be omitted when it is clear from the context.)

As H is quasiconvex-cocompact, the action of H on its weak convex hull C.ƒH /

is geometric and so the quotient C.ƒH /=H , called the convex core, is contained in a
closed ball of X=H.

4.2 Hyperbolicity

Proposition 4.1 There is a constant ˛ such that for every hyperbolic element h 2H

and every point x 2X with d.x;H �x0/� ˛ , we have d.x; hx/� 100ı
X

.

Proof Let h be a hyperbolic element of H. As h is torsion-free, we may assume that
h is also a primitive element (that is, there is no element k in the group and no integer
n ¤ 0; 1;�1 such that h D kn ). Denote by T the set of elements x 2 X such that
d.x; hx/ < 100ı

X
. To complete the proof, we intend to find a constant ˛ such that

the Hausdorff distance between T and the orbit H �x0 is less than ˛ .

To do so, set D WD diam.X=G/, the diameter of the quotient of X by the action of G.
So every element of T is a distance less than D from every orbit for the action of G.
For x 2 T and g 2G, we have d.x;gx0/�D and d.x; hx/ < 100ı

X
and so

d.x0;g
�1hgx0/D d.gx0; hgx0/� 2DC 100ıX :

Note that for all x 2 X, the set fk 2 G j d.x; kx/ < 2DC 100ı
X
g is finite. There-

fore, there exists a finite subset fg1; : : : ;gr g of G such that if d.x0;g
�1hgx0/ <

2DC 100ı
X

for some g 2 G, then g�1
i hgi D g�1hg for some i 2 f1; : : : ; rg. This

implies that gg�1
i 2 CG.h/, the centralizer of h in G. Since hhi is of finite index

in CG.h/, choose right coset representatives k1; : : : ; ks of hhi in the centralizer CG.h/.
It follows that gg�1

i D hnkj for some j 2 f1; : : : ; sg and some integer n. Then we
have

d.gx0; h
nx0/D d.hnkj gix0; h

nx0/�maxfd.x0; kvgux0/ j 1� u� r; 1� v � sg:
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Thus, d.x;H � x0/ � D C maxfd.x0; kvgux0/ j 1 � u � r; 1 � v � sg for all
x 2 T . So the Hausdorff distance between T and the orbit H � x0 is less than
˛ WDDCmaxfd.x0; kvgux0/ j 1� u� r; 1� v � sg.

Remark 4.2 When the space X is a Cayley graph of the hyperbolic group G, we can
find a more straightforward expression for ˛ using Proposition 2.5:

� When the translation length of h is greater than 16ı
X

, the inequality given by
Proposition 2.5 implies that if d.x; hx/<100ı

X
, we have d.x;H �x0/<132ı

X
.

� Otherwise, we use Proposition 3.1 of [10]. It gives an integer n0 D .b8ı
X
/2!

(where b8ı
X

is the number of elements of G of length less than 8ı
X

) such that,
if h� and hC are respectively repulsive and attractive fixed points for h, then
hn0 fixes a geodesic line joining h� to hC . So, by taking a multiple of n0 if
necessary, the first case applies to hn0 .

Thus, when X is a Cayley graph, Proposition 4.1 holds with ˛ WD .132C 100n0/ıX .

The following theorem was stated in [16, 5.3] without proof. Later, it has been proved
by Kapovich [20] and by R Foord [11], both unpublished.

Theorem 4.3 Let X be a proper hyperbolic geodesic metric space and G be a group
acting geometrically on X. Let H be quasiconvex-cocompact torsion-free group of
isometries of X. Then X=H is a hyperbolic space.

Proof We intend to find a constant ı
X=H

such that all points xx , xy and xz in X=H

satisfy

(?) hxy;xzixx0
�minfhxy; xxixx0

; hxx;xzixx0
g� ıX=H :

To do so, set � WDdiam.C.ƒH /=H /C˛Cı
X

, where diam.C.ƒH /=H / is the diameter
of the convex core C.ƒH /=H and ˛ is the constant arising in Proposition 4.1. Fix
three points xx , xy and xz in X=H.

Firstly, assume that minfhxy; xxixx0
; hxx;xzixx0

g> � . Let x be a lift of xx in X satisfying
d.x0;x/Dd.xx0; xx/. Denote by y and z respective lifts of xy and xz such that d.x;y/D

d.xx; xy/ and d.x; z/ D d.xx;xz/. By definition of the Gromov product, these points
satisfy

hy;xix0
� hxy; xxixx0

> � and hx; zix0
� hxx;xzixx0

> �:
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Then, as X is ı
X

–hyperbolic, the following inequality holds:

hy; zix0
�minfhxy; xxixx0

; hxx;xzixx0
g� ıX :

Since �� ı
X

, the set .H �x0/
C� is 2ı

X
–quasiconvex and there exists a ı

X
–projection

� W X ! .H �x0/
C� on this set.

Let x1 denote the point on a geodesic segment Œx0;x� at distance � from x0 . Apply
the approximating tree lemma, Lemma 2.2, to a geodesic triangle � with vertices x , x1

and �.x/: there exists a simplicial tree T endowed with a simplicial metric dT such
that (for convenience, we denote by the same letter points in � and their image in T )
d.u; v/�4ı

X
� dT .u; v/� d.u; v/ for all u; v 2� and dT .x1; �.x//D d.x1; �.x//.

