Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Modulo $2$ counting of Klein-bottle leaves in smooth taut foliations

Boyu Zhang

Algebraic & Geometric Topology 18 (2018) 2701–2727
Abstract

We prove a modulo 2 invariance for the number of Klein-bottle leaves in taut foliations. Given two smooth cooriented taut foliations, assume that every Klein-bottle leaf has nontrivial linear holonomy, and assume that the two foliations can be smoothly deformed to each other through taut foliations. We prove that the numbers of Klein-bottle leaves in these two foliations must have the same parity.

Keywords
taut foliations, $J$–holomorphic curves
Mathematical Subject Classification 2010
Primary: 57M50, 57R30, 57R57
References
Publication
Received: 14 March 2017
Revised: 23 March 2018
Accepted: 24 May 2018
Published: 22 August 2018
Authors
Boyu Zhang
Department of Mathematics
Harvard University
Cambridge, MA
United States