Volume 18, issue 5 (2018)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On the commutative algebra of categories

John D Berman

Algebraic & Geometric Topology 18 (2018) 2963–3012
Abstract

We discuss what it means for a symmetric monoidal category to be a module over a commutative semiring category. Each of the categories of (1) cartesian monoidal categories, (2) semiadditive categories, and (3) connective spectra can be recovered in this way as categories of modules over a commutative semiring category (or –category in the last case). This language provides a simultaneous generalization of the formalism of algebraic theories (operads, PROPs, Lawvere theories) and stable homotopy theory, with essentially a variant of algebraic K–theory bridging between the two.

Keywords
higher algebra, Lawvere theory, operad
Mathematical Subject Classification 2010
Primary: 18C10, 55U40
Secondary: 13C60, 19D23
References
Publication
Received: 17 August 2017
Revised: 5 February 2018
Accepted: 4 May 2018
Published: 22 August 2018
Authors
John D Berman
Department of Mathematics
University of Virginia
Charlottesville, VA
United States