Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Modulo $2$ counting of Klein-bottle leaves in smooth taut foliations

Boyu Zhang

Algebraic & Geometric Topology 18 (2018) 2701–2727
Abstract

We prove a modulo 2 invariance for the number of Klein-bottle leaves in taut foliations. Given two smooth cooriented taut foliations, assume that every Klein-bottle leaf has nontrivial linear holonomy, and assume that the two foliations can be smoothly deformed to each other through taut foliations. We prove that the numbers of Klein-bottle leaves in these two foliations must have the same parity.

Keywords
taut foliations, $J$–holomorphic curves
Mathematical Subject Classification 2010
Primary: 57M50, 57R30, 57R57
References
Publication
Received: 14 March 2017
Revised: 23 March 2018
Accepted: 24 May 2018
Published: 22 August 2018
Authors
Boyu Zhang
Department of Mathematics
Harvard University
Cambridge, MA
United States