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A note on knot concordance

EYLEM ZELIHA YILDIZ

We use classical techniques to answer some questions raised by Daniele Celoria
about almost-concordance of knots in arbitrary closed 3–manifolds. We first prove
that, given Y 3 ¤ S3 , for any nontrivial element g 2 �1.Y / there are infinitely
many distinct smooth almost-concordance classes in the free homotopy class of the
unknot. In particular we consider these distinct smooth almost-concordance classes
on the boundary of a Mazur manifold and we show none of these distinct classes
bounds a PL–disk in the Mazur manifold, but all the representatives we construct are
topologically slice. We also prove that all knots in the free homotopy class of S1�pt
in S1 �S2 are smoothly concordant.

57M27, 57Q60

0 Introduction

We consider manifolds that are smooth and oriented. Let Y be a closed, connected,
oriented 3–manifold. A knot k in Y is an isotopy class of a smooth embedding
S1 ,! Y . Two knots k1 and k2 are said to be concordant if there is a smooth
proper embedding of an annulus F W S1 � Œ0; 1� ,! Y � Œ0; 1� such that its boundary is
@F.S1 � Œ0; 1�/D k1 � f0g[ .�k2/� f1g, where .�k2/ is the same knot k2 with the
reversed orientation. If we allow F to have only finitely many singular points, all of
which are cones over knots, then k1 and k2 are called PL–concordant. We call these
knots singular concordant if we allow F to be an immersion instead of an embedding.
Two knots are singular concordant if and only if they are freely homotopic. One can
see this fact by using the immersion theorems and general position arguments (these
can be found in Hirsch [9]) on the trace of homotopy.

Concordance is an equivalence relation � on the set of oriented knots in Y . The set of
equivalence classes is denoted by;

C.Y /D foriented knots in Y g=�:

Concordant knots k1 and k2 are freely homotopic, hence they are homologous. In [3],
Daniele Celoria defines the concept of almost-concordance of knots. Two knots k1
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and k2 in Y are said to be almost-concordant if there are k01; k
0
2 � S

3 such that
k1 # k01 � k2 # k02 , and this is expressed by k1 P� k2 . Like concordance, almost-
concordance is an equivalence relation, and it implies free homotopy of knots.

We denote almost-concordance classes by zC.Y /. More generally,

C .Y / WD K .Y /=�; zC .Y / WD K .Y /= P�;

where K .Y / is the free homotopy class of a knot  in Y .

Theorem 1 Given a closed 3–manifold Y , for a nontrivial element g 2 �1.Y / we
can construct infinitely many distinct almost-concordance classes in the free homotopy
class of the unknot. If h … fg; g�1g, then the almost-concordance classes constructed
using g and h (as in Figure 3) are disjoint.

A question raised in [3] is: Does there exists a pair .Y;m/ such that Cm.Y / is finite?
Theorem 2 provide a positive answer.

Theorem 2 All knots in the free homotopy class of S1 � pt in S1 �S2 are smoothly
concordant, ie jCx.S1 �S2/j D 1, where x represents S1 � pt in S1 �S2 .

After this paper was posted, a similar result to Theorem 2 appeared in Davis, Nagel,
Park and Ray [4]. In Friedl, Nagel, Orson and Powell [7], there are also related results
to the above theorems in the topological category.

Acknowledgement I would like to thank Matthew Hedden for encouraging me to
think about this problem and for valuable suggestions, and also I thank Selman Akbulut
for helpful discussions.

1 Wall’s self-intersection number, a concordance invariant
for null-homotopic knots and the proof of Theorem 1

There are many approaches to knot concordance problem; here we focus on one of the
classical techniques. This technique is based on Wall’s intersection number [13]. The
application of this idea to knot concordance was studied in [12] by Schneiderman.

Let k be a null-homotopic knot in Y ; consider a singular concordance of k to the
unknot u — after capping the unknot with a disk, we get a proper immersion of a disk
D# Y �I with kD @D. Let p be a transverse self-intersection of the immersion D ;
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then any small neighbourhood of p looks like two surfaces intersecting at p . These
surfaces are called sheets. The self-intersection number of k , defined as Wall’s self-
intersection number of D, takes its value in the group ring ZŒ�1Y �. To define this
self-intersection number we first fix a path from the basepoint y0 of Y �I to a basepoint
of the immersed disk D, called a whisker of D. Now gp 2 �1.Y; y0/ is defined in
the following way: it is a loop starting from y0 going to the basepoint of D using
the whisker, then to the self-intersection point p of D, then changing the sheet at the
intersection point going back to the basepoint of D, and finally to y0 using the whisker.
Then

�.k/ WD �.D/D
X
p

sign.p/ �gp 2 ZŒ�1Y �:

Since D is simply connected, the loop gp does not depend on the path we choose
while travelling on D as long as it stays away from self-intersection points. The value
of sign.p/ is C1 if the orientation of Y �I at p matches with the orientation induced
from sheets of D at p , and it is �1 otherwise. After fixing the whisker there is still an
indeterminacy coming from the choice of the first sheet. Altering this choice changes
the loop from gp to g�1p . Also, self-intersection points coming from cusp homotopies
give elements which are trivial in �1.Y /. Since we are interested in a homotopy
invariant, we also quotient out these elements, arriving at the abelian group

zƒ WD
ZŒ�1Y �

fg�g�1 j g 2 �1.Y /g˚ZŒ1�
:

Here ZŒ1� is the abelian subgroup generated by the trivial element of �1.Y /. Homotopy
invariance in the above discussion follows from the following two propositions.