If x0 denotes a projection of x on the segment Œx1; �.x/� in T , the approximating tree
lemma gives

dT .x;x
0/� d.x;x0/� 4ıX

� d.x; .H �x0/
C�/� 6ıX .since .H �x0/

C� is 2ıX –quasiconvex/

� d.x; �.x//� 7ıX .since � is a ıX –projection on .H �x0/
C�/

� dT .x; �.x//� 7ıX :

And so dT .�.x/;x
0/ D dT .x; �.x// � dT .x;x

0/ � 7ı
X

. A similar computation
with x1 instead of �.x/ also gives dT .x1;x

0/D dT .x;x1/�dT .x;x
0/� 7ı

X
. Then

d.x1; �.x//D dT .x1; �.x//� 14ı
X

and so

d.x0; �.x//� �C 14ıX :

The contraction property of projections on quasiconvex sets indicates that we are in
one of two cases:

� d.�.x/; �.y//�18ı
X

and the above inequality induces d.x0; �.y//��C32ı
X

.

� d.�.x/; �.y//�36ı
X
Cd.x;y/�d.x; �.x//�d.y; �.y//, which is equivalent

to

d.x;y/� d.�.y/;x0/�d.x0; �.x//Cd.x;x0/�d.x0; �.x//Cd.y; �.y//

�36ıX

� d.�.y/;x0/Cd.x;x0/Cd.y; �.y//�2��64ıX :

The choice of the lifts y and z and the definition of a ı
X

–projection imply that

d.xx; xy/� d.�.y/;x0/C d.xx; xx0/C d.xy; xx0/� 3�� 64ıX :

Then the triangular inequality for d.xx; xy/ induces d.x0; �.y//� 3�C 64ı
X

.
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As � is a ı
X

–projection, the point y satisfies

d.xy; xx0/� � � d.y; �.y//� d.xy; xx0/� �C ıX :

In every instance, we have

d.x0;y/� d.x0; �.y//C d.�.y/;y/� 3�C 64ıX C d.xx0; xy/� �C ıX :

Replacing y by z in the previous lines gives d.x0; z/� 2�C 65ı
X
C d.xx0;xz/. Then

the Gromov product of y and z at x0 is equal to

hy; zix0
D

1
2
.d.x0;y/C d.x0; z/� d.y; z//

�
1
2
.d.xx0; xy/C d.xx0;xz/� d.xy;xz//C 2�C 65ıX

� hxy;xzixx0
C 2�C 65ıX :

This implies that if minfhxy; xxixx0
; hxx;xzixx0

g > � , the points xx , xy and xz satisfy the
inequality (?).

Furthermore, if minfhxy; xxixx0
; hxx;xzixx0

g � � then

minfhxy; xxixx0
; hxx;xzixx0

g� .2�C 65ıX / < 0:

As the Gromov product hxy;xzixx0
is always positive, the inequality (?) is still satisfied.

Therefore, we can conclude that the space X=H is ı
X=H

–hyperbolic with ı
X=H

WD

2.diam.C.ƒH /=H /C˛C "/C 65ı
X

.

From now on, we may also assume that the group H is torsion-free.

4.3 Covering and geodesic extension property

Proposition 4.4 The space X n .H �x0/
Cı

X=H is a covering space of the complement
of the closed ball B.xx0; ıX=H / in X=H.

Proof In light of Proposition 4.1 and Theorem 4.3, for every element h2H and every
point x 2 X with d.x;H �x0/ > ıX=H , there exists d > 0 such that the closed ball
B.xx0; d/ never intersects its translation h �B.xx0; d/. By a classical result of topology
(see [17, 1.40]), the quotient map from X n.H �x0/

Cı
X=H to .X n.H �x0/

Cı
X=H /=H

is then a covering map. Then, by definition of the distance in X=H, the quotient
.H � x0/

Cı
X=H =H is equal to the ball B.xx0; ıX=H /. Therefore, X n .H �x0/

Cı
X=H

is locally homeomorphic to the complement of B.xx0; ıX=H / in X=H.
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This proposition allows to prove that the quotient space X=H also satisfies the geodesic
extension property of Proposition 2.3.

Corollary 4.5 If ı
X

is also a constant of geodesic extension for X, there exists �� 0

such that for every point xx in X=H, there is a geodesic ray emanating from xx0 passing
within distance � from x .

Proof By Theorem 4.3, there exists some constant ı
X=H

such that X=H is ı
X=H

–
hyperbolic. Consider a point xx in X=H in the complement of B.xx0; ıX=H / and denote
by x a lift of xx in X such that d.x0;x/D d.xx0; xx/. By assumption, there exists a
geodesic ray cW R�0!X emanating from x0 passing within distance ı

X
from x .

Using the covering map described in Proposition 4.4, the ray c furnishes a geodesic
ray xcW Œı

X=H
C 1;C1/!X=H emanating from the point c.ı

X=H
C 1/ and passing

within distance ı
X

from xx . This ray together with a geodesic ray emanating from xx0

with the same endpoint at infinity and a geodesic segment Œxx0; c.ıX=H C 1/� form an
ideal triangle in X=H. As ideal triangles are 4ı

X=H
–thin in X=H, the point xx within

distance 4ı
X=H
C ı

X
from a geodesic ray emanating from xx0 . So 4ı

X=H
C ı

X
is a

suitable constant of geodesic extension for X=H.

