Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Other MSP Journals
On the commutative algebra of categories

John D Berman

Algebraic & Geometric Topology 18 (2018) 2963–3012
Bibliography
1 N A Baas, B I Dundas, B Richter, J Rognes, Stable bundles over rig categories, J. Topol. 4 (2011) 623 MR2832571
2 C Barwick, Spectral Mackey functors and equivariant algebraic K–theory, I, Adv. Math. 304 (2017) 646 MR3558219
3 C Barwick, E Dotto, S Glasman, D Nardin, J Shah, Equivariant higher category theory and equivariant higher algebra, in preparation
4 J Berman, Higher Lawvere theories as cyclic modules, in preparation
5 J Berman, Rational and solid semirings, in preparation
6 J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, 347, Springer (1973) MR0420609
7 A K Bousfield, D M Kan, The core of a ring, J. Pure Appl. Algebra 2 (1972) 73 MR0308107
8 A Chirvasitu, T Johnson-Freyd, The fundamental pro-groupoid of an affine 2–scheme, Appl. Categ. Structures 21 (2013) 469 MR3097055
9 J Cranch, Algebraic theories and (,1)–categories, PhD thesis, The University of Sheffield (2009) arXiv:1011.3243
10 A D Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983) 275 MR690052
11 A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, 47, Amer. Math. Soc. (1997) MR1417719
12 D Gepner, M Groth, T Nikolaus, Universality of multiplicative infinite loop space machines, Algebr. Geom. Topol. 15 (2015) 3107 MR3450758
13 D Gepner, R Haugseng, Enriched –categories via non-symmetric –operads, Adv. Math. 279 (2015) 575 MR3345192
14 S Glasman, Stratified categories, geometric fixed points and a generalized Arone–Ching theorem, preprint (2015) arXiv:1507.01976
15 A Grothendieck, Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5 MR0238860
16 B Guillou, J P May, Models of G–spectra as presheaves of spectra, preprint (2011) arXiv:1110.3571
17 J J Gutiérrez, On solid and rigid monoids in monoidal categories, Appl. Categ. Structures 23 (2015) 575 MR3367132
18 M A Hill, M J Hopkins, Equivariant symmetric monoidal structures, preprint (2016) arXiv:1610.03114
19 D Kaledin, Derived Mackey functors, Mosc. Math. J. 11 (2011) 723 MR2918295
20 S Landsburg, Solid rings and Tor, MathOverflow post (2012)
21 F W Lawvere, Some algebraic problems in the context of functorial semantics of algebraic theories, from: "Reports of the Midwest Category Seminar, II" (editor S Mac Lane), Springer (1968) 41 MR0231882
22 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
23 J Lurie, Higher algebra, book project (2011)
24 S Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963) 28 MR0170925
25 M A Mandell, An inverse K–theory functor, Doc. Math. 15 (2010) 765 MR2735988
26 J P May, The geometry of iterated loop spaces, 271, Springer (1972) MR0420610
27 K Mazur, An equivariant tensor product on Mackey functors, preprint (2015) arXiv:1508.04062
28 G Segal, Categories and cohomology theories, Topology 13 (1974) 293 MR0353298
29 G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421 MR2079383
30 B Shipley, H–algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351 MR2306038