Proposition 3 (from Chapter 1.6 of [6]) A homotopy between immersions of a
surface in a 4–manifold is homotopic to a composition of homotopies, each of which is
a regular homotopy or a cusp homotopy in some ball, or the inverse of a cusp homotopy.

Proposition 4 (from Chapter 1.7 of [6]) Intersection numbers and reduced self-
intersection numbers in zƒ are invariant under homotopy rel boundary. The ZŒ1�

component of the self-intersection number is invariant under regular homotopy, and
conversely two immersions of a sphere or disk which are homotopic rel boundary, and
have the same framed boundary, are regularly homotopic rel boundary if and only if the
ZŒ1� components of the self-intersection numbers are equal.

Now we state and prove Schneiderman’s knot concordance invariant.
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Figure 1: �.k/D g

Theorem 5 [12] The map

�W C1.Y /! zƒ; k 7! �.k/;

is well defined and onto.

Proof We recall the proof from [12].

Well defined Let D and D0 be singular null-concordances of a knot k , taking
a singular sphere S D D [k D

0 � Y � I gives S 2 �2.Y � I / D �2.Y /. By
[8, Proposition 3.12], there exists a disjoint collection of embedded 2–spheres generat-
ing �2.Y / as a �1.Y /�module. Tubing these generators together in Y � I, we get an
embedded sphere in Y � I. This implies

�.S/D 0D �.D/��.D0/;

therefore �.k/ doesn’t depend on D.

Concordance invariance If k1; k2 2 C1.Y / and k1� k2 , then �.k2/D�.C [D/D
�.D/ D �.k1/ where C is a concordance from k1 to k2 and D is the singular
concordance of k2 .

Surjectivity To construct ˙g 2 ZŒ�1.Y /� start with an unknot u and push an arc
from u around a loop representing g 2 �1.Y / and create a ˙ clasp as in Figure 1.
Iterating this process, one can get any desired element in ZŒ�1.Y /� via connected
summing of such knots.

Lemma 6 For any knots k 2 K1.Y /, k0 � S3 we have

�.k # k0/D �.k/:

This implies that �W zC1.Y /! zƒ is well defined and onto.

Proof We will construct a singular disk which will give us the desired result. By
definition, k bounds a proper immersion of a disk D � Y �I , and similarly k0 bounds
D0 � S3 � I. Any band sum D #bD0 where the interior of b is away from k and k0
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gives a proper immersion of a disk in Y �I bounded by k #k0. Take the basepoint and
the whisker of D as a basepoint and a whisker for D #bD0, so

�.D #bD
0/D �.D/Cˇ�.D0/ˇ�1;

where ˇ 2 �1.Y / is determined by the band b and the whisker. On the other hand,
�1.S

3/D 1 and D0 lies entirely in S3 � I, therefore ˇ�.D0/ˇ�1 D 0 2 zƒ, hence

�.D #bD
0/D �.D/ and �.k #b k

0/D �.k/:

This observation implies that Schneiderman’s concordance invariant � is also an
almost-concordance invariant on freely null-homotopic knots.

Proof of Theorem 1 By Theorem 5 and Lemma 6, �W zC1.Y /! zƒ is well defined,
onto, and is an almost-concordance invariant on null-homotopic knots. For every
nontrivial element g 2 �1.Y / the target space zƒ contains a subgroup isomorphic to Z

generated by g.

Example 1 Let W 4 be a Mazur manifold as in Figure 2. There are various ways
to see that the boundary is not the 3–sphere. Its fundamental group is known to be
nontrivial [10].

0 0

 

@
' 0

˛

f e

d

c
y x

b



Figure 2: A homology sphere, Wirtinger presentation

By using the Wirtinger presentation we describe the fundamental group:

�1.Y /D
˚
; ˛ j 2˛�1˛�1˛�1˛�1˛�1�1˛�1˛ D 1;

�1˛�1˛2˛�2˛3 D 1
	
:
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Figure 3: Distinct almost-concordant families

Notice that setting  D 1 in this presentation would make this group trivial, hence  is a
nontrivial element of �1.Y /. To construct an example corresponding to Theorem 1, take
an unknot and push an arc along a nontrivial loop  ; we get Figure 3, left. Obviously
�.k1/D 

˙ 2 zƒ is nontrivial. Hence, it is not almost-concordant to the unknot. On
the other hand, by iterating this process (ie increasing the number of twists) we can
construct infinitely many null-homotopic knots kn with distinct � invariant in the
homology sphere; see Figure 3, right.