By replacing the constant ı
X=H

by 4ı
X=H
C ı

X
if necessary, we can always assume

that X=H satisfies the geodesic extension property with ı
X=H

.

5 Ends of quotient spaces

5.1 Boundary

By Theorem 4.3, the quotient space X=H is hyperbolic. This means that we can
use results on hyperbolic spaces to obtain information on its ends. In particular, the
following result relates the set of ends to the boundary of hyperbolic spaces:

Proposition 5.1 [15, 5.17] Let X be a proper hyperbolic geodesic metric space.
The natural map from the boundary @X of X to the set of ends Ends.X / of X is
continuous and surjective and the fibres are connected components of @X.

Therefore, studying the boundary of the quotient space can give us information on its
space of ends.

Proposition 5.2 If H acts properly discontinuously on X then the quotient map
@X nƒH ! @X=H is a covering map.
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Proof According to the theorem of M Coornaert proven in [8], if the group H acts
properly discontinuously on X, it also acts properly discontinuously on @X nƒH .
Moreover, as H is torsion-free, its action is also free. This implies that for every
point u 2 @X nƒH , there exists an open set U containing u that does not intersect
h � U for every nontrivial element h 2 H. By a classical result of topology (see
[17, I.3, Exercise 23]), it follows that the quotient map @X nƒH ! .@X nƒH /=H is
a covering map. The equality .@X nƒH /=H D @X=H arises naturally.

Proposition 5.3 If @X is connected then @X=H is locally path connected.

The proof of this proposition relies on results discussed in detail in Section 6.

Proof A theorem proven independently by B Bowditch [5] and G A Swarup [31]
asserts that if @X is connected then it has no global cut-point. Moreover, Section 3
of [3] indicates that if @X has no global cut-point, it is locally path connected. The
combination of these results with Proposition 5.2 completes the proof.

Although this result isn’t sufficient to understand the set of ends of X=H, it brings into
view the interesting work of M Bestvina and G Mess.

5.2 Large Bestvina–Mess condition

In the paper [3], Bestvina and Mess give a condition (}M ) on X that implies the local
connectedness of the boundary of X. For our purpose, we are going to consider a slight
variation of their condition. For M >K > 0, set:

(}M;K ) There exists an integer L> 0 such that for every R�KC 2ı
X

and for all
points x 2 S.x0;R/ and y 2 S.x0;R/

CK such that d.x;y/�M, there is
a path of length less than or equal to L joining x to y in the complement of
B.x0;R�K� 2ı

X
/.

This condition also characterizes the local connectedness of one-ended hyperbolic
spaces. More specifically, the proof of Bestvina and Mess in [3, 3.2] also gives literally
the following result:

Proposition 5.4 If there exist constants M and K with M �4KC18ı
X
C6 such that

X satisfies the condition (}M;K ) then the boundary of X is locally connected.

Now we give a Bestvina–Mess condition for X=H . For M > 0, set:

Algebraic & Geometric Topology, Volume 18 (2018)



Ends of Schreier graphs of hyperbolic groups 3105

(|M ) There exists an integer L> 0 such that for every R�maxfMCı
X=H

; 8ı
X=H
g

and for all points xx; xy 2 S.xx0;R/ and d.xx; xy/�M, there is a path of length
less than or equal to L joining xx to xy in the complement of B.xx0;R�8ı

X=H
/.

The following result outlines a link between the condition (}M;K ) for X and the
condition .|M / for X=H :

Proposition 5.5 If there exists a constant M > 4ı
X=H

such that X satisfies the
condition .}M;4ı

X=H
/ then the quotient space X=H satisfies the condition .|M /.

Proof Let us fix M >4ı
X=H

such that .}M;4ı
X=H

/ is satisfied by X. Consider points
xx and xy in X=H such that d.xx0; xx/ D d.xx0; xy/ D R � maxfM C ı

X=H
; 8ı

X=H
g

and d.xx; xy/ � M. Denote by x a lift of xx in X satisfying d.x0;x/ D d.xx0; xx/.
As R>M C ı

X=H
, lift B.xx;M / to B.x;M / using the covering map described in

Proposition 4.4. By lifting a geodesic in this ball joining xx to xy , we obtain a lift y

of xy in the ball B.x;M / such that d.x;y/ D d.xx; xy/. We are going to prove that
these points x and y satisfy the conditions of .}M;4ı

X=H
/.

Let � be a ı
X

–projection from X to the 2ı
X

–quasiconvex thickened orbit of x0 ,
.H �x0/

Cı
X=H . In particular, y satisfies

d.xy; xx0/� ıX=H � d.y; �.y//� d.xy; xx0/� ıX=H C ıX :

The contraction property of projections on quasiconvex sets (Proposition 2.5) asserts
that we have one of two cases:

� d.�.x/; �.y//� 18ı
X

and we have the upper bound on d.x0;y/

d.x0;y/� d.x0; �.x//C d.�.x/; �.y//C d.�.y/;y/

� ıX=H C 18ıX C d.xx0; xy/C ıX

� 2ıX=H C d.x0;x/:

� d.�.x/; �.y//� 36ı
X
Cd.x;y/�d.x; �.x//�d.y; �.y//, which implies that

d.x;y/� d.�.x/; �.y//C d.x; �.x//C d.y; �.y//� 36ıX

� d.x0; �.y//C d.x;x0/C d.y; �.y//� 2d.x0; �.x//� 36ıX :

