Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The action of matrix groups on aspherical manifolds

Shengkui Ye

Algebraic & Geometric Topology 18 (2018) 2875–2895
Bibliography
1 H Bass, J Milnor, J P Serre, Solution of the congruence subgroup problem for SLn (n 3) and Sp2n, (n 2), Inst. Hautes Études Sci. Publ. Math. 33 (1967) 59 MR0244257
2 A J Berrick, An approach to algebraic K–theory, 56, Pitman (1982) MR649409
3 A Borel, Seminar on transformation groups, 46, Princeton Univ. Press (1960) MR0116341
4 G E Bredon, Orientation in generalized manifolds and applications to the theory of transformation groups, Michigan Math. J. 7 (1960) 35 MR0116342
5 G E Bredon, Sheaf theory, 170, Springer (1997) MR1481706
6 M R Bridson, K Vogtmann, Actions of automorphism groups of free groups on homology spheres and acyclic manifolds, Comment. Math. Helv. 86 (2011) 73 MR2745276
7 A Brown, D Fisher, S Hurtado, Zimmer’s conjecture : subexponential growth, measure rigidity, and strong property (T), preprint (2016) arXiv:1608.04995
8 A Brown, F Rodriguez Hertz, Z Wang, Invariant measures and measurable projective factors for actions of higher-rank lattices on manifolds, preprint (2016) arXiv:1609.05565
9 H Brown, R Bülow, J Neubüser, H Wondratschek, H Zassenhaus, Crystallographic groups of four-dimensional space, Wiley (1978) MR0484179
10 K S Brown, Cohomology of groups, 87, Springer (1982) MR672956
11 L S Charlap, A T Vasquez, Compact flat riemannian manifolds, III : The group of affinities, Amer. J. Math. 95 (1973) 471 MR0336658
12 C Cid, T Schulz, Computation of five- and six-dimensional Bieberbach groups, Experiment. Math. 10 (2001) 109 MR1822856
13 R K Dennis, M R Stein, The functor K2 : a survey of computations and problems, from: "Algebraic K–theory, II : “Classical” algebraic K–theory and connections with arithmetic" (editor H Bass), Lecture Notes in Math. 342, Springer (1973) 243 MR0354815
14 B Farb, P Shalen, Real-analytic actions of lattices, Invent. Math. 135 (1999) 273 MR1666834
15 D Fisher, Groups acting on manifolds : around the Zimmer program, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. Chicago Press (2011) 72 MR2807830
16 M Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978) 231 MR540942
17 K W Gruenberg, Cohomological topics in group theory, 143, Springer (1970) MR0279200
18 P Igodt, W Malfait, Extensions realising a faithful abstract kernel and their automorphisms, Manuscripta Math. 84 (1994) 135 MR1285953
19 W van der Kallen, The Schur multipliers of SL(3,Z) and SL(4,Z), Math. Ann. 212 (1974/75) 47 MR0354893
20 D Kielak, Outer actions of Out(Fn) on small right-angled Artin groups, Algebr. Geom. Topol. 18 (2018) 1041 MR3773746
21 V Landazuri, G M Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974) 418 MR0360852
22 R Lee, R H Szczarba, On the homology and cohomology of congruence subgroups, Invent. Math. 33 (1976) 15 MR0422498
23 B A Magurn, An algebraic introduction to K–theory, 87, Cambridge Univ. Press (2002) MR1906572
24 J Milnor, Introduction to algebraic K–theory, 72, Princeton Univ. Press (1971) MR0349811
25 A Navas, Groups of circle diffeomorphisms, Univ. Chicago Press (2011) MR2809110
26 E A Ruh, Almost flat manifolds, J. Differential Geom. 17 (1982) 1 MR658470
27 A Szczepański, Holonomy groups of five-dimensional Bieberbach groups, Manuscripta Math. 90 (1996) 383 MR1397664
28 S Weinberger, SL(n, ) cannot act on small tori, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 406 MR1470739
29 S Weinberger, Some remarks inspired by the C0 Zimmer program, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. Chicago Press (2011) 262 MR2807834
30 D Witte, Arithmetic groups of higher Q–rank cannot act on 1–manifolds, Proc. Amer. Math. Soc. 122 (1994) 333 MR1198459
31 J A Wolf, Spaces of constant curvature, 372, Amer. Math. Soc. (2011) MR2742530
32 S Ye, Low-dimensional representations of matrix groups and group actions on CAT(0) spaces and manifolds, J. Algebra 409 (2014) 219 MR3198841
33 R J Zimmer, D W Morris, Ergodic theory, groups, and geometry, 109, Amer. Math. Soc. (2008) MR2457556