Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Modulo $2$ counting of Klein-bottle leaves in smooth taut foliations

Boyu Zhang

Algebraic & Geometric Topology 18 (2018) 2701–2727
Bibliography
1 C Bonatti, S Firmo, Feuilles compactes d’un feuilletage générique en codimension 1, Ann. Sci. École Norm. Sup. 27 (1994) 407 MR1290395
2 A Candel, L Conlon, Foliations, II, 60, Amer. Math. Soc. (2003) MR1994394
3 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
4 D McDuff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143 MR1114456
5 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012) MR2954391
6 S P Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965) 248 MR0200938
7 C H Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J. Differential Geom. 44 (1996) 818 MR1438194
8 C H Taubes, SW Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 MR1362874
9 R Ye, Gromov’s compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671 MR1176088
10 B Zhang, A monopole Floer invariant for foliations without transverse invariant measure, preprint (2016) arXiv:1603.08136