Then our choice of x and y yields that

d.xx; xy/� d.x0; �.y//C d.xx0; xx/C d.xx0; xy/� 3ıX=H � 36ıX :
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The triangle inequality for d.xx; xy/ gives d.x0; �.y//� 3ı
X=H
C36ı

X
. There-

fore, we obtain

d.x0;y/� d.x0; �.y//C d.�.y/;y/� 4ıX=H C d.x0;x/:

In either case, x and y satisfy d.x0;x/ D R, jd.x0;x/� d.x0;y/j � 4ı
X=H

and
d.x;y/�M. As X satisfies .}M;4ı

X=H
/, there is an integer L>0 and a path of length

less than or equal to L joining x to y in the complement of B.x0;R�4ı
X=H
�2ı

X
/.

Now, we show that the image of this path in X=H stays in the complement of
B.xx0;R�8ı

X=H
/. To do so, consider a point z 2X on this path. The above arguments

also show that the image xz of z in X=H satisfies d.x0; z/� 3ı
X=H
C37ı

X
Cd.xx0;xz/

and this implies that d.xx0;xz/ � R� 8ı
X=H

. Then the image of the path in X=H

forms a path of length less than or equal to L joining xx to xy in the complement of
B.xx0;R� 8ı

X=H
/.

5.3 From sphere to shadows

From now on, fix an integer M � 43ı
X=H
C 4 and set R0 DM C ı

X=H
. In the text

below, paths are supposed to be of finite length and S.xx0;R0/ will denote the sphere
around xx0 of radius R0 .

In light of the Bestvina–Mess conditions, the following equivalence relation arises
naturally:

Definition 5.6 Two points on S.xx0;R0/ are equivalent if there exists a path joining
them in the complement of the open ball B.xx0;R0� 3ı

X=H
/.

Denote by � this equivalence relation on the sphere S.xx0;R0/ and Œxx� the class of a
point xx under this relation. In order to link these equivalence classes with the whole
quotient space X=H, define a projection on B.xx0;R0/.

First, note that the thickened orbit .H � x0/
CR0 is 2ı

X
–quasiconvex since R0 is

greater than the quasiconvexity constant of the orbit which is ı
X

. So consider an
H –equivariant ı

X
–projection on this thickened orbit, namely �0W X ! .H �x0/

CR0 .
Given �0 , define a projection in X=H, that is, a map � 0

0
W X=H ! B.xx0;R0/ such

that:

� For every point xx in the complement of B.xx0;R0/, denote by x a lift of xx
in X. The map � 0

0
sends xx to �0.x/, the image of �0.x/ in X=H.

� The map � 0
0

is the identity on the closed ball B.xx0;R0/.
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Remark 5.7 The definition of � 0
0

does not depend on the choice of the lift of xx0 .
Indeed, if x0 is another lift of xx in X, there exists an element h in H such that x0Dhx .
Then, by H –equivariance of �0 , we have that

d.�0.x/; �0.x0//D min
h2H

d.�0.x/; h�0.h
0x//D min

h2H
d.�0.x/; hh0�0.x//D 0:

The projection � 0
0
.xx/ is also equal to �0.x0/.

Proposition 5.8 For every geodesic ray cW R�0!X=H emanating from xx0 and for
every integer R�R0 , there exists a path joining c.R0/ to � 0

0
.c.R// in the complement

of B.xx0;R0� 10ı
X
/.

Proof Let .ri/1�i�n be a finite sequence of integers such that R0 D r1 � r2 �

� � � � rn D R and riC1 � ri � ıX for all i 2 f1; : : : ; n � 1g. Denote by x1 a lift
of c.r1/ in X. Then, for each i > 1, denote by xi a lift of c.ri/ in X satisfying
d.xi�1;xi/� ıX . By Remark 5.7, d

�
� 0

0
.c.ri//; �

0
0
.c.riC1//

�
D d.�0.xi/; �0.xiC1//

for all i 2 f1; : : : ; n � 1g. Now apply the contraction property of projections on
quasiconvex sets (Proposition 2.5) to each pair .xi ;xiC1/: for all i 2 f1; : : : ; n� 1g,

d.�0.xi/; �0.xiC1//� d.�0.xi/; �0.xiC1//� 18ıX C d.xi ;xiC1/ < 20ıX :

As � 0
0

is the identity on S.xx0;R0/, we also have that � 0
0
.c.R0//D xx1D c.R0/. Now

consider the path obtained by concatenating a geodesic segment Œc.R0/; �0.x1/� with
geodesic segments Œ�0.xi/; �0.xiC1/� for i 2 f1; : : : ; n� 1g and Œ�0.xn/; �

0
0
.c.R//�.

This path joins c.R0/ to � 0
0
.c.R// and stays in the complement of the open ball

B.xx0;R0� 10ı
X
/.

As Theorem 4.3 gives ı
X=H

much greater than 65ı
X

, Proposition 5.8 indicates that
c.R0/� �

0
0
.c.R// and it induces the following definition:

Definition 5.9 A shadow of an equivalence class for � is the inverse image of this
class under � 0

0
.

“Being in the same shadow” is clearly an equivalence relation on points in the comple-
ment of B.xx0;R0/, for which shadows are equivalence classes. Denote by S .xx/ the
shadow of the class Œxx� and SX=H the set of shadows in X=H.