2 Proof of Theorem 2

Proof of Theorem 2 First we introduce a (genus zero) cobordism move to a knot k ,
which starts with k and ends with a two-component link, consisting of the knot obtained
from k by changing one of its crossings union a small linking circle, as shown in

Figure 4: Crossing change
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k

0 0 0

k0

S1 � pt

cobordism isotopy

Figure 5: An example of crossing change

Figure 4. Let k be a knot freely homotopic to k0 D S1 � pt in S1 �S2 ; one can go
from k to k0 by finitely many crossing changes and isotopies. Change all the necessary
crossings of k by the cobordism described above. Notice that for every crossing change,
we get a small linking circle to the resulting knot. See Figure 5 as an example. It is
obvious from Figure 6 that all those small circles which link k0 bound disks in S1�S2

disjoint from k0. We accomplish this by sliding over the 0–framed circle. By capping
with disks these unknots, we get a concordance from k to k0 in S1 �S2 .

k0

0 0

k0

slide

Figure 6: Sliding and capping with disks

3 PL–slice

The notion of almost-concordance is same as the PL–concordance in Y � I. Indeed,
if k1 and k2 are PL–concordant then we may assume without loss of generality, the
concordance has only one singular point which locally looks like a cone over a knot k .
It is easy to see k1 #�k is smoothly concordant to k2 by removing a ball around the
cone point and connecting two boundary components by removing neighbourhood of
an arc lying on the concordance connecting k1 to k . On the other hand, if we have an
almost concordance between k1 and k2 , ie k1 #k01 is concordant to k2 #k02 , then push
the local knots inside the 4–manifold and take the cone over the knots in some local
ball to get a PL–concordance. Basically this tells us the family of knots we construct
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Figure 7: Boundary diffeomorphism

in Example 1, in particular in Figure 3, cannot bound a PL–disk in the collar of the
manifold but it can still bound in a 4–manifold which Y bounds.

Next we see that none of these family members ˛n in Figure 7 bounds a PL–disk in
the Mazur manifold W 4 .

Here we imitate Akbulut [1]. Observe that W 4 is a Stein domain by [5]. Consider the
boundary diffeomorphism which takes ˛n to ˇn as in Figure 7, using 0$ � exchange
and symmetry of the link surgery diagram of Mazur manifold. The knot ˇn is smoothly
slice. To see that ˛n is not slice we use the adjunction inequality as in [2]. Let F �W 4

be a properly embedded oriented surface in a Stein domain such that k D @F � @W 4

is a Legendrian knot with respect to the induced contact structure.

Let f denote the framing of k induced from the trivialization of the normal bundle
of F ; then

��.F /� .tb.k/�f /Cjrot.k/j:

Recall that the rotation number rot.k/ and the Thurston–Bennequin number tb.k/ are
given by the formulae

rot.k/D 1
2
.number of “downward” cusps� number of “upward” cusps/;

tb.k/D bb.k/� c.k/;

where bb.˛/ is the blackboard framing (or writhe) of the front projection of k and
c.k/ is the number of right cusps.

Assume the curve ˛n is slice, so �.F /D 1, tb.˛n/D 2n� .2n� 1/D 1, rot.˛n/D 0
and f D 0, so we have a contradiction: �1 � 1, and therefore ˛n is not slice. The
same argument as in [1, Theorem 1] shows ˛n does not bound a PL–disk in W 4 .
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4 Topological slice

Here we show that the family of knots that we constructed in the previous example are all
topologically slice and therefore they are all distinct elements in the almost-concordance
class of topologically slice knots on the boundary of the Mazur manifold.

A knot k in a homology sphere Y has well-defined Alexander polynomial �k.t/
in ZŒt˙�. Let F be a Seifert surface of k in Y and X be the knot complement. Then

�k.t/ WD det.tS �ST /;

where S is an associated Seifert matrix of the bilinear form �

�W H1.F IZ/�H1.F IZ/! Z; �.˛; ˇ/D lk.˛C; ˇ/:

We adopt the convention that ˛C 2H1.X �F / is the image of ˛ 2H1.F / via pushing
˛ in the positive normal direction of F. As is seen in Figure 8, the Seifert surface
F of kn links the 0–framed knot. One of its generators x links that knot. In this
case lk.xC; x/ is not a direct calculation, since we have to find a Seifert surface Fx
(or FxC ) of x (or xC ) to calculate lk.xC; x/. On the other hand, using the lemma
below we can calculate the Seifert matrix easily.

Lemma 7 [11, Lemma 7.13] Let k[ l be a boundary link (ie knots k and l bound
disjoint Seifert surfaces) in a homology sphere Y , and Y 0 is a ˙1 surgery of Y along k .
Then �l�Y .t/D�l 0�Y 0.t/, where l 0 � Y 0 is the image of l � Y under the surgery.

Since ˛ and kn have disjoint Seifert surfaces — see Figure 8, left — we perform �1
surgery on ˛ , and after some isotopy of kn we get the right diagram. Therefore, for

0

0
˛

kn

�n twist

� S3

Figure 8: Alexander polynomial in homology sphere
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the Seifert matrix S D
�
0
0
1
n

�
we have the corresponding Alexander polynomial

�kn�Y .t/D det.tS �ST /D t PD 1:

Thanks to Freedman and Quinn [6, Theorem 11.7B], these knots are all topologically
slice.
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