Proposition 5.10 The set SX=H of shadows in X=H is in bijection with the set
S.xx0;R0/=� of equivalence classes for the relation � on S.xx0;R0/.
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Proof Consider f W S.xx0;R0/=�!SX=H the map which sends each equivalence
class to its shadow in X=H.

Let xx and xy be two points in S.xx0;R0/ such that S .xx/ D S .xy/. In particular,
� 0

0
.S .xx//D � 0

0
.S .xy//. Moreover, by definition of � 0

0
, the class of xx for the relation

� is Œxx� D � 0
0
.S .xx// and the class of xy for this relation is Œxy� D � 0

0
.S .xy//. Thus,

the map f is one-to-one.

Let S 2SX=H . By definition of the shadow, there is a point xx 2 S.xx0;R0/ such that
S is the inverse image of Œxx� under � 0

0
. Then the image of Œxx� in SX=H is S and

the map f is surjective.

To conclude, f is a bijection between the set of equivalence classes on S.xx0;R0/ and
the set of shadows in X=H.

5.4 From shadows to ends

In this subsection, we establish a link between shadows and ends of the quotient
space X=H. Recall that M � 43ı

X=H
C 4 and R0 DM C ı

X=H
are fixed.

Lemma 5.11 If X satisfies .}M;4ı
X=H

/, then for all integers R�R0 , any two points
on S.xx0;R/ in the same shadow are joined by a path in the complement of the open
ball B.xx0;R� 8ı

X=H
/.

We follow closely the arguments given by Bestvina and Mess in [3, 3.2].

Proof We proceed by induction on R. Consider two points xx and xy on S.xx0;R0/

in the same shadow. This means that � 0
0
.xx/ and � 0

0
.xy/ are joined by a path in the

complement of B.xx0;R0�3ı
X=H

/. But � 0
0
.xx/D xx and � 0

0
.xy/D xy . So there exists a

path joining xx to xy in the complement of B.xx0;R0�3ı
X=H

/�B.xx0;R0�8ı
X=H

/.

Let R � R0 . Assume now that all pair of points on S.xx0;R/ in the same shadow
are joined by a path in the complement of B.xx0;R� 8ı

X=H
/. Consider two points xx

and xy on S.xx0;RC 1/ in the same shadow. Denote by c0 and c1 two geodesic rays
emanating from xx0 passing within distance ı

X=H
from xx and xy , respectively.

To prove the inductive step, construct a sequence of points on S.xx0;RC 1/ that are
sufficiently close to use that X=H satisfies .|M / and to join xx and xy by a path in the
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complement of B.xx0;RC 1� 8ı
X=H

/. To do so, we prove that c0.R/ and c1.R/ are
in the same shadow using

� 00.c0.R//� �
0
0.c0.RC 1//� � 00.xx/� �

0
0.xy/� �

0
0.c1.RC 1//� � 00.c1.R//;

and then construct the sequence of points using the induction hypothesis for c0.R/

and c1.R/.

First of all, prove � 0
0
.c0.RC 1//� � 0

0
.xx/. Denote by z a lift of c0.RC 1/ and x0 a

lift of xx such that d.x0; z/D d.c0.RC 1/; xx/ � 4ı
X=H

(according to Remark 2.4).
By the contraction property (Proposition 2.5), we obtain

d
�
� 00.c0.RC 1//; � 00.xx/

�
D d.�0.z/; �0.x0//� d.�0.z/; �0.x

0//

� 18ıX C d.z;x0/ < 5ıX=H :

Therefore, there exists a path joining points � 0
0
.c0.RC 1// and � 0

0
.xx/ in the comple-

ment of B.xx0;R0�3ı
X=H

/. An analogous computation indicates that there exists also
a path joining � 0

0
.c1.RC1// and � 0

0
.xy/ in the complement of B.xx0;R0�3ı

X=H
/. By

Proposition 5.8, there is a path joining � 0
0
.ci.R// to � 0

0
.ci.RC1// in the complement

of B.xx0;R0�10ı
X
/ for i D 0; 1. Moreover, as xx and xy are in the same shadow, there

exists also a path joining � 0
0
.xx/ and � 0

0
.xy/ in the complement of B.xx0;R0�3ı

X=H
/.

By concatenating these paths, we obtain a path from � 0
0
.c0.R// to � 0

0
.c1.R// in the

complement of B.xx0;R0�3ı
X=H

/. And so the points c0.R/ and c1.R/ on the sphere
S.xx0;R/ are in the same shadow.

Figure 3 depicts the inductive step.

Now apply the induction hypothesis to c0.R/ and c1.R/: there exists a path join-
ing c0.R/ and c1.R/ in the complement of B.xx0;R � 8ı

X=H
/. Consider points

xp0; : : : ; xpn on the path satisfying xp0D c0.R/, xpnD c1.R/ and d. xpi ; xpiC1/� ıX for
all i 2 f0; : : : ; n� 1g. Then, for all i , denote by ci a geodesic ray emanating from xx0

passing within distance ı
X=H

from xpi .

Denote by xqi a point of ci at distance less than or equal to ı
X=H

of xpi . Then the
distance between xqi and xx0 is at least R�9ı

X=H
. Denote by xsi a point of ci satisfying�

d.xsi ; xx0/�RC 1;

d.xsi ; xqi/� 1C 9ı
X=H

:

For all i 2f0; : : : ; n�1g, these points satisfy d.xsi ;xsiC1/�2C20ı
X=H
Cı

X
. Consider

a geodesic triangle formed by the subsegments Œxx0;xsi �� ci and Œxx0;xsiC1�� ciC1 and
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c0

ci ciC1

c1

xx

xy

xsi
xsiC1

xpi

xpiC1

xqi

xqiC1

c0.R/

c0.RC 1/

c1.R/

c1.RC 1/

ci.RC 1/ ciC1.RC 1/

S.xx0;RC 1/

S.xx0;R/

S.xx0;R� 8ı
X=H

/

Figure 3: Joining xx and xy in the complement of B.xx0;RC 1� 8ı
X=H

/

a geodesic segment joining xsi and xsiC1 . According to [6, III.H.1.15], we obtain

d.ci.RC 1/; ciC1.RC 1//� 2.2C 20ıX=H C ıX C ıX=H /� 4C 43ıX=H :

As X satisfies the property .}4C43ı
X=H

;4ı
X=H

/, there is a path joining ci.RC 1/ and
ciC1.RC 1/ in the complement of B.xx0;RC 1� 8ı

X=H
/ for all i 2 f0; : : : ; n� 1g.

Moreover, given Remark 2.4, d.c0.RC1/; xx/�4ı
X=H

and d.c1.RC1/; xy/�4ı
X=H

.
Thus, there exists a path joining xx to xy in the complement of B.xx0;RC 1� 8ı

X=H
/.

To conclude, for all R � R0 , any two points on S.xx0;R/ in the same shadow are
joined by a path in the complement of B.xx0;R� 8ı

X=H
/.

This lemma extends to a more general result:

Proposition 5.12 If X satisfies .}M;4ı
X=H

/ then any two points xx , xy 2X=H in the
same shadow are joined by a path in the complement of

B.xx0;minfd.xx0; xx/; d.xx0; xy/g� 8ıX=H /:

Proof Consider two points xx and xy in X=H in the same shadow. Set Rx WDd.xx0; xx/

and Ry WDd.xx0; xy/. By exchanging roles between xx and xy if necessary, we can assume
that Rx is less than or equal to Ry and so minfd.xx0; xx/; d.xx0; xy/g D Rx . Denote
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by c a geodesic ray emanating from xx0 passing within distance ı
X=H

from xy and set
xy0 WD c.Rx/. By Proposition 5.8 and as d.xy; c/ � ı

X=H
, xy and xy0 are in the same

shadow. This implies that xx and xy0 are in the same shadow. By applying Lemma 5.11,
there exists a path joining xx to xy0 in the complement of B.xx0;Rx�8ı

X=H
/. Moreover,

in light of Remark 2.4, d.xy; c.Ry//� 4ı
X=H

and so these points are joined by a path
in the complement of B.xx0;Ry � 2ı

X=H
/.

The concatenation of these paths with the restriction of c to ŒRx;Ry � forms a path
joining xx to xy in the complement of B.xx0;Rx � 8ı

X=H
/.

Recall that Proposition 5.8 states that all points on a geodesic ray emanating from xx0

at distance greater than or equal to R0 from xx0 are in the same shadow. Therefore,
our relation � extends to geodesic rays in X=H emanating from xx0 in the following
manner: two geodesic rays c; c0W R�0!X=H emanating from xx0 are “in the same
shadow” if all points on c and c0 at distance greater than or equal to R0 from xx0 are
in the same shadow. Denote by S .c/ WDS .c.R0// the shadow defined by the class
of c.R0/.

Remark 5.13 There is a natural surjection from the set of geodesic rays emanating
from xx0 to the set of shadows in X=H.

Lemma 5.14 Assume that X satisfies the property .}M;4ı
X=H

/. Two geodesic rays
in X=H are in the same shadow if and only if they converge to the same end of X=H.

Proof Consider two geodesic rays c and c0 converging to the same end in X=H. This
means that for all R�R0 , there is an integer R0 �R such that for all r; r 0 �R0, the
points c.r/ and c0.r 0/ are in the same path connected component of the complement
of B.xx0;R/. Therefore, for all r; r 0 �R0, the points c.r/ and c0.r 0/ are joined by a
path in the complement of B.xx0;R/�B.xx0;R0/. By Proposition 5.8, the following
equivalences are satisfied for all r; r 0 �R0 :

� 00.c.r//� �
0
0.c.R0//D c.R0/;

� 00.c
0.r 0//� � 00.c

0.R0//D c0.R0/:

This means that there exist paths joining � 0
0
.c.r// to c.R0/ and � 0

0
.c0.r 0// to c0.R0/

in the complement of B.xx0;R0 � 8ı
X=H

/. The concatenation of these paths with
the restrictions of rays c.ŒR0; r �/ and c0.ŒR0; r

0�/ gives a path joining � 0
0
.c.r// to
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� 0
0
.c0.r 0// in the complement of B.xx0;R0 � 8ı

X=H
/. By Proposition 5.8, this fact

extends to every point far away from xx0 . Indeed, for all r1; r2 �R0 , we have

� 00.c.r1//� c.R0/� �
0
0.c.r//� �

0
0.c
0.r 0//� c0.R0/� �

0
0.c
0.r2//:

Therefore, for all r1; r2 �R0 , there is a path joining � 0
0
.c.r1// to � 0

0
.c0.r2// in the

complement of the open ball B.xx0;R0� 8ı
X=H

/, ie the geodesic rays c and c0 are in
the same shadow.

Now consider two geodesic rays c; c0W R�0!X=H in the same shadow. By Proposition
5.12, for all r; r 0 � R0 , there is a path joining c.r/ to c0.r 0/ in the complement of
B.xx0;minfr; r 0g�8ı

X=H
/. This implies that for R�R0 , every point of c.ŒR;C1//

is joined by a path in the complement of B.xx0;R�8ı
X=H

/ to a point of c0.ŒR;C1//.
Therefore, these rays converge to the same end of X=H.

Remark 5.15 The fact that two geodesic rays in X=H converging to a same end are
in the same shadow holds even if X does not satisfy .}M;4ı

X=H
/.

To sum up, if the space X satisfies the property .}M;4ı
X=H

/ with M � 43ı
X=H
C 4,

the number of shadows for geodesic rays in X=H is equal to the number of ends
for X=H. This implies the following result:

Theorem 5.16 Let M �43ı
X=H
C4 and R0�MCı

X=H
. If X satisfies the property

.}M;4ı
X=H

/, then the set of ends of X=H is in bijection with the set of equivalence
classes for the relation � on the sphere S.xx0;R0/.

Proof Let f W Ends.X=H /! SX=H be a map which sends an end end.c/ defined
by a geodesic ray c to the shadow S .c/.

Let c and c0 be two geodesic rays emanating from xx0 in X=H such that S .c/DS .c0/.
Lemma 5.14 implies then that c and c0 converge to the same end; this means that
end.c/D end.c0/. Thus, f is one-to-one.

Let S 2SX=H . By Remark 5.13, the map sending geodesic rays emanating from xx0

to shadows in X=H is surjective. So there exists a geodesic ray c emanating from xx0

such that S DS .c/. The image of end.c/ under f is then exactly S . Therefore, the
map f is surjective.

So there is a bijection between the set of ends of X=H and the set of shadows
in X=H. By Proposition 5.10, there is a bijection between the set of ends and the set
of equivalence classes for � on the sphere S.xx0;R0/.

Algebraic & Geometric Topology, Volume 18 (2018)



Ends of Schreier graphs of hyperbolic groups 3113

In light of Theorem 5.16, the following corollary is straightforward:

Corollary 5.17 Let M � 43ı
X=H
C4 and R0 �M Cı

X=H
. If the space X satisfies

the property .}M;4ı
X=H

/, then the number of ends of X=H is equal to the number of
equivalence classes for the relation � on the sphere S.xx0;R0/.

Remark 5.18 In particular, the number of equivalence classes on the sphere centred
in xx0 of radius R0 is finite since it is bounded by the size of this sphere. In this case,
the number of ends of X=H is necessarily finite.

6 Application to group theory

In what follows, G is a hyperbolic group with connected boundary given by a finite
presentation hS jRi and X is the Cayley graph of G with respect to S . Moreover,
assume that there exists a quasiconvex subgroup H of G and denote by x0 a point in
the weak convex hull C.ƒH / of the limit set of H. In particular, the group H is a
quasiconvex-cocompact group of isometries of X. Then the number of relative ends of
the pair .G;H / is the number of ends of the associated Schreier graph X=H. Denote
by ı

X
a hyperbolicity constant for X which is a geodesic extension constant for X.

The aim of this section is to give an algorithm to compute the number of relative ends
of the pair .G;H /.

Here we go back over the results used in the proof of Proposition 5.3. Bestvina and
Mess proved that if a hyperbolic space does not satisfy their condition then its boundary
has a cut-point (see Proposition 3.3 of [3]). Their proof remains valid under condition
.}M;K / and gives the following result:

Proposition 6.1 If there exist constants M >K > 0 such that X does not satisfy the
condition .}M;K / then the boundary of X contains a global cut-point.

A few years later, Bowditch and Swarup proved independently that there is no such
cut-point in one-ended hyperbolic groups (see [5, 0.3; 31]).

Theorem 6.2 If G is a one-ended hyperbolic group, then the boundary @G of G

contains no global cut-point.

In light of Proposition 6.1 and Theorem 6.2, the following statement holds:
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Corollary 6.3 If G is a hyperbolic group with connected boundary, then any Cayley
graph of G satisfies the condition .}M;K / for all M >K > 0.

The following result arises easily from Corollaries 6.3 and 5.17 for the determination
of relative ends.

Corollary 6.4 Under our assumption on G and H, there exists a constant R0 such
that the number of relative ends of the pair .G;H / is equal to the number of equivalence
classes on S.xx0;R0/ for the relation �.

Proof As the group G has a connected boundary, Corollary 6.3 indicates that X

satisfies the condition .}M;K / for all M >K> 0. Furthermore, Corollary 5.17 implies
that if M � 43ı

X=H
C4 and R0�MCı

X=H
, then the number of ends of the quotient

space X=H is equal to the number of equivalence classes for the relation � on the
sphere S.xx0;R0/.

To establish the existence of the sought algorithm, we need the following lemma:

Lemma 6.5 Let R0 > 4ı
X=H
C ı

X
. If there exists a path joining two points on the

sphere S.xx0;R0/ in the complement of B.xx0;R0�3ı
X=H

/ then there exists an injec-
tive path joining these points in the annulus A.xx0;R0� 3ı

X=H
;R0C 10ı

X
.#S/R0/.

Proof Let xx and xy be two points on the sphere S.xx0;R0/ joined by a path of finite
length in the complement of B.xx0;R0 � 3ı

X=H
/. We denote by xx D xp0 , xp1; : : : ,

xpn D xy points on this path satisfying d. xpi ; xpiC1/� ıX for i 2 f0; : : : ; ng.

As R0� 3ı
X=H
� ı

X
> ı

X=H
, any closed ball of radius ı

X
at xpi can be lifted in X

using the covering map described in Proposition 4.4. Let x be a lift of xx D xp0 . Firstly,
lift the ball B. xp0; ıX / into the ball B.p0; ıX /. By construction, this ball contains
a lift p1 of xp1 satisfying d.p0;p1/ � ıX . By induction, we obtain lifts pi of xpi

still satisfying d.pi ;piC1/� ıX for i 2 f1; : : : ; n� 1g. Denote by y D pn the lift of
xy D xpn obtained that way.

Denote by �0 the ı
X

–projection of X on the thickened orbit .H � x0/
CR0 which

is 2ı
X

–quasiconvex. As d.xx0; xx/ D d.xx0; xy/ D R0 , we also have d.H � x0;x/ D

d.H �x0;y/DR0 and then �0.x/D x and �0.y/D y . Then, project the points pi

on .H �x0/
CR0 . For all i 2 f0; : : : ; n� 1g, we have

d.�0.pi/; �0.piC1//� d.pi ;piC1/C 18ıX (by Proposition 2.5)

� 19ıX :
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This implies that8<:
d.�0.pi/; �0.piC1//� 19ı

X
for all i 2 f1; : : : ; n� 1g;

d.xx; �0.p1//� 19ı
X
;

d.�0.pn�1/; xy/� 19ı
X
:

Therefore, xx is joined to xy by a path formed by concatenating paths of length less
than or equal to 19ı

X
joining the �0.pi/ with each other. By suppressing some

cycles on this path if necessary (some �0.pi/ may be equal), we obtain a path of
length less than or equal to 19ı

X
� #S.xx0;R0/ joining xx to xy in the complement of

B.xx0;R0� 10ı
X
/.

By definition, the cardinality of the sphere S.xx0;R0/ is less than .#S/R0 . This
implies that xx and xy are joined by an injective path of length less than or equal to
19ı

X
� .#S/R0 .

Finally, two points on the sphere S.xx0;R0/ joined by a path in the complement of the
ball B.xx0;R0� 3ı

X=H
/ are joined by a path in the open annulus

A.xx0;R0� 3ıX=H ;R0C 10ıX .#S/
R0/:

Theorem 6.6 Let G be a hyperbolic group with connected boundary given by a finite
presentation hS jRi. Let H be a quasiconvex subgroup of G. There exists an algorithm
to compute the number of relative ends of the pair .G;H /.

Proof The group G is a hyperbolic group with connected boundary, so we can apply
Corollary 6.4. For M � 43ı

X=H
C4, there exists a constant R0DMCı

X=H
such that

the number of relative ends of the pair .G;H / is equal to the number of equivalence
classes for the relation �. Therefore, we have to determine whenever two points on
S.xx0;R0/ are joined by a path in the complement of the open ball B.xx0;R0�3ı

X=H
/.

Apply Lemma 6.5: two points on S.xx0;R0/ joined by a path in the complement
of the ball B.xx0;R0 � 3ı

X=H
/ are joined by an injective path in the open annulus

A.xx0;R0� 3ı
X=H

;R0C 10ı
X
.#S/R0/. This means that drawing the ball

B.xx0;R0C 10ıX .#S/
R0/

allows us to determine whenever two points on the sphere S.xx0;R0/ are joined by a
path in the complement of B.xx0;R0� 3ı

X=H
/ and to split S.xx0;R0/ in equivalence

classes for �.
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� Draw the closed ball B.xx0;R0 C 10ı
X
.#S/R0/. Pick up a point xx1 at dis-

tance R0 from xx0 and look for every point of S.xx0;R0/ joined to xx1 by a path
staying in A.xx0;R0 � 3ı

X=H
;R0 C 10ı

X
.#S/R0/. These points form the equiva-

lence class Œxx1�. If this class contains every point of the sphere S.xx0;R0/, the pair
.G;H / has one relative end. Otherwise, pick up a point xx2 in S.xx0;R0/ n Œxx1�.
Again, look for every point of S.xx0;R0/ n Œxx1� joined to xx2 by a path staying in
A.xx0;R0 � 3ı

X=H
;R0 C 10ı

X
.#S/R0/. If Œxx2� D S.xx0;R0/ n Œxx1� then the pair

.G;H / has 2 relative ends. Otherwise, pick up a point xx3 on the sphere S.xx0;R0/ in
the complement of Œxx1� and Œxx2� and so on. As the sphere S.xx0;R0/ contains a finite
number of points, the algorithm stops at some point.

This procedure gives the number of equivalence classes for � which is the number of
relative ends of the pair .G;H /.

In light of Remark 4.2, if the value of ı
X

is known, it is possible to determine explicitly
every constant used in the algorithm